

**JOIN MY PAID WHATSAPP GROUP & GET
PDF FORMAT PAPERS WITH ANSWERS.**

ONE TIME FEES RS.600

1ST JAN 2026 TO TILL MARCH 2026 FINAL EXAM.

WHATSAPP – 8056206308

Q1. The integrating factor of the differential equation $(1 - x^2) \frac{dy}{dx} + xy = ax, -1 < x < 1$, is: **1 Mark**
A $\frac{1}{x^2-1}$ **B** $\frac{1}{\sqrt{x^2-1}}$
C $\frac{1}{1-x^2}$ **D** $\frac{1}{\sqrt{1-x^2}}$

Q2. The sum of the order and the degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right) = \sin y$ is: **1 Mark**
A 5 **B** 2 **C** 3 **D** 4

Q3. The order of the differential equation of the family of circles touching x-axis at the origin is: **1 Mark**
A 1 **B** 2 **C** 3 **D** 4

Q4. If $y = \log_e \left(\frac{x^2}{e^2}\right)$, then $\frac{d^2y}{dx^2}$ is equal to: **1 Mark**
A $-\frac{1}{x}$ **B** $-\frac{1}{x^2}$
C $\frac{2}{x^2}$ **D** $-\frac{2}{x^2}$

Q5. The number of arbitrary constants in the particular solution of a differential equation of second order is (are): **1 Mark**
A 0 **B** 1 **C** 2 **D** 3

Q6. The general solution of the differential equation $x dy - (1 + x^2) dx = dx$ is: **1 Mark**
A $y = 2x + \frac{x^3}{3} + C$ **B** $y = 2 \log x + \frac{x^3}{3} + C$
C $y = \frac{x^2}{2} + C$ **D** $y = 2 \log x + \frac{x^2}{2} + C$

Q7. The integrating factor of the differential equation $(x + 3y^2) \frac{dy}{dx} = y$ is: **1 Mark**
A y **B** $-y$ **C** $\frac{1}{y}$ **D** $-\frac{1}{y}$

Q8. The degree of the differential equation $x^2 \frac{d^2y}{dx^2} = \left(x \frac{dy}{dx} - y\right)^3$ is **1 Mark**
A 1 **B** 2 **C** 3 **D** 6

Q9. The degree and the order of the differential equation: **1 Mark**
 $\frac{d^2y}{dx^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^3}$ are:
A 2 and 3. **B** 3 and 2. **C** 2 and 2. **D** 3 and 3.

Q10. Choose the correct answer from the given four option. **1 Mark**
 Solution of differential equation $xdy - ydx = 0$ represents:
A A rectangular hyperbola. **B** Parabola whose vertex is at origin.
C Straight line passing through origin. **D** A circle whose centre is at origin.
 A circle whose centre is at origin.

Q11. What is the order of differential equation $y'' + 5y' + 6 = 0$? **1 Mark**
A 0 **B** 1 **C** 2 **D** 3

Q12. What is the degree of the differential equation: **1 Mark**
 $y = x \frac{dy}{dx} + \left(\frac{dy}{dx}\right)^{-2}$?
A 1 **B** 3 **C** -2 **D** Degree does not exist.

Q13. Choose the correct answer from the given four option. **1 Mark**
 The solution of the differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$ is:
A $y = \tan^{-1} x$ **B** $y - x = k(1 + xy)$
C $x = \tan^{-1} y$ **D** $\tan(xy) = k$

Q14. The solution of the differentiation $\frac{dy}{dx} + 1 = e^{x+y}$ is: **1 Mark**

A $(x + y)e^{x+y} = 0$

C $(x - C)e^{x+y} = 1$

B $(x + C)e^{x+y} = 0$

D $(x - C)e^{x+y} + 1 = 0$

Q15. Find the degree of the differential equation:

$$\left(1 + \frac{dx}{dy}\right)^3 = \left(\frac{dy}{dx}\right)^2$$

A 0

B 1

C 2

D 3

1 Mark

Q16. What are the order and degree, respectively, of the differential equation:

$$\left(\frac{d^3y}{dx^3}\right)^2 = y^4 + \left(\frac{dy}{dx}\right)^5 ?$$

A 4, 5

B 2, 3

C 3, 2

D 5, 4

1 Mark

Q17. Consider the following statements in respect of the differential equation $\frac{d^2y}{dx^2} + \cos\left(\frac{dx}{dy}\right) = 0$:

1. The degree of the differential equation is not defined.

2. The order of the differential equation is 2.

Which of the above statements is/are correct?

