RAVI TEST PAPERS & NOTES, WHATSAPP - 8056206308

JOIN MY PAID TEST GROUP WITH ANSWERS

Test / Exam Name: Test 1 Standard: 12th Science Subject: Mathematics

Instructions

- 1. RELATIONS VECTORS 3D PROBABILITY LPP REVISION FOR COMPARTMENT EXAM
- 2. JOIN MY PAID WHATSAPP GROUP & GET PDF FORMAT PAPERS WITH ANSWERS FOR ALL MY DPP UPDATES. ONE TIME FEES RS.2500 JULY 1ST TO TILL 2026 EXAM RAVI TEST PAPERS & NOTES WHATSAPP 8056206308
- 3. FREE ANSWERS AVAILABLE IN MY WEBSITES www.ravitestpapers.in & www.ravitestpapers.com
- **Q1