

CLASS 12: PHYSICS

FORMULA

12TH CBSE FULL TEST PAPERS SALES
MATHS 10 PHYSICS 10 CHEMISTRY 10

PDF COST RS.250 ONLY

RAVI TEST PAPERS & NOTES

WHATSAPP – 8056206308

ELECTRIC CHARGES AND FIELDS

- Coulomb's law : $F = \frac{k q_1 q_2}{r^2} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$
- Relative permittivity or dielectric constant : ϵ_r or $K = \frac{\epsilon}{\epsilon_0}$
- Electric field intensity at a point distant r from a point charge q is $E = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$
- Electric dipole moment, $\vec{p} = q2a$
- Electric field intensity on axial line (end on position) of the electric dipole
 - (i) At the point r from the centre of the electric dipole, $E = \frac{1}{4\pi\epsilon_0} \frac{2pr}{(r^2 - a^2)^2}$.
 - (ii) At very large distance i.e., $(r > > a)$, $E = \frac{2p}{4\pi\epsilon_0 r^3}$
- Electric field intensity on equatorial line (board on position) of electric dipole
 - (i) At the point at a distance r from the centre of electric dipole, $E = \frac{1}{4\pi\epsilon_0} \frac{p}{(r^2 + a^2)^{3/2}}$.
 - (ii) At very large distance i.e., $r > > a$, $E = \frac{1}{4\pi\epsilon_0} \frac{p}{r^3}$.
- Electric field intensity at any point due to an electric dipole $E = \frac{1}{4\pi\epsilon_0} \frac{p}{r^3} \sqrt{1 + 3\cos^2\theta}$
- Electric field intensity due to a charged ring
 - (i) At a point on its axis at distance r from its centre, $E = \frac{1}{4\pi\epsilon_0} \frac{qr}{(r^2 + a^2)^{3/2}}$

(ii) At very large distance i.e. $r \gg a$ $E = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$

- Torque on an electric dipole placed in a uniform electric field : $\vec{\tau} = \vec{p} \times \vec{E}$ or $\tau = pE \sin\theta$
- Potential energy of an electric dipole in a uniform electric field is $U = -pE(\cos\theta_2 - \cos\theta_1)$ where θ_1 & θ_2 are initial angle and final angle between \vec{p} and \vec{E} .
- Electric flux $\phi = \vec{E} \cdot d\vec{S}$
- Gauss's law : $\oint \vec{E} \cdot d\vec{S} = \frac{q}{\epsilon_0}$
- Electric field due to thin infinitely long straight wire of uniform linear charge density λ

$$E = \frac{\lambda}{2\pi\epsilon_0 r}$$
 - (i) At a point outside the shell i.e., $r > R$ $E = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$
 - (ii) At a point on the shell i.e., $r = R$ $E = \frac{1}{4\pi\epsilon_0} \frac{q}{R^2}$
 - (iii) At a point inside the shell i.e., $r < R$ $E = 0$
- Electric field due to a non conducting solid sphere of uniform volume charge density ρ and radius R at a point distant r from the centre of the sphere is given as follows :
 - (i) At a point outside the sphere i.e., $r > R$ $E = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$
 - (ii) At a point on the surface of the sphere i.e., $r = R$ $E = \frac{1}{4\pi\epsilon_0} \frac{q}{R^2}$

(iii) At a point inside the sphere i.e., $r < R$

$$E = \frac{\rho r}{3\epsilon_0} = \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{R^3} \cdot r$$

- Electric field due to a thin non conducting infinite sheet of charge with uniformly charge surface density σ is $E = \frac{\sigma}{2\epsilon_0}$
- Electric field between two infinite thin plane parallel sheets of uniform surface charge density σ and $-\sigma$ is $E = \sigma/\epsilon_0$.

ELECTROSTATIC POTENTIAL AND CAPACITANCE

- Electric potential $V = \frac{W}{q}$
- Electric potential at a point distant r from a point charge q is $V = \frac{q}{4\pi\epsilon_0 r}$
- The electric potential at point due to an electric dipole

$$V = \frac{1}{4\pi\epsilon_0} \frac{p \cos\theta}{r^2}$$

- Electric potential due to a uniformly charged spherical shell of uniform surface charge density σ and radius R at a distance r from the centre the shell is given as follows :

(i) At a point outside the shell i.e., $r > R$

$$V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$

(ii) At a point on the shell i.e., $r = R$

$$V = \frac{1}{4\pi\epsilon_0} \frac{q}{R}$$

(iii) At a point inside the shell i.e., $r < R$

$$V = \frac{1}{4\pi\epsilon_0} \frac{q}{R}$$

- Electric potential due to a non-conducting solid sphere of uniform volume charge density r and radius R distant r from the sphere is given as follows :

(i) At a point outside the sphere i.e. $r > R$

$$V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$

(ii) At a point on the sphere i.e., $r = R$

$$V = \frac{1}{4\pi\epsilon_0} \frac{q}{R}$$

(iii) At a point inside the sphere i.e., $r < R$

$$V = \frac{1}{4\pi\epsilon_0} \frac{q(3R^2 - r^2)}{2R^3}$$

□ Relationship between \vec{E} and \vec{V}

$$\vec{E} = -\vec{\nabla}V$$

$$\text{where } \vec{\nabla} = \left[i \frac{\partial}{\partial x} + j \frac{\partial}{\partial y} + k \frac{\partial}{\partial z} \right]$$

- Electric potential energy of a system of two point charges is $U = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r_{12}}$
- Capacitance of a spherical conductor of radius R is $C = 4\pi\epsilon_0 R$
- Capacitance of an air filled parallel plate capacitor $C = \frac{\epsilon_0 A}{d}$
- Capacitance of an air filled spherical capacitor $C = 4\pi\epsilon_0 \frac{ab}{b-a}$
- Capacitance of an air filled cylindrical capacitor $C = \frac{2\pi\epsilon_0 L}{\ln\left(\frac{b}{a}\right)}$
- Capacitance of a parallel plate capacitor with a dielectric slab of dielectric constant K , completely filled between the plates of the capacitor, is given by $C = \frac{K\epsilon_0 A}{d} = \frac{\epsilon_0 A}{d}$
- When a dielectric slab of thickness t and dielectric constant K is introduced between the plates, then the capacitance of a parallel plate capacitor is given by $C = \frac{\epsilon_0 A}{d-t\left(1-\frac{1}{K}\right)}$
- When a metallic conductor of thickness t is introduced between the plates, then capacitance of a parallel plate capacitor is given by $C = \frac{\epsilon_0 A}{d-t}$
- Energy stored in a capacitor :

$$U = \frac{1}{2} CV^2 = \frac{1}{2} QV = \frac{1}{2} \frac{Q^2}{C}$$

Energy density : $u = \frac{1}{2} \epsilon_0 E^2$

Capacitors in series : $\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$

Capacitors in parallel : $C_p = C_1 + C_2 + \dots + C_n$

JAN 2026 – MARCH 2027 TEST SERIES

JOIN MY PAID WHATSAPP GROUP - PDF FORMAT TEST WITH ANSWERS

ONE TIME FEES

JAN 2026 – MARCH 2027	FEES	JUNE 2026 – MARCH 2027	FEES
CBSE 12TH	RS.4000	CBSE 12TH	RS.3000
CBSE 10TH	RS.4000	CBSE 10TH	RS.3000
NEET - TILL FINAL EXAM	RS.4500	NEET - TILL FINAL EXAM	RS.3500
JEE - TILL FINAL EXAM	RS.4500	JEE - TILL FINAL EXAM	RS.3500
TN 12TH	RS.3000	TN 12TH	RS.2000
TN 10TH	RS.3000	TN 10TH	RS.2000