A 1 only

B 2 only

C Both 1 and 2

D not defined

1 Mark

Q18. The solution of $\frac{d^2y}{dx^2} = 0$ represents:

A a straight line

B a circle

C a parabola

D a point

Q19. The Solution of $\cos(x + y) dy = dx$ is:

A $y = \tan\left(\frac{x+y}{2}\right) + c$

B $y = \cos^{-1}\left(\frac{y}{x}\right) + c$

C $y = x \sec\left(\frac{y}{x}\right) + c$

D None of these

1 Mark

Q20. Choose the correct answer from the given four option.

Integrating factor of the differential equation $(1 - x^2) \frac{dy}{dx} - xy = 1$ is:

A $-x$

C $\sqrt{1 - x^2}$

B $\frac{x}{1+x^2}$

D $\frac{1}{2} \log(1 - x^2)$

1 Mark

Q21. Choose the correct answer from the given four options.

The solution of the differential equation $\frac{dy}{dx} + \frac{2xy}{1+x^2} = \frac{1}{(1+x^2)^2}$ is:

A $y(1 + x^2) = C + \tan^{-1} x$

B $\frac{y}{1+x^2} = C + \tan^{-1} x$

C $y \log(1 + x^2) = C + \tan^{-1} x$

D $y(1 + x^2) = C + \sin^{-1} x$

1 Mark

Q22. The differential equation of all parabolas whose axes are parallel to y-axis is:

A $\frac{dy}{dx} = -\frac{c^2}{x^2}$

B $\frac{d^2x}{dy^2} = c$

C $\frac{d^3y}{dx^3} + \frac{d^2x}{dy^2} = 0$

D $\frac{d^2y}{dx^2} + 2 \frac{dy}{dx} = 0$

1 Mark

Q23. The solution of the differential equation $x dy + y dx = x^2 y dy - y^2 x dx$, is:

A $x^2 - 1 = C(1 + y^2)$

B $x^2 + 1 = C(1 + y^2)$

C $x^3 - 1 = C(1 + y^3)$

D $x^3 + 1 = C(1 - y^3)$

1 Mark

Q24. Solution of differential equation $x dy - y dx = 0$ represents:

A rectangular hyperbola

B straight line passing through origin

C parabola whose vertex is at origin

D circle whose center is at origin

1 Mark

Q25. If $\frac{dy}{dx} = y \sin 2x$, $y(0) = 1$ then solution is:

A $y = e \sin^2 x$

B $y = \sin^2 x$

C $y = \cos^2 x$

D $y = e \cos^2 x$

1 Mark

Q26. The order of the differential equation $\left[1 + \left(\frac{dy}{dx}\right)^5\right]^{\frac{2}{3}} = \frac{d^3y}{dx^3}$ is:

A 2

B 1

C 3

D $\frac{2}{3}$

1 Mark

Q27. The solution of the differential equation $\frac{dy}{dx} = \frac{x}{1+x^2}$ is:

A $y = \frac{1}{2} \log|2 + x^2| + c$

B $y = \frac{1}{2} \log(1 + x) + c$

C $y = \log\left(\sqrt{1 + x^2}\right) + c$

D None of these

1 Mark

Q28. The solution of the differential equation $\frac{dy}{dx} + \frac{2y}{x} = 0$ with $y(1) = 1$ is given by.

A $y = \frac{1}{x^2}$

B $x = \frac{1}{y^2}$

THIS TEST PDF FORMAT QUESTION PAPER

DOWNLOAD FROM MY WEBSITE

(check - <https://ravitestpapers.com/>)

USE SEARCH BAR TO FIND QUESTION PAPERS

C $x = \frac{1}{y}$

D $y = \frac{1}{x}$

Q29. Choose the correct answer from the given four option.

