

**JOIN MY PAID WHATSAPP GROUP & GET
PDF FORMAT PAPERS WITH ANSWERS.**

ONE TIME FEES RS.600

1ST JAN 2026 TO TILL MARCH 2026 FINAL EXAM.

WHATSAPP – 8056206308

34 x 5 = 170

- 1) Find the particular solution satisfying the given condition : $x^2 dy + (xy + y^2) dx = 0$; $y = 1$, when $x = 1$.
- 2) Show that the following differential equation is homogeneous and then solve it.
 $ydx + x \log \left| \frac{y}{x} \right| dy - 2xdy = 0$
- 3) Find the particular solution of the differential equation
 $x \frac{dy}{dx} + y - x + xy \cot x = 0$, $x \neq 0$, given that when $x = \frac{\pi}{2}$, $y = 0$.
- 4) Solve $\frac{dy}{dx} - 3y \cot x = \sin 2x$, where $y = 2$ and $x = \frac{\pi}{2}$
- 5) Solve the following differential equation $(1 + x^2) dy + 2xydx = \cot x dx$, $x \neq 0$
- 6) Obtain the differential equation of all the circles of radius r .
- 7) Solve the following differential equation :
 $(1 + y^2) dx = (\tan^{-1} y - x) dy$
- 8) Find the particular solution of the differential equation $(\tan^{-1} y - x) dy = (1 + y^2) dx$, given that when $x = 0$, $y = 0$.
- 9) Find the particular solution of the differential equation $(x - \sin y) dy + (\tan y) dx = 0$, given that $y = 0$ when $x = 0$.
- 10) Find the particular solution of the differential equation $\frac{dy}{dx} = \frac{xy}{x^2 + y^2}$ given that $y = 1$, when $x = 0$.
- 11) Find the particular solution of the differential equation :
 $xe^{\frac{y}{x}} - y \sin\left(\frac{y}{x}\right) + x \frac{dy}{dx} \sin\left(\frac{y}{x}\right) = 0$ for $x = 1$, $y = 0$.
- 12) Find the particular solution of the following differential equation given that : $y = 0$, when $x = 1$ $(x^2 + xy) dy = (x^2 + y^2) dx$.
- 13) Find the particular solution of the differential equation : $x^2 dy = y(x + y) dx = 0$, when $x = 1$, $y = 1$.
- 14) Show that the differential equation
 $x \frac{dy}{dx} \sin\left(\frac{y}{x}\right) + x - y \sin\left(\frac{y}{x}\right) = 0$ is homogeneous. Find particular solution of this differential equation, given that $x = 1$ when $y = \frac{\pi}{2}$.
- 15) Find the particular solution of the differential equation :
 $x^2 \frac{dy}{dx} - xy = 1 + \cos\left(\frac{y}{x}\right)$, $x \neq 0$, when $x = 1$, $y = \frac{\pi}{2}$
- 16) Find the particular solution of the differential equation
 $(3xy + y^2) dx + (x^2 + xy) dy = 0$ for $x = 1$, $y = 1$
- 17) Find the particular solution of the differential equation
 $x \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) + x$ given that when $x = 1$, $y = \frac{\pi}{4}$
- 18) Solve the following differential equation:
 $x \cos\left(\frac{y}{x}\right) (ydx + xdy) = y \sin\left(\frac{y}{x}\right) (xdy - ydx)$
- 19) Show that the differential equation $(xe^{y/x} + y) dx = x dy$ is homogeneous. Find the particular solution of this differential equation, given that $x = 1$ when $y = 1$.
- 20) Form the differential equation of the family of all circles of radius r .
- 21) Find the differential equation of all the parabolas with latusrectum '4 a' and whose axes are parallel to positive X-axis.
- 22) Solve the following differential equation
 $x(x^2 - 1) \frac{dy}{dx} = 1$, $y = 0$, when $x = 2$

**THIS TEST PDF FORMAT QUESTION PAPER
DOWNLOAD FROM MY WEBSITE**

(check - <https://ravitestpapers.com/>)

USE SEARCH BAR TO FIND QUESTION PAPERS

23) Find the particular solution of the differential equation $\frac{dy}{dx} = \frac{x(2 \log x + 1)}{\sin y + y \cos y}$, given that $y = \frac{\pi}{2}$ when $x = 1$

24) Find the particular solution of the differential equation $(x - y) \frac{dy}{dx} = (x + 2y)$, given that $y = 0$ when $x = 1$.

25) Solve the differential equation $[x \sin^2(\frac{y}{x}) - y] dx + x dy = 0$, given $y = \frac{\pi}{4}$ when $x = 1$.

26) Solve the differential equation $dy = \cos x(2 - y \operatorname{cosec} x)dx$ given that $y = 2$ when $x = \pi/2$.

27) Solve the following differential equation $\frac{dy}{dx} + y \cot x = 4x \operatorname{cosec} x$, given that $y = 0$ when $x = \pi/2$.

28) Solve the differential equation $(x^2 + 1) \frac{dy}{dx} + 2xy = \sqrt{x^2 + 4}$

29) Solve the differential equation $(x^2 + 1) \frac{dy}{dx} + 2xy = \sqrt{x^2 + 4}$

30) Solve the following initial value problem $(x^2 + 1) y' - 2xy = (x^4 + 2x^2 + 1) \cos x, y(0) = 0$

31) Find the particular solution of the differential equation $(\tan^{-1} y - x) dy = (1 + y^2) dx$, given that $x = 1$ when $y = 0$.

32) Solve the initial value problem $ye^y dx = (y^3 + 2xe^y) dy, y(0) = 1$

33) Solve the initial value problem $(x - \sin y) dy + (\tan y) dx = 0, y(0) = 0$

34) An equation relating to the stability of a aeroplane is given by $\frac{dv}{dt} = g \cos \alpha - kv$. Where the velocity and g, α, k are constants. Find an expression for the velocity if $v = 0$ at $t = 0$.

THIS TEST PDF FORMAT QUESTION PAPER

DOWNLOAD FROM MY WEBSITE

(check - <https://ravitestpapers.com/>)

USE SEARCH BAR TO FIND QUESTION PAPERS