CHAPTER WISE STUDY MATERIALS AVAILABLE FOR ALL CLASSES

CHECK FREE TEST PAPERS www.ravistestpapers.com & www.ravistestpapers.in

RAVI TEST PAPERS & NOTES, WHATSAPP – 8056206308

CURRENT ELECTRICITY

- Current, $I = \frac{q}{t}$
- Current density $J = \frac{I}{A}$ (Electricity, Class 10)
- Drift velocity of electrons is given by

$$\bar{v}_d = -\frac{e\bar{E}}{m} \tau$$
- Relationship between current and drift velocity

$$I = nAe v_d$$
- Relationship between current density and drift velocity

$$J = nev_d$$
- Mobility, $\mu = \frac{|v_d|}{E} = \frac{qE\tau/m}{E} = \frac{q\tau}{m}$
- Resistance $R = \frac{V}{I}$.
- Conductance : $G = \frac{1}{R}$.
- The resistance of a conductor is

$$R = \frac{m}{ne^2\tau} \frac{l}{A} = \rho \frac{l}{A}$$
 where $\rho = \frac{m}{ne^2\tau}$
- Conductivity :

$$\sigma = \frac{1}{\rho} = \frac{ne^2\tau}{m} = ne\mu \quad \left[\text{As } \mu = \frac{v_d}{E} = \frac{e\tau}{m} \right]$$
- If the conductor is in the form of wire of length l and a radius r , then its resistance is

$$R = \frac{\rho l}{\pi r^2}$$
- If a conductor has mass m , volume V and density d , then its resistance R is

$$R = \frac{\rho l}{A} = \frac{\rho l}{Al} = \frac{\rho l}{V} = \frac{\rho l d}{\pi r^2}$$
 (Electricity, Class 10)
- A cylindrical tube of length l has inner and outer radii r_1 and r_2 respectively. The resistance between its end faces is

$$R = \frac{\rho l}{\pi(r_2^2 - r_1^2)}$$
- Relationship between J , σ and E

$$J = \sigma E$$
- The resistance of a conductor at temperature $t^\circ\text{C}$ is given by $R_t = R_0 (1 + \alpha t + \beta t^2)$
- Resistors in series $R_s = R_1 + R_2 + R_3$
- Resistors in parallel $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$. (Electricity, Class 10)

- Relationship between ϵ , V and r

$$\text{or } r = R \left(\frac{\epsilon}{V} - 1 \right)$$

 where ϵ emf of a cell, r internal resistance and R is external resistance
- Wheatstone's bridge $\frac{P}{Q} = \frac{R}{S}$
- Metre bridge or slide metre bridge
 The unknown resistance, $R = \frac{Sl}{100-l}$.
- Comparison of emfs of two cells by using potentiometer $\frac{\epsilon_1}{\epsilon_2} = \frac{l_1}{l_2}$
- Determination of internal resistance of a cell by potentiometer $r = \left(\frac{l_1 - l_2}{l_2} \right) R$
- Electric power $P = \frac{\text{electric work done}}{\text{time taken}}$

$$P = VI = I^2 R = \frac{V^2}{R}$$
 (Electricity, Class 10)

MOVING CHARGES AND MAGNETISM

- Force on a charged particle in a uniform electric field $\vec{F} = q\vec{E}$
- Force on a charged particle in a uniform magnetic field $\vec{F} = q(\vec{v} \times \vec{B})$ or $F = qvB \sin\theta$
- Motion of a charged particle in a uniform magnetic field
 - Radius of circular path is

$$R = \frac{\pi r v}{Bq} = \frac{\sqrt{2\pi m k}}{qB}$$
 - Time period of revolution is $T = \frac{2\pi R}{v} = \frac{2\pi m}{qB}$
 - The frequency is $\nu = \frac{1}{T} = \frac{qB}{2\pi m}$
 - The angular frequency is $\omega = 2\pi\nu = \frac{qB}{m}$
- Cyclotron frequency, $\nu = \frac{Bq}{2\pi m}$
- Biot Savart's law

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Idl \sin\theta}{r^2} \quad \text{or} \quad d\vec{B} = \frac{\mu_0}{4\pi} \frac{I(d\vec{l} \times \vec{r})}{r^3}$$
- The magnetic field B at a point due to a straight wire of finite length carrying current I at a perpendicular distance r is

$$B = \frac{\mu_0 I}{4\pi r} [\sin \alpha + \sin \beta]$$

JAN 2026 – MARCH 2027 TEST SERIES

JOIN MY PAID WHATSAPP GROUP - PDF FORMAT TEST WITH ANSWERS

ONE TIME FEES

JAN 2026 – MARCH 2027	FEES	JUNE 2026 – MARCH 2027	FEES
CBSE 12TH	RS.4000	CBSE 12TH	RS.3000
CBSE 10TH	RS.4000	CBSE 10TH	RS.3000
NEET - TILL FINAL EXAM	RS.4500	NEET - TILL FINAL EXAM	RS.3500
JEE - TILL FINAL EXAM	RS.4500	JEE - TILL FINAL EXAM	RS.3500
TN 12TH	RS.3000	TN 12TH	RS.2000
TN 10TH	RS.3000	TN 10TH	RS.2000

CHAPTER WISE STUDY MATERIALS AVAILABLE FOR ALL CLASSES

CHECK FREE TEST PAPERS www.ravistestpapers.com & www.ravistestpapers.in

RAVI TEST PAPERS & NOTES, WHATSAPP - 8056206308

- The magnetic field at a point on the axis of the circular current carrying coil is

$$B = \frac{\mu_0}{4\pi} \frac{2\pi NIa^2}{(a^2 + x^2)^{3/2}}$$

- Magnetic field at the centre due to current carrying circular arc

$$B = \frac{\mu_0 I \phi}{4\pi a}.$$

- The magnetic field at the centre of a circular coil of radius a carrying current I is

$$B = \frac{\mu_0}{4\pi} \frac{2\pi I}{a} = \frac{\mu_0 I}{2a}$$

If the circular coil consists of N turns, then

$$B = \frac{\mu_0}{4\pi} \frac{2\pi NI}{a} = \frac{\mu_0 NI}{2a}$$

- Ampere's circuital law $\oint \vec{B} \cdot d\vec{l} = \mu_0 I$.
- Magnetic field due to an infinitely long straight solid cylindrical wire of radius a , carrying current I
 - Magnetic field at a point outside the wire i.e. $(r > a)$ is $B = \frac{\mu_0 I}{2\pi r}$
 - Magnetic field at a point inside the wire i.e. $(r < a)$ is $B = \frac{\mu_0 I r}{2\pi a^2}$
 - Magnetic field at a point on the surface of a wire i.e. $(r = a)$ is $B = \frac{\mu_0 I}{2\pi a}$
- Force on a current carrying conductor in a uniform magnetic field