Solution of $\frac{dy}{dx} - y = 1$, $y(0) = 1$ is given by:

A $xy = -e^x$

C $xy = -1$

B $xy = -e^{-x}$

D $y = 2e^x - 1$

Q30. Solution of differential equation $x \cdot dy - y \cdot dx = Q$ represents:

A A rectangular hyperbola

C Straight line passing through the origin

B Parabola whose vertex is at the origin

D A circle whose centre is at the origin

Q31. Which of the following is a second-order differential equation?

A $(y')^2 + x = y^2$

C $y''' + (y'')^2 + y = 0$

B $y'y'' + y = \sin x$

D $y' = y^2$

Q32. Choose the correct answer from the given four option.

The degree of the differential equation $\left(\frac{d^2y}{dx^2}\right) + \left(\frac{dy}{dx}\right)^2 - \sin\left(\frac{dy}{dx}\right)$ is:

A 1

B 2

C 3

D Not defined

Q33. A homogeneous differential equation of the form $\frac{dx}{dy} = h\left(\frac{x}{y}\right)$ can be solved by making the substitution:

A $y = vx$

B $v = yx$

C $x = vy$

D $x = v$

Q34. Which of the following differential equations has $y = x$ as one of its particular solution?

A $\frac{d^2y}{dx^2} - x^2 \frac{dy}{dx} + xy = x$

C $\frac{d^2y}{dx^2} - x^2 \frac{dy}{dx} + xy = 0$

B $\frac{d^2y}{dx^2} + x \frac{dy}{dx} + xy = x$

D $\frac{d^2y}{dx^2} + x \frac{dy}{dx} + xy = 0$

Q35. Choose the correct answer from the given four option.

$\tan^{-1} + \tan^{-1} y = C$ is the general solution of the differential equation:

A $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$

C $(1+x^2)dy + (1+y^2)dx = 0$

B $\frac{dy}{dx} = \frac{1+x^2}{1+y^2}$

D $(1+x^2)dx + (1+y^2)dy = 0$

Q36. Choose the correct answer from the given four option.

Which of the following is a second order differential equation?

A $(y')^2 + x = y^2$

C $y''' + (y'')^2 + y = 0$

B $y'y'' + y = \sin x$

D $y' = y^2$

Q37. Choose the correct answer from the given four options.

The solution of $\frac{dy}{dx} + y = e^{-x}$, $y(0) = 0$ is:

A $y = e^{-x}(x - 1)$

C $y = xe^{-x} + 1$

B $y = xe^x$

D $y = xe^{-x}$

Q38. What is integrating factor of $\frac{dy}{dx} + y \sec x = \tan x$?

A $\sec x + \tan x$

C $e^{\sec x}$

B $\log(\sec x + \tan x)$

D $\sec x$

Q39. Order of $\left(\frac{dy}{dx} + 3x\right)^{\frac{3}{2}} = x + \frac{3dy}{dx}$ is:

A 3

B 2

C 1

D 4

Q40. Which of the following is a homogeneous differential equation?

A $(4x + 6y + 5)dy - (3y + 2x + 4)dx = 0$

C $(x^3 + 2y^2)dx + 2xy dy = 0$

B $(xy)dx - (x^3 + y^3)dy = 0$

D $y^2dx + (x^2 - xy - y^2)dy = 0$

Q41. Choose the correct answer from the given four option.

The general solution of $e^x \cos y dx - e^x \sin y dy = 0$ is:

A $e^x \cos y = k$

C $e^x = k \cos y$

B $e^x \sin y = k$

D $e^x = k \sin y$

Q42. The solution of the differential equation $y_1 y_3 = y_2$ is:

A $x = C_1 e^{C_2 y} + C_3$

C $2x = C_1 e^{C_2 y} + C_3$

B $y = C_1 e^{C_2 x} + C_3$

D None of these.