$$\vec{F} = I(\vec{l} \times \vec{B}) \quad \text{or} \quad F = IlB \sin\theta$$

- When two parallel conductors separated by a distance r carry currents I_1 and I_2 , the magnetic field of one will exert a force on the other. The force per unit length on either conductor is

$$f = \frac{\mu_0}{4\pi} \frac{2I_1 I_2}{r}$$

- The force of attraction or repulsion acting on each conductor of length l due to currents in two parallel conductor is $F = \frac{\mu_0}{4\pi} \frac{2I_1 I_2}{r} l$.
- When two charges q_1 and q_2 respectively moving with velocities v_1 and v_2 are at a distance r apart, then the force acting between them is

$$F = \frac{\mu_0}{4\pi} \frac{q_1 q_2 v_1 v_2}{r^2}$$

- Torque on a current carrying coil placed in a uniform magnetic field

$$\tau = NIAB \sin\theta = MB \sin\theta$$

- If α is the angle between plane of the coil and the magnetic field, then torque on the coil is

$$\tau = NIAB \cos\alpha = MB \cos\alpha$$

- Workdone in rotating the coil through an angle θ from the field direction is

$$W = MB(1 - \cos\theta)$$

- Potential energy of a magnetic dipole

$$U = -\vec{M} \cdot \vec{B} = -MB \cos\theta$$

- An electron revolving around the central nucleus in an atom has a magnetic moment and it is given by

$$\vec{\mu}_e = -\frac{e}{2\pi} \vec{I}$$

- Conversion of galvanometer into a ammeter

$$S = \left(\frac{I_g}{I - I_g} \right) G$$

- Conversion of galvanometer into voltmeter

$$R = \frac{V}{I_g} - G$$

- In order to increase the range of voltmeter n times the value of resistance to be connected in series with galvanometer is $R = (n - 1)G$.

- Magnetic dipole moment

$$\vec{M} = m(2\vec{l})$$

- The magnetic field due to a bar magnet at any point on the axial line (end on position) is

$$B_{\text{axial}} = \frac{\mu_0}{4\pi} \frac{2Mr}{(r^2 - l^2)^2}$$

For short magnet $l^2 \ll r^2$

$$B_{\text{axial}} = \frac{\mu_0 2M}{4\pi r^3}$$

The direction of B_{axial} is along SN .

- The magnetic field due to a bar magnet at any point on the equatorial line (board-side on position) of the bar magnet is

$$B_{\text{equatorial}} = \frac{\mu_0 M}{4\pi(r^2 + l^2)^{3/2}}$$

For short magnet

$$B_{\text{equatorial}} = \frac{\mu_0 M}{4\pi r^3}$$

The direction of $B_{\text{equatorial}}$ is parallel to NS .

- In moving coil galvanometer the current I passing through the galvanometer is directly proportional to its deflection (θ).

$$I \propto \theta \quad \text{or,} \quad I = G\theta.$$

where $G = \frac{k}{NAB} = \text{galvanometer constant}$

- Current sensitivty : $I_s = \frac{\theta}{J} = \frac{NAB}{k}$.

- Voltage sensitivty : $V_s = \frac{\theta}{V} = \frac{\theta}{IR} = \frac{NAB}{kR}$.

MAGNETISM AND MATTER

- Gauss's law for magnetism

$$\phi = \sum_{\substack{\text{all area} \\ \text{elements } \Delta S}} \vec{B} \cdot \Delta \vec{S} = 0$$

- Horizontal component :

$$B_H = B \cos \delta$$

- Magnetic intensity
 $B = \mu H$

- Intensity of magnetisation

$$I = \frac{\text{Magnetic moment}}{\text{Volume}} = \frac{M}{V}$$

- Magnetic susceptibility

$$\chi_m = \frac{I}{H}$$

- Magnetic permeability

$$\mu = \frac{B}{H}$$

- Relative permeability :

$$\mu_r = \frac{\mu}{\mu_0}$$

- Relationship between magnetic permeability and susceptibility

$$\mu_r = 1 + \chi_m \text{ with } \mu_r = \frac{\mu}{\mu_0}$$

- Curie law : $\chi_m = \frac{C}{T}$

$$\chi_m = \frac{C}{T - T_c} \quad (T > T_c)$$

ELECTROMAGNETIC INDUCTION

- Magnetic Flux

$$\phi = \vec{B} \cdot \vec{A} = BA \cos \theta$$

- Faraday's law of electromagnetic induction

$$\epsilon = - \frac{d\phi}{dt}$$

- When a conducting rod of length l is rotated perpendicular to a uniform magnetic field B , then induced emf between the ends of the rod is

$$|\epsilon| = \frac{B \omega l^2}{2} = \frac{B (2\pi\omega) l}{2}$$

$$|\epsilon| = B \omega (\pi l^2) = B \omega A$$

- The self induced emf is

$$\epsilon = - \frac{d\phi}{dt} = - L \frac{dI}{dt}$$

- Self inductance of a circular coil is

$$L = \frac{\mu_0 N^2 \pi R}{2}$$

- Let I_p be the current flowing through primary coil at any instant. If ϕ_s is the flux linked with secondary coil then

$$\phi_s \propto I_p \text{ or } \phi_s = M I_p$$

where M is the coefficient of mutual inductance. The emf induced in the secondary coil is given by

$$\epsilon_s = - M \frac{dI_p}{dt}$$

where M is the coefficient of mutual inductance.

- Coefficient of coupling (K) :

$$K = \frac{M}{\sqrt{L_1 L_2}}$$

- The coefficient of mutual inductance of two long co-axial solenoids, each of length l , area of cross section A , wound on air core is

$$M = \frac{\mu_0 N_1 N_2 A}{l}$$

- Energy stored in an inductor

$$U = \frac{1}{2} L I^2$$

- During the growth of current in a LR circuit is

$$I = I_0 (1 - e^{-Rt/L}) = I_0 (1 - e^{-t/\tau})$$

where I_0 is the maximum value of current, $\tau = L/R$ = time constant of LR circuit.

- During the decay of current in a LR circuit is

$$I = I_0 e^{-Rt/L} = I_0 e^{-t/\tau}$$

- During charging of capacitor through resistor

$$q = q_0 (1 - e^{-t/RC}) = q_0 (1 - e^{-t/\tau})$$

where q_0 is the maximum value of charge.

$\tau = RC$ is the time constant of CR circuit.

- During discharging of capacitor through resistor

$$q = q_0 e^{-t/RC} = q_0 e^{-t/\tau}$$

ALTERNATING CURRENT

- Mean or average value of alternating current or voltage over one complete cycle

$$I_m \text{ or } \bar{I} \text{ or } I_{av} = \frac{\int_0^T I_0 \sin \omega t \, dt}{\int_0^T dt} = 0$$

$$V_m \text{ or } \bar{V} \text{ or } V_{av} = \frac{\int_0^T V_0 \sin \omega t \, dt}{\int_0^T dt} = 0$$

- Average value of alternating current for first half cycle is

$$I_{av} = \frac{\int_0^{T/2} I_0 \sin \omega t \, dt}{\int_0^{T/2} dt} = \frac{2I_0}{\pi} = 0.637 I_0$$

- Similarly, for alternating voltage, the average value over first half cycle is

JAN 2026 – MARCH 2027 TEST SERIES			
JOIN MY PAID WHATSAPP GROUP - PDF FORMAT TEST WITH ANSWERS			
ONE TIME FEES		FEES	FEES
CBSE 12TH	RS.4000	CBSE 12TH	RS.3000
CBSE 10TH	RS.4000	CBSE 10TH	RS.3000
NEET - TILL FINAL EXAM	RS.4500	NEET - TILL FINAL EXAM	RS.3500
JEE - TILL FINAL EXAM	RS.4500	JEE - TILL FINAL EXAM	RS.3500
TN 12TH	RS.3000	TN 12TH	RS.2000
TN 10TH	RS.3000	TN 10TH	RS.2000

CHAPTER WISE STUDY MATERIALS AVAILABLE FOR ALL CLASSES

CHECK FREE TEST PAPERS www.ravitestpapers.com & www.ravitestpapers.in

RAVI TEST PAPERS & NOTES, WHATSAPP – 8056206308

$$V_{av} = \frac{\int_0^{T/2} V_0 \sin \omega t dt}{\int_0^{T/2} dt} = \frac{2V_0}{\pi} = 0.637V_0$$

□ Average value of alternating current for second cycle is

$$I_{av} = \frac{\int_{T/2}^T I_0 \sin \omega t dt}{\int_{T/2}^T dt} = -\frac{2I_0}{\pi} = -0.637 I_0$$

□ Similarly, for alternating voltage, the average value over second half cycle is

$$V_{av} = \frac{\int_{T/2}^T V_0 \sin \omega t dt}{\int_{T/2}^T dt} = -\frac{2V_0}{\pi} = -0.637 V_0$$

□ Mean value or average value of alternating current over any half cycle

$$I_{av} = \frac{2I_0}{\pi} = 0.637I_0$$

$$I_{av} = \frac{2I_0}{\pi} = 0.637I_0$$

□ Root mean square (rms) value of alternating current

$$I_{rms} \text{ or } I_v = \frac{I_0}{\sqrt{2}} = 0.707I_0$$

Similarly, for alternating voltage

$$V_{rms} = \frac{V_0}{\sqrt{2}} = 0.707 V_0$$

□ Form factor = $\frac{I_{av}}{I_{rms}}$

□ Inductive reactance :

$$X_L = \omega L = 2\pi\nu L$$

□ Capacitive reactance : $X_C = \frac{1}{\omega C} = \frac{1}{2\pi\nu C}$

The impedance of the series LCR circuit.

$$Z = \sqrt{R^2 + (X_L - X_C)^2} = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

$$\therefore \text{Admittance} = \frac{1}{\text{Impedance}} \text{ or } Y = \frac{1}{Z}$$

$$\therefore \text{Susceptance} = \frac{1}{\text{Reactance}}$$

$$\text{○ Inductive susceptance} = \frac{1}{\text{Inductive reactance}}$$

$$\text{or } S_L = \frac{1}{X_L} = \frac{1}{\omega L}$$

$$\text{○ Capacitive susceptance} = \frac{1}{\text{Capacitive reactance}}$$

$$\text{or } S_C = \frac{1}{X_C} = \frac{1}{1/\omega C} = \omega C$$

□ The resonant frequency is

$$v_r = \frac{1}{2\pi\sqrt{LC}}$$

$$\omega_r = \frac{1}{\sqrt{LC}}$$

□ Quality factor

$$Q = \frac{X_L}{R} = \frac{\omega L}{R}$$

$$Q = \frac{X_C}{R} = \frac{1}{\omega C R}$$

$$\therefore Q = \frac{1}{R\sqrt{C}}$$

□ Average power (P_{av}) :

$$P_{av} = V_{rms} I_{rms} \cos\phi = \frac{V_0 I_0}{2} \cos\phi$$

□ Apparent power : $P_v = V_{rms} I_{rms} = \frac{V_0 I_0}{2}$

□ Efficiency of a transformer,

$$\eta = \frac{\text{output power}}{\text{input power}} = \frac{V_S I_S}{V_P I_P}.$$

ELECTROMAGNETIC WAVES

□ The displacement current is given by

$$I_d = \epsilon_0 \frac{d\phi_E}{dt}$$

□ Four Maxwell's equations are :

○ Gauss's law for electrostatics

$$\oint \mathbf{E} \cdot d\mathbf{S} = \frac{q}{\epsilon_0}$$

○ Gauss's law for magnetism

$$\oint \mathbf{B} \cdot d\mathbf{S} = 0$$

○ Faraday's law of electromagnetic induction

$$\oint \mathbf{E} \cdot d\mathbf{l} = -\frac{d\phi_B}{dt}$$

○ Maxwell-Ampere's circuital law

$$\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 \left[I + \epsilon_0 \frac{d\phi_E}{dt} \right]$$

□ The amplitudes of electric and magnetic fields in free space, in electromagnetic waves are related by

$$E_0 = cB_0 \text{ or } B_0 = \frac{E_0}{c}$$

□ The speed of electromagnetic wave in free space is

$$c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$$

□ The speed of electromagnetic wave in a medium is

$$v = \frac{1}{\sqrt{\mu \epsilon}}$$

□ The energy density of the electric field is

$$u_E = \frac{1}{2} \epsilon_0 E^2$$

- The energy density of magnetic field is
$$u_B = \frac{1}{2} \frac{B^2}{\mu_0}$$
- Average energy density of the electric field is
$$\langle u_E \rangle = \frac{1}{4} \epsilon_0 E_0^2$$
- Average energy density of the magnetic field is
$$\langle u_B \rangle = \frac{1}{4} \frac{B_0^2}{\mu_0} = \frac{1}{4} \epsilon_0 E_0^2$$
- Average energy density of electromagnetic wave is
$$\langle u \rangle = \frac{1}{2} \epsilon_0 E_0^2$$
- Intensity of electromagnetic wave
$$I = \langle u \rangle c = \frac{1}{2} \epsilon_0 E_0^2 c$$
- Momentum of electromagnetic wave
$$p = \frac{U}{c}$$
 (complete absorption)

$$p = \frac{2U}{c}$$
 (complete reflection)
- The poynting vector is
$$\vec{S} = \frac{1}{\mu_0} (\vec{E} \times \vec{B})$$

RAY OPTICS AND OPTICAL INSTRUMENTS

- When two plane mirrors are inclined at an angle θ and an object is placed between them, the number of images of an object are formed due to multiple reflections.