Q43. The order of the differential equation $\sqrt{1-x^4} + \sqrt{1-y^4} = a(x^2 - y^2)$ is:

A 1	B 2	C 3	D 4	1 Mark
Q44. The solution of the differentiation equation $(1 + x^2) \frac{dy}{dx} + 1 + y^2 = 0$ is:				
A $\tan^{-1} x - \tan^{-1} y = \tan^{-1} C$	B $\tan^{-1} y - \tan^{-1} x = \tan^{-1} C$	C $\tan^{-1} y \pm \tan^{-1} x = \tan^{-1} C$	D $\tan^{-1} y + \tan^{-1} x = \tan^{-1} C$	
Q45. The general solution of the differential equation $\frac{dy}{dx} = e^{x+y}$ is				1 Mark
A $e^x + e^{-y} = C$	B $e^x + e^y = C$	C $e^{-x} + e^y = C$	D $e^{-x} + e^{-y} = C$	
Q46. $y = \sin kt$ satisfies the differential equation $y'' + 9y = 0$. Then k:				1 Mark
A ± 3	B 0	C ± 2	D ± 4	
Q47. Which of the following differential equations has $y = c_1 e^x + c_2 e^{-x}$ as the general solution?				1 Mark
A $\frac{d^2y}{dx^2} + y = 0$	B $\frac{d^2y}{dx^2} - y = 0$	C $\frac{d^2y}{dx^2} + 1 = 0$	D $\frac{d^2y}{dx^2} - 1 = 0$	
Q48. The differential equation of all 'Simple Harmonic Motions' of given period $\frac{2\pi}{n}$ is:				1 Mark
A $\frac{d^2x}{dt^2} + nx = 0$	B $\frac{d^2x}{dt^2} + n^2x = 0$	C $\frac{d^2x}{dt^2} - n^2x = 0$	D $\frac{d^2x}{dt^2} + \frac{1}{n^2} = 0$	
Q49. The solution of the differential equation $(x^2 + 1) \frac{dy}{dx} + (y^2 + 1) = 0$ is:				1 Mark
A $y = 2 + x^2$	B $y = \frac{1+x}{1-x}$	C $y = x(x - 1)$	D $y = \frac{1+y}{1-y}$	
Q50. Choose the correct answer from the given four option.				1 Mark
Integrating factor of the differential equation $\frac{dy}{dx} + y \tan x - \sec x = 0$ is:				
A $\cos x$	B $\sec x$	C $e^{\cos x}$	D $e^{\sec x}$	
Q51. Order of $\left(\frac{dy}{dx}\right)^3 + \left(\frac{dy}{dx}\right)^2 + y^4 = 0$ is:				1 Mark
A 4	B 3	C 1	D 2	
Q52. What is the solution of the differential equation $\frac{dy}{dx} + \frac{y}{x} = 0$? Where c is a constant.				1 Mark
A $xy = c$	B $x = cy$	C $y = cx$	D None of the above	
Q53. The differential equation of all conics with centreat origin is of order:				1 Mark
A 2	B 3	C 4	D 1	
Q54. Choose the correct answer from the given four option.				1 Mark
The order and degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{\frac{1}{4}} + x^{\frac{1}{5}}$ respectively, are:				
A 2 and 4	B 2 and 2	C 2 and 3	D 3 and 3	
Q55. Integrating factor of the differential equation $\cos x \frac{dy}{dx} + y \sin x = 1$ is:				1 Mark
A $\cos x$	B $\tan x$	C $\sec x$	D $\sin x$	
Q56. If P and q are the order and degree of the differentiation $y \frac{dy}{dx} + x^3 \frac{d^2y}{dx^3} + xy = \cos x$ then: e.				1 Mark
A $p < q$	B $p = q$	C $p > q$	D None of thes	
Q57. The integrating factor of the differential equation $(1 - y^2) \frac{dx}{dy} + yx = ay$ ($-1 < y < 1$) is:				1 Mark
A $\frac{1}{y^2 - 1}$	B $\frac{1}{\sqrt{y^2 + 1}}$	C $\frac{1}{1 - y^2}$	D $\frac{1}{\sqrt{1 - y^3}}$	
Q58. Integration factor of differential equation $\frac{dy}{dx} + py = Q$, where P and IQ are functions of x is:				1 Mark
A $\int e^p dx$	B $e \int pdx$	C $e - \int pdx$	D None of these	
Q59. The solution of the differential equation $\frac{dy}{dx} = \frac{ax+g}{by+f}$ represents a circle when				
A $a = b$	B $a = -b$	C $a = -2b$	D $a = 2b$	

THIS TEST PDF FORMAT QUESTION PAPER

DOWNLOAD FROM MY WEBSITE

(check - <https://ravitestpapers.com/>)

USE SEARCH BAR TO FIND QUESTION PAPERS

Q60. A homogeneous differential equation of the form $\frac{dx}{dy} = h\left(\frac{x}{y}\right)$ can be solved by making the substitution.