$n = \frac{360^\circ}{\theta}$	Position of object	Number of images
even	anywhere	$n - 1$
odd	symmetric	$n - 1$
	asymmetric	n

- If $\frac{360^\circ}{\theta}$ is a fraction, the number of images formed will be equal to its integral part. *(Light, Class 8)*
- The focal length of a spherical mirror of radius R is given by

$$f = \frac{R}{2}$$

- Transverse or linear magnification

$$m = \frac{\text{size of image}}{\text{size of object}} = -\frac{v}{u}$$

- Longitudinal magnification :

$$m_L = -\frac{dv}{du}$$

- Superficial magnification :
$$m_s = \frac{\text{area of image}}{\text{area of object}} = m^2$$
- Mirror's formula
$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$
- Newton's formula is $f^2 = xy$,
- Laws of refraction :
$$\frac{\sin i}{\sin r} = \mu_2$$
- Absolute refractive index :
$$\mu_s = \frac{\mu_2}{\mu_1} = \frac{\left(\frac{c}{v_2}\right)}{\left(\frac{c}{v_1}\right)} = \frac{v_1}{v_2}$$

$$\text{Lateral shift, } d = t \frac{\sin(i-r)}{\cos r}$$

(Light, Reflection and Refraction, Class 10)

- If there is an ink spot at the bottom of a glass slab, it appears to be raised by a distance
$$d = t - \frac{t}{\mu} = t \left(1 - \frac{1}{\mu}\right)$$
- When the object is situated in rarer medium, the relation between μ_1 (refractive index of rarer medium) μ_2 (refractive index of the spherical refracting surface) and R (radius of curvature) with the object and image distances is given by
$$-\frac{\mu_1}{u} + \frac{\mu_2}{v} = \frac{\mu_2 - \mu_1}{R}$$

- When the object is situated in denser medium, the relation between μ_1 , μ_2 , R , u and v can be obtained by interchanging μ_1 and μ_2 . In that case, the relation becomes
$$-\frac{\mu_2}{u} + \frac{\mu_1}{v} = \frac{\mu_1 - \mu_2}{R} \quad \text{or} \quad -\frac{\mu_1}{v} + \frac{\mu_2}{u} = \frac{\mu_2 - \mu_1}{R}$$

- Lens maker's formula
$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

- Thin lens formula
$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

- Linear magnification
$$m = \frac{\text{size of image (I)}}{\text{size of object (O)}} = \frac{v}{u}$$

- Power of a lens
$$P = \frac{1}{\text{focal length in metres}}$$

- Combination of thin lenses in contact

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} + \frac{1}{f_3} + \dots$$

- The total power of the combination is given by

$$P = P_1 + P_2 + P_3 + \dots$$
- The total magnification of the combination is given by

$$m = m_1 \times m_2 \times m_3 \dots$$

- When two thin lenses of focal lengths f_1 and f_2 are placed coaxially and separated by a distance d , the focal length of a combination is given by

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}.$$

- In terms of power $P = P_1 + P_2 - dP_1 P_2$.
(Light, Reflection and Refraction, Class 10)
- If I_1, I_2 are the two sizes of image of the object of size O , then $O = \sqrt{I_1 I_2}$
- The refractive index of the material of the prism is

$$\mu = \frac{\sin \left[\frac{(A + \delta_m)}{2} \right]}{\sin \left(\frac{A}{2} \right)}$$

where A is the angle of prism and δ_m is the angle of minimum deviation.

- Mean deviation $\delta = \frac{\delta_V + \delta_R}{2}$.
- Dispersive power,

$$\omega = \frac{\text{angular dispersion} (\delta_V - \delta_R)}{\text{mean deviation} (\delta)}$$

$$\omega = \frac{\mu_V - \mu_R}{(\mu - 1)},$$

 where $\mu = \frac{\mu_V + \mu_R}{2}$ = mean refractive index
- Magnifying power, of simple microscope

$$M = \frac{\text{angle subtended by image at the eye}}{\text{angle subtended by the object at the eye}}$$

$$= \frac{\tan \beta}{\tan \alpha} = \frac{\beta}{\alpha}$$

- When the image is formed at infinity (far point),

$$M = \frac{D}{f}$$
- When the image is formed at the least distance of distinct vision D (near point),

$$M = 1 + \frac{D}{f}$$

- Magnifying power of a compound microscope

$$M = m_o \times m_e$$
- When the final image is formed at infinity (normal adjustment),

$$M = \frac{v_o}{u_o} \left(\frac{D}{f_e} \right)$$

- Length of tube, $L = v_o + f_e$
- When the final image is formed at least distance of distinct vision,

$$M = \frac{v_o}{u_o} \left(1 + \frac{D}{f_e} \right)$$

where u_o and v_o represent the distance of object and image from the objective lens, f_e is the focal length of an eye lens.

- Length of the tube, $L = v_o + \left(\frac{f_e D}{f_e + D} \right)$

- Astronomical telescope

$$\text{magnifying power, } M = \frac{f_o}{f_e}$$

$$\text{Length of tube, } L = f_o + \left(\frac{f_e D}{f_e + D} \right)$$

WAVE OPTICS

- For constructive interference (i.e. formation of bright fringes)

- For n^{th} bright fringe,

$$\text{Path difference} = x_n \frac{d}{D} = n\lambda$$

where $n = 0$ for central bright fringe

$n = 1$ for first bright fringe,

$n = 2$ for second bright fringe and so on

d = distance between two slits

D = distance of slits from the screen

x_n = distance of n^{th} bright fringe from the centre.

$$\therefore x_n = n\lambda \frac{D}{d}$$

- For destructive interference (i.e. formation of dark fringes).

- For n^{th} dark fringe,

$$\text{path difference} = x_n \frac{d}{D} = (2n - 1) \frac{\lambda}{2}$$

where

$n = 1$ for first dark fringe,

$n = 2$ for 2nd dark fringe and so on.

x_n = distance of n^{th} dark fringe from the centre

$$\therefore x_n = (2n - 1) \frac{\lambda}{2} \frac{D}{d}$$

- Fringe width, $\beta = \frac{\lambda D}{d}$

- Angular fringe width, $\theta = \frac{\beta}{D} = \frac{\lambda}{d}$

- If W_1, W_2 are widths of two slits, I_1, I_2 are intensities of light coming from two slits; a, b are the amplitudes of light from these slits, then

$$\frac{W_1}{W_2} = \frac{I_1}{I_2} = \frac{a^2}{b^2}$$

$$\frac{I_{\max}}{I_{\min}} = \frac{(a+b)^2}{(a-b)^2}$$

- Fringe visibility $V = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}}$
- When entire apparatus of Young's double slit experiment is immersed in a medium of refractive index μ , then fringe width becomes $\beta' = \frac{\lambda D}{d} = \frac{\lambda D}{\mu d} = \frac{\beta}{\mu}$
- When a thin transparent plate of thickness t and refractive index μ is placed in the path of one of the interfering waves, fringe width remains unaffected but the entire pattern shifts by $\Delta x = (\mu - 1) t \frac{D}{d} = (\mu - 1) t \frac{\beta}{\lambda}$

- Diffraction due to a single slit

Width of secondary maxima or minima

$$\beta = \frac{\lambda D}{a} = \frac{\lambda f}{a}$$

where a = width of slit

D = distance of screen from the slit

f = focal length of lens for diffracted light

- Width of central maximum $= \frac{2\lambda D}{a} = \frac{2f\lambda}{a}$
- Angular width fringe of central maximum $= \frac{2\lambda}{a}$.
- Angular fringe width of secondary maxima or minima $= \frac{\lambda}{a}$
- Fresnel distance, $Z_F = \frac{a^2}{\lambda}$
- Resolving power of a microscope

$$\text{Resolving power} = \frac{1}{d} = \frac{2\mu \sin \theta}{\lambda}$$

- Resolving power of a telescope

$$\text{Resolving power} = \frac{1}{d\theta} = \frac{D}{1.22\lambda}$$

DUAL NATURE OF RADIATION AND MATTER

- Energy of a photon $E = h\nu = \frac{hc}{\lambda}$
- Momentum of photon is $p = \frac{E}{c} = \frac{h\nu}{c}$
- The moving mass m of photon is $m = \frac{E}{c^2} = \frac{h\nu}{c^2}$.
- Stopping potential $K_{\max} = eV_0 = \frac{1}{2}mv_{\max}^2$
- Einstein's photoelectric equation
If a light of frequency ν is incident on a photosensitive material having work function

(ϕ_0) , then maximum kinetic energy of the emitted electron is given as

$$K_{\max} = h\nu - \phi_0$$

$$\text{For } \nu > \nu_0 \text{ or } eV_0 = h\nu - \phi_0 = h\nu - h\nu_0$$

$$\text{or } eV_0 = K_{\max} = hc \left(\frac{1}{\lambda} - \frac{1}{\lambda_0} \right).$$

- de Broglie wavelength, $\lambda = \frac{\hbar}{p} = \frac{\hbar}{mv}$

- If the rest mass of a particle is m_0 , its de Broglie wavelength is given by

$$\lambda = \frac{h \left(1 - \frac{v^2}{c^2} \right)^{1/2}}{m_0 v}$$

- In terms of kinetic energy K , de Broglie wavelength is given by $\lambda = \frac{h}{\sqrt{2mK}}$.

- If a particle of charge q is accelerated through a potential difference V , its de Broglie wavelength is given by $\lambda = \frac{h}{\sqrt{2mqV}}$.

For an electron, $\lambda = \left(\frac{150}{V} \right)^{1/2}$ Å.

- For a gas molecule of mass m at temperature T kelvin, its de Broglie wavelength is given by $\lambda = \frac{h}{\sqrt{3mkT}}$, where k is the Boltzmann constant.

ATOMS

- Rutherford's nuclear model of the atom

$$N(\theta) = \frac{N_i n t Z^2 e^4}{(8\pi\epsilon_0)^2 r^2 K^2 \sin^4(\theta/2)}$$

The frequency of incident alpha particles scattered by an angle θ or greater

$$f = \pi n t \left(\frac{Z e^2}{4\pi\epsilon_0 K} \right)^2 \cot^2 \frac{\theta}{2}$$

- The scattering angle θ of the α particle and impact parameter b are related as

$$b = \frac{Z e^2 \cot(\theta/2)}{4\pi\epsilon_0 K}$$

- Distance of closest approach

$$r_0 = \frac{2Z e^2}{4\pi\epsilon_0 K}$$

- Angular momentum of the electron in a stationary orbit is an integral multiple of $h/2\pi$.

$$\text{i.e., } L = \frac{nh}{2\pi} \text{ or, } mvr = \frac{nh}{2\pi}$$

ONE TIME FEES		JAN 2026 – MARCH 2027 FEES		JUNE 2026 – MARCH 2027 FEES	
CBSE 12TH	RS.4000	CBSE 12TH	RS.3000	CBSE 12TH	RS.3000
CRSF 10TH	RS.4000	CRSF 10TH	RS.3000	CRSF 10TH	RS.3000
NEET - TILL FINAL EXAM	RS.4500	NEET - TILL FINAL EXAM	RS.3500	NEET - TILL FINAL EXAM	RS.3500
JEE - TILL FINAL EXAM	RS.4500	JEE - TILL FINAL EXAM	RS.3500	JEE - TILL FINAL EXAM	RS.3500
TN 12TH	RS.3000	TN 12TH	RS.2000	TN 12TH	RS.2000
TN 10TH	RS.3000	TN 10TH	RS.2000	TN 10TH	RS.2000

CHAPTER WISE STUDY MATERIALS AVAILABLE FOR ALL CLASSES

CHECK FREE TEST PAPERS www.ravistestpapers.com & www.ravistestpapers.in

RAVI TEST PAPERS & NOTES, WHATSAPP - 8056206308

□ The frequency of a radiation from electrons makes a transition from higher to lower orbit

$$v = \frac{E_2 - E_1}{h}$$

□ Bohr's formulae

(i) Radius of n^{th} orbit

$$r_n = \frac{4\pi\epsilon_0 n^2 h^2}{4\pi^2 m e^2} ; r_n = \frac{0.53 n^2}{Z} \text{ Å}$$

(ii) Velocity of electron in the n^{th} orbit

$$v_n = \frac{1}{4\pi\epsilon_0} \frac{2\pi Z e^2}{nh} = \frac{2.2 \times 10^6 Z}{n} \text{ m/s.}$$

(iii) The kinetic energy of the electron in the n^{th} orbit

$$K_n = \frac{1}{4\pi\epsilon_0} \frac{Z^2}{r_n} = \left(\frac{1}{4\pi\epsilon_0} \right)^2 \frac{2\pi^2 m e^4 Z^2}{n^2 h^2} \\ = \frac{13.6 Z^2}{n^2} \text{ eV.}$$

(iv) The potential energy of electron in n^{th} orbit

$$U_n = -\frac{1}{4\pi\epsilon_0} \frac{Z^2}{r_n} = -\left(\frac{1}{4\pi\epsilon_0} \right)^2 \frac{2\pi^2 m e^4 Z^2}{n^2 h^2} \\ = \frac{-27.2 Z^2}{n^2} \text{ eV.}$$

(v) Total energy of electron in n^{th} orbit

$$E_n = U_n + K_n = -\left(\frac{1}{4\pi\epsilon_0} \right)^2 \frac{2\pi^2 m e^4 Z^2}{n^2 h^2} = -\frac{13.6 Z^2}{n^2} \text{ eV.}$$

(vi) Frequency of electron in n^{th} orbit

$$v_n = \left(\frac{1}{4\pi\epsilon_0} \right)^2 \frac{4\pi^2 Z^2 e^4 m}{n^3 h^3} = \frac{6.62 \times 10^{15} Z^2}{n^3}$$

(vii) Wavelength of radiation in the transition from

$n_2 \rightarrow n_1$ is given by

$$\frac{1}{\lambda} = R Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

where R is called Rydberg's constant.

$$R = \left(\frac{1}{4\pi\epsilon_0} \right)^2 \frac{2\pi^2 m e^4}{c h^3} = 1.097 \times 10^7 \text{ m}^{-1}.$$

□ Lyman series

Emission spectral lines corresponding to the transition of electron from higher energy levels ($n_2 = 2, 3, \dots, \infty$) to first energy level ($n_1 = 1$) constitute Lyman series.

$$\frac{1}{\lambda} = R \left[\frac{1}{1^2} - \frac{1}{n_2^2} \right]$$

where $n_2 = 2, 3, 4, \dots, \infty$

□ Balmer series

Emission spectral lines corresponding to the transition of electron from higher energy levels ($n_2 = 3, 4, \dots, \infty$) to second energy level ($n_1 = 2$) constitute Balmer series.

$$\frac{1}{\lambda} = R \left[\frac{1}{2^2} - \frac{1}{n_2^2} \right]$$

where $n_2 = 3, 4, 5, \dots, \infty$

□ Paschen series

Emission spectral lines corresponding to the transition of electron from higher energy levels ($n_2 = 4, 5, \dots, \infty$) to third energy level ($n_1 = 3$) constitute Paschen series.

$$\frac{1}{\lambda} = \frac{1}{R} \left[\frac{1}{3^2} - \frac{1}{n_2^2} \right]$$

□ Brackett series

Emission spectral lines corresponding to the transition of electron from higher energy levels ($n_2 = 5, 6, 7, \dots, \infty$) to fourth energy level ($n_1 = 4$) constitute Brackett series.

$$\frac{1}{\lambda} = R \left[\frac{1}{4^2} - \frac{1}{n_2^2} \right]$$

where $n_2 = 5, 6, 7, \dots, \infty$

□ Pfund series

Emission spectral lines corresponding to the transition of electron from higher energy levels ($n_2 = 6, 7, 8, \dots, \infty$) to fifth energy level ($n_1 = 5$) constitute Pfund series.

$$\frac{1}{\lambda} = R \left[\frac{1}{5^2} - \frac{1}{n_2^2} \right]$$

where $n_2 = 6, 7, \dots, \infty$

□ Number of spectral lines due to transition of electron from n^{th} orbit to lower orbit is

$$N = \frac{n(n-1)}{2}.$$

□ Ionization energy = $\frac{13.6 Z^2}{n^2}$ eV.