1 Mark

A $y = vx$

B $v = yx$

C $x = vy$

D $x = v$

Q61. The differential equation $\frac{dy}{dx} + Py = Qy^n$, $n > 2$ can be reduced to linear form by substituting:

1 Mark

A $z = y^{n-1}$

C $z = y^{n+1}$

Q62. $x^{\frac{b-c}{bc}} x^{\frac{c-a}{ca}} x^{\frac{a-b}{ac}} =$

B $z = y^n$

D $z = y^{1-n}$

1 Mark

A a^{a+b+c}

B x^{abc}

C 1

D 0

Q63. The differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y + x^2 = 0$ of the following type:

1 Mark

A linear

B homogeneous

C order two

D degree one

Q64. The general solution of the differential equation $\frac{dy}{dx} + y \cot x = \operatorname{cosec} x$ is:

1 Mark

A $x + y \sin x = C$

B $x + y \cos x = C$

C $y + x(\sin x + \cos x) = C$

D $y \sin x = x + C$

Q65. Consider a differential equation of order m and degree n . Which one of the following pairs is not feasible?

1 Mark

A (3, 2)

B (2, $\frac{3}{2}$)

C (2, 4)

D (2, 2)

Q66. Choose the correct answer from the given four options.

1 Mark

The solution of the differential equation $\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$ is:

A $y = e^{x-y} - x^2 e^{-y} + C$

B $e^y - e^x = \frac{x^3}{3} + C$

C $e^x + e^y = \frac{x^3}{3} + C$

D $e^x - e^y = \frac{x^3}{3} + C$

Q67. Which of the following equation is a linear differential equation of order 3?

1 Mark

[Note: The original question asks for linear equation, but it should be linear differential equation]:

A $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + y = x$

B $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + y^2 = x^2$

C $x \frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} = e^x$

D $\frac{d^2y}{dx^2} + \frac{dy}{dx} = \log x$

Q68. The general solution of differential equation $\frac{y dx - x dy}{y} = 0$ is:

1 Mark

A $xy = C$

B $x = Cy^2$

C $y = Cx$

D $y = Cx^2$

Q69. Choose the correct answer from the given four option.

1 Mark

$y = ae^{mx} + be^{-mx}$ satisfies which of the following differential equation?

A $\frac{dy}{dx} + my = 0$

B $\frac{dy}{dx} - my = 0$

C $\frac{d^2y}{dx^2} - m^2y = 0$

D $\frac{d^2y}{dx^2} + m^2y = 0$

Q70. The degree and the order of the differential equation

1 Mark

$y = x\left(\frac{dy}{dx}\right)^2 + \left(\frac{dx}{dy}\right)^2$ are respectively:

A 1, 1

B 2, 1

C 4, 1

D 1, 4

Q71. The solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} + \frac{\phi(\frac{y}{x})}{\phi'(\frac{y}{x})}$ is:

1 Mark

A $\phi(\frac{y}{x}) = Kx$

B $x\phi(\frac{y}{x}) = K$

C $\phi(\frac{y}{x}) = Ky$

D $y\phi(\frac{y}{x}) = K$

Q72. The solution of $x^2 + y^2 \frac{dy}{dx} = 4$ is:

1 Mark

A $x^2 + y^2 = 12x + C$

B $x^2 + y^2 = 3x + C$

C $x^3 + y^3 = 3x + C$

D $x^3 + y^3 = 12x + C$

Q73. Choose the correct answer from the given four options.

1 Mark

The curve for which the slope of the tangent at any point is equal to the ratio of the abscissa to the ordinate of the point is:

A An ellipse.

B Parabola.

C Circle.

D Rectangular hyperbola.

Q74. Choose the correct answer from the given four option.

1 Mark

The differential equation for $y = A \cos \alpha x + B \sin \alpha x$, where A and B are arbitrary constants is:

A $\frac{d^2y}{dx^2} - \alpha^2y = 0$

B $\frac{d^2y}{dx^2} + \alpha^2y = 0$

C $\frac{d^2y}{dx^2} + \alpha y = 0$

D $\frac{d^2y}{dx^2} - \alpha y = 0$

Q75. The number of arbitrary constants in the particular solution of a differential equation of third order is:

1 Mark

A 3

B 2

C 1

D 0

THIS TEST PDF FORMAT QUESTION PAPER

DOWNLOAD FROM MY WEBSITE

(check - <https://ravitestpapers.com/>)

USE SEARCH BAR TO FIND QUESTION PAPERS

Q76. Which of the following transformation reduce the differential equation into the form $\frac{du}{dx} + P(x)u = Q(x)$ into the 1 Mark
from $\frac{dz}{dx} + \frac{z}{x} \log z = \frac{z}{x^2} (\log z)^2$

A $u = \log x$ **B** $u = e^z$
C $u = (\log z)^{-1}$ **D** $u = (\log z)^2$

Q77. The differential equation $x \frac{dy}{dx} - y = x^2$ has the general solution: 1 Mark

A $y - x^3 = 2Cx$ **B** $2y - x^3 = Cx$ **C** $2y + x^2 = 2Cx$ **D** $y + x^2 = 2Cx$

Q78. The order and degree of the differential equation $\left(1 + 3 \frac{dy}{dx}\right)^{\frac{2}{3}} = 4 \frac{d^3y}{dx^3}$ are: 1 Mark

A 1, $\frac{2}{3}$ **B** 3, 1 **C** 1, 2 **D** 3, 3

Q79. The solution of the differential equation $dy = (1 + y^2) dx$ is: 1 Mark

A $y = \tan x + c$ **B** $y = \tan(x + c)$
C $\tan^{-1}(y + c) = x$ **D** $(\tan^{-1}(y + c)) = 2x$

Q80. Choose the correct answer from the given four option. 1 Mark

If $y = e^{-x}(A \cos x + B \sin x)$, then y is a solution of:

A $\frac{d^2y}{dx^2} + 2 \frac{dy}{dx} = 0$ **B** $\frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + 2y = 0$
C $\frac{d^2y}{dx^2} + 2 \frac{dy}{dx} + 2y = 0$ **D** $\frac{d^2y}{dx^2} + 2y = 0$

Q81. Find the order of differential equations: 1 Mark

$$2x^2 \frac{d^2y}{dy^2} - 3 \frac{dx}{dy} + y = 0$$

A 2 **B** 1 **C** 0 **D** Undefined

Q82. Which of the following differentials equation has $y = x$ as one of its particular solution? 1 Mark

A $\frac{d^2y}{dx^2} - x^2 \frac{dy}{dx} + xy = x$ **B** $\frac{d^2y}{dx^2} + x^2 \frac{dy}{dx} + xy = x$
C $\frac{d^2y}{dx^2} - x^2 \frac{dy}{dx} + xy = 0$ **D** $\frac{d^2y}{dx^2} + x^2 \frac{dy}{dx} + xy = 0$

Q83. The Integrating Factor of the differential equation $x \frac{dy}{dx} - y = 2x^2$ is 1 Mark

A e^{-x} **B** e^{-y}
C $\frac{1}{x}$ **D** x

Q84. The solution of differential equation $(e^y + 1) \cos dx + e^y \sin x dy = 0$ is:

A $e^y + 1 \sin x = c$ **B** $e^y \sin = c$
C $(e^y + 1) \cos x = c$ **D** None of these

Q85. What is the order of the differential equation:

$$\left(\frac{dy}{dx}\right)^2 + \frac{dy}{dx} - \sin^2 y = 0.$$

A 1 **B** 2 **C** 3 **D** Undefined

Q86. The order and degree of the differential equation, 1 Mark

$$\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{\frac{1}{4}} + x^{\frac{1}{5}} = 0$$
 respectively are:

A 2 and not defined **B** 2 and 2 **C** 2 and 3 **D** 3 and 3

Q87. The general solution of differentiation equation of the $e^x dy + (ye^x + 2x)dx = 0$ is: 1 Mark

A $xe^y + x^2 = C$ **B** $xe^y + y^2 = C$ **C** $ye^x + y^2 = C$ **D** $ye^y + x^2 = C$

Q88. The family of curve in which the sub tangent at any point of a curve is double is the abscissae, is: 1 Mark

A $x = Cy^2$ **B** $y = Cx^2$ **C** $x^2 = Cy^2$ **D** $Y = Cx$

Q89. The solution of the differential equation $2x \frac{dy}{dx} - y = 3$ represents: 1 Mark

A Circles. **B** Straight lines. **C** Ellipses. **D** Parabolas.

Q90. Solution of the differential equation $\frac{dy}{dx} + \frac{y}{x} = \sin x$ is: 1 Mark

A $x(y + \cos x) = \sin x + C$ **B** $x(y - \cos x) = \sin x + C$

C $x(y + \cos x) = \cos x + C$ **D** None of these.

Q91. The number of arbitrary constants in the particular solution of differential equation of fourth order is: 1 Mark

A 3 **B** 2 **C** 1 **D** 0

THIS TEST PDF FORMAT QUESTION PAPER

DOWNLOAD FROM MY WEBSITE

(check - <https://ravitestpapers.com/>)

USE SEARCH BAR TO FIND QUESTION PAPERS

Q92. If $(x + y)^2 \frac{dy}{dx} = a^2$, $y = 0$ when $x = 0$, then $y = a$ if $\frac{x}{a} =$

A 1

B $\tan 1$

C $\tan 1 + 1$

D $\tan 1 - 1$

1 Mark

Q93. Which of the following differentials equation has $y = C_1 e^x + C_2 e^{-x}$ as the general solution?

1 Mark

A $\frac{d^2y}{dx^2} + y = 0$

C $\frac{d^2y}{dx^2} + 1 = 0$

B $\frac{d^2y}{dx^2} - y = 0$

D $\frac{d^2y}{dx^2} - 1 = 0$

Q94. Choose the correct answer from the given four option.

1 Mark

The differential equation $y \frac{dy}{dx} + x = C$ represents:

A Family of hyperbolas

B Family of parabolas.

C Family of ellipses.

D Family of circles.

Q95. Choose the correct answer from the given four options.

1 Mark

The general solution of $\frac{dy}{dx} = 2x e^{x^2-y}$ is:

A $e^{x^2-y} = C$

C $e^y = e^{x^2} + C$

B $e^{-y} + e^{x^2} = C$

D $e^{x^2+y} = C$

Q96. Choose the correct answer from the given four options.

1 Mark

Which of the following is the general solution of $\frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + y = 0$?

A $y = (Ax + B)e^x$

C $y = Axe^x + Be^x$

B $y = (Ax + B)e^{-x}$

D $y = A \cos x + B \sin x$

Q97. The solution of the differential equation $\frac{dy}{dx} = 1 + x + y^2 + xy^2$, $y = (0)$ is:

1 Mark

A $y^2 = \exp\left(x + \frac{x^2}{2} - 1\right)$

C $y = \tan(C + x + x^2)$

B $y^2 = 1 + C \exp\left(x + \frac{x^2}{2}\right)$

D $y = \tan\left(x + \frac{x^2}{2}\right)$

Q98. The integrating factor of the differential equation $(x \log x) \frac{dy}{dx} + y = 2 \log x$ is given by:

1 Mark

A $\log(\log x)$

C $\log x$

B e^x

D x

Q99. The degree of differential equation $[1 + (\frac{dy}{dx})^2]^{\frac{1}{2}} = \frac{d^2y}{dx^2}$ is:

1 Mark

A 4

B $\frac{3}{2}$

C 2

D Not defined

Q100. Which of the following is the integrating factor of $(x \log x) \frac{dy}{dx} + y = 2 \log x$?

1 Mark

A x

B e^x

C $\log x$

D $\log(\log x)$

THIS TEST PDF FORMAT QUESTION PAPER

DOWNLOAD FROM MY WEBSITE

(check - <https://ravitestpapers.com/>)

USE SEARCH BAR TO FIND QUESTION PAPERS