□ Ionization potential = $\frac{13.6 Z^2}{n^2}$ volt.

□ Energy quantisation

$$E_n = \frac{n^2 h^2}{8mL^2} \text{ where } n = 1, 2, 3, \dots$$

NUCLEI

□ Nuclear radius, $R = R_0 A^{1/3}$

where R_0 is a constant and A is the mass number

□ Nuclear density,

$$\rho = \frac{\text{mass nuclear}}{\text{volume of nucleus}}$$

- Mass defect is given by

$$\Delta m = [Zm_p + (A - Z)m_n - m_N]$$
- The binding energy of nucleus is given by

$$E_b = \Delta mc^2 = [Zm_p + (A - Z)m_n - m_N]c^2$$

$$= [Zm_p + (A - Z)m_n - m_N] \times 931.49 \text{ MeV/u.}$$
- The binding energy per nucleon of a nucleus

$$= E_b/A$$
- Law of radioactive decay

$$\frac{dN}{dt} = -\lambda N(t) \quad \text{or} \quad N(t) = N_0 e^{-\lambda t}$$
- Half-life of a radioactive substance is given by

$$T_{1/2} = \frac{\ln 2}{\lambda} = \frac{0.693}{\lambda}$$
- Mean life or average life of a radioactive substance is given by

$$\tau = \frac{1}{\lambda} = \frac{T_{1/2}}{0.693} = 1.44T_{1/2}$$
- Activity : $R = -dN/dt$
- Activity law $R(t) = R_0 e^{-\lambda t}$
 where $R_0 = \lambda N_0$ is the decay rate at $t = 0$ and $R = N\lambda$.
- Fraction of nuclei left undecayed after n half live is

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^{t/T_{1/2}} \quad \text{or} \quad t = nT_{1/2}$$
- Neutron reproduction factor (K)

$$= \frac{\text{rate of production of neutrons}}{\text{rate of loss of neutrons}}$$

SEMICONDUCTOR ELECTRONICS, MATERIALS, DEVICES AND SIMPLE CIRCUITS

- Forbidden energy gap or forbidden band

$$E_g = h\nu = \frac{h\nu}{\lambda}$$
- The intrinsic concentration n_i varies with temperature T as

$$n_i^2 = A_0 T^3 e^{-E_g/kT}$$
- The conductivity of the semiconductor is given by $\sigma = e(n_e \mu_e + n_h \mu_h)$
 where μ_e and μ_h are the electron and hole mobilities, n_e and n_h are the electron and hole densities, e is the electronic charge.
- The conductivity of an intrinsic semiconductor is

$$\sigma_i = n_i e(\mu_e + \mu_h)$$
- The conductivity of n -type semiconductor is

$$\sigma_n = eN_d \mu_e$$
- The conductivity of p -type semiconductor is

$$\sigma_p = eN_a \mu_h$$

- The current in the junction diode is given by

$$I = I_0 (e^{eV/kT} - 1)$$
 where k = Boltzmann constant, I_0 = reverse saturation current.
 In forward biasing, V is positive and low, $e^{eV/kT} > > 1$, then forward current,

$$I_f = I_0 (e^{eV/kT})$$
 In reverse biasing, V is negative and high $e^{eV/kT} < < 1$, then reverse current,

$$I_r = -I_0$$
- Dynamic resistance

$$r_d = \frac{\Delta V}{\Delta I}$$
 Half wave rectifier
- Peak value of current is

$$I_m = \frac{V_m}{r_f + R_L}$$
 where r_f is the forward diode resistance, R_L is the load resistance and V_m is the peak value of the alternating voltage.
- rms value of current is

$$I_{\text{rms}} = \frac{I_m}{2}$$
- dc value of current is

$$I_{\text{dc}} = \frac{I_m}{\pi}$$
- Peak inverse voltage is

$$P.I.V = V_m$$
- dc value of voltage is

$$V_{\text{dc}} = I_{\text{dc}} R_L = \frac{I_m}{\pi} R_L$$
 Full wave rectifier
- Peak value of current is

$$I_m = \frac{V_m}{r_f + R_L}$$
- dc value of current is

$$I_{\text{dc}} = \frac{2I_m}{\pi}$$
- rms value of current is

$$I_{\text{rms}} = \frac{I_m}{\sqrt{2}}$$
- Peak inverse voltage is

$$P.I.V = 2V_m$$
- dc value of voltage is

$$V_{\text{dc}} = I_{\text{dc}} R_L = \frac{2I_m}{\pi} R_L$$
 Ripple frequency

$$r = \frac{\text{rms value of the components of wave}}{\text{average or dc value}}$$

$$r = \sqrt{\left(\frac{I_{\text{rms}}}{I_{\text{dc}}}\right)^2 - 1}$$

- For half wave rectifier,

$$I_{\text{rms}} = \frac{I_m}{2}, I_{\text{dc}} = \frac{I_m}{\pi}$$

$$r = \sqrt{\left(\frac{I_m/2}{I_m/\pi}\right)^2 - 1}$$

$$= 1.21$$

- For full wave rectifier,

$$I_{\text{rms}} = \frac{I_m}{\sqrt{2}}, I_{\text{dc}} = \frac{2I_m}{\pi}$$

$$r = \sqrt{\left(\frac{I_m/\sqrt{2}}{2I_m/\pi}\right)^2 - 1}$$

$$= 0.482$$

Rectification efficiency

$$\eta = \frac{\text{dc power delivered to load}}{\text{ac input power from transformer secondary}}$$

- For a half wave rectifier,
dc power delivered to the load is

$$P_{\text{dc}} = I_{\text{dc}}^2 R_L = \left(\frac{I_m}{\pi}\right)^2 R_L$$

Input ac power is

$$P_{\text{ac}} = I_{\text{rms}}^2 (r_f + R_L) = \left(\frac{I_m}{2}\right)^2 (r_f + R_L)$$

Rectification efficiency

$$\eta = \frac{P_{\text{dc}}}{P_{\text{ac}}} = \frac{(I_m/\pi)^2 R_L}{(I_m/2)^2 (r_f + R_L)} \times 100\%$$

$$= \frac{40.6}{1 + r_f/R_L} \%$$

- For a full wave rectifier,
dc power delivered to the load is

$$P_{\text{dc}} = I_{\text{dc}}^2 R_L = \left(\frac{2I_m}{\pi}\right)^2 R_L$$

Input ac power is

$$P_{\text{ac}} = I_{\text{rms}}^2 (r_f + R_L) = \left(\frac{I_m}{\sqrt{2}}\right)^2 (r_f + R_L)$$

Rectification efficiency

$$\eta = \frac{P_{\text{dc}}}{P_{\text{ac}}} = \frac{(2I_m/\pi)^2 R_L}{(I_m/\sqrt{2})^2 (r_f + R_L)} \times 100\% = \frac{81.2}{1 + r_f/R_L} \%$$

If $r_f \ll R_L$,

Maximum rectification efficiency, $\eta = 81.2\%$

Form factor

- Form factor = $\frac{I_{\text{rms}}}{I_{\text{dc}}}$

- For half wave rectifier,

$$I_{\text{rms}} = \frac{I_m}{2}, I_{\text{dc}} = \frac{I_m}{\pi}$$

$$\text{Form factor} = \frac{I_m/2}{I_m/\pi} = \frac{\pi}{2} = 1.57$$

- For full wave rectifier,

$$I_{\text{rms}} = \frac{I_m}{\sqrt{2}}, I_{\text{dc}} = \frac{2I_m}{\pi}$$

$$\text{Form factor} = \frac{I_m/\sqrt{2}}{2I_m/\pi} = \frac{\pi}{2\sqrt{2}} = 1.11$$

Common emitter amplifier

- dc current gain

$$\beta_{\text{dc}} = \frac{I_C}{I_B}$$

- ac current gain

$$\beta_{\text{ac}} = \frac{\Delta I_C}{\Delta I_B}$$

- Voltage gain

$$A_v = \frac{V_o}{V_i} = -\beta_{\text{ac}} \times \frac{R_o}{R_i}$$

- Power gain

$$A_p = \frac{\text{output power } (P_o)}{\text{input power } (P_i)}$$

$$\text{Voltage gain (in dB)} = 20 \log_{10} \frac{V_o}{V_i}$$

$$= 20 \log_{10} A_v$$

$$\text{Power gain (in dB)} = 10 \log \frac{P_o}{P_i}$$

Common base amplifier

- dc current gain

$$\alpha_{\text{dc}} = \frac{I_C}{I_E}$$

- ac current gain

$$\alpha_{\text{ac}} = \left(\frac{\Delta I_C}{\Delta I_E}\right)$$

- Voltage gain

$$A_v = \frac{V_o}{V_i} = \alpha_{\text{ac}} \times \frac{R_o}{R_i}$$

- Power gain

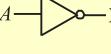
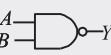
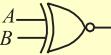
$$A_p = \frac{\text{output power } (P_o)}{\text{input power } (P_i)}$$

$$= \alpha_{\text{ac}} \times A_v$$

- Relationship between α and β

$$\beta = \frac{\alpha}{1-\alpha}; \alpha = \frac{\beta}{1+\beta}$$

Name of gate	Symbol	Truth Table	Boolean expression															
OR		<table border="1"> <thead> <tr> <th>A</th> <th>B</th> <th>Y</th> </tr> </thead> <tbody> <tr> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <td>0</td> <td>1</td> <td>1</td> </tr> <tr> <td>1</td> <td>0</td> <td>1</td> </tr> <tr> <td>1</td> <td>1</td> <td>1</td> </tr> </tbody> </table>	A	B	Y	0	0	0	0	1	1	1	0	1	1	1	1	$Y = A + B$
A	B	Y																
0	0	0																
0	1	1																
1	0	1																
1	1	1																

AND		A B Y	$Y = A \cdot B$
		0 0 0	
		0 1 0	
		1 0 0	
		1 1 1	
NOT		A Y	$Y = \bar{A}$
		0 1	
		1 0	
NAND		A B Y	$Y = \overline{A \cdot B}$
		0 0 1	
		0 1 1	
		1 0 1	
		1 1 0	
NOR		A B Y	$Y = \overline{A + B}$
		0 0 1	
		0 1 0	
		1 0 0	
		1 1 0	
XOR (also called exclusive OR gate)		A B Y	$Y = A \cdot \bar{B} + \bar{A} \cdot B$
		0 0 0	
		0 1 1	
		1 0 1	
		1 1 0	
XNOR		A B Y	$Y = A \cdot B + \bar{A} \cdot \bar{B}$
		0 0 1	
		0 1 0	
		1 0 0	
		1 1 1	

COMMUNICATION SYSTEM

- Critical frequency, $v_c = g(N_{\max})^{1/2}$ where N_{\max} the maximum number density of electron/m³.

- Maximum usable frequency

$$\text{MUF} = \frac{v_c}{\cos i} = v_c \sec i$$

- The skip distance is given by

$$D_{\text{skip}} = 2h \sqrt{\left(\frac{v_0}{v_c}\right)^2 - 1}$$

where h is the height of reflecting layer of atmosphere, v_0 = maximum frequency of electromagnetic waves used and v_c is the critical frequency for that layer.

- If h is the height of the transmitting antenna, then the distance to the horizon is given by

$$d = \sqrt{2hR}$$

where R is the radius of the earth.

For TV signal,

$$\text{area covered} = \pi d^2 = \pi 2hR$$

Population covered = population density \times area covered

- The maximum line of sight distance d_M between two antennas having heights h_T and h_R above the earth is given by

$$d_M = \sqrt{2Rh_T} + \sqrt{2Rh_R}$$

where h_T is the height of the transmitting antenna and h_R is the height of the receiving antenna and R is the radius of the earth.

- The amplitude modulated signal contains three frequencies, viz. v_c , $v_c + v_m$ and $v_c - v_m$. The first frequency is the carrier frequency. Thus, the process of modulation does not change the original carrier frequency but produces two new frequencies $(v_c + v_m)$ and $(v_c - v_m)$ which are known as sideband frequencies.

$$v_{SB} = v_c \pm v_m$$

- Frequency of lower side band

$$v_{LSB} = v_c - v_m$$

- Frequency of higher side band

$$v_{USB} = v_c + v_m$$

- Bandwidth of AM signal = $v_{USB} - v_{LSB} = 2v_m$

- Average power per cycle in the carrier wave is

$$P_c = \frac{A_c^2}{2R}$$

where R is the resistance

- Total power per cycle in the modulated wave

$$P_t = P_c \left(1 + \frac{\mu^2}{2}\right)$$

- If I_t is rms value of total modulated current and I_c is the rms value of unmodulated carrier current, then

$$\frac{I_t}{I_c} = \sqrt{1 + \frac{\mu^2}{2}}$$

- For detection of AM wave, the essential condition is

$$\frac{1}{v_c} \ll RC$$

- The instantaneous frequency of the frequency modulated wave is

$$v(t) = v_c + k \frac{V_m}{2\pi} \sin \omega_m t$$

where k is the proportionality constant.

- The maximum and minimum values of the frequency is

$$v_{\max} = v_c + \frac{k V_m}{2\pi} \text{ and } v_{\min} = v_c - \frac{k V_m}{2\pi}$$

- Frequency deviation

$$\delta = v_{\max} - v_c = v_c - v_{\min} = \frac{k V_m}{2\pi}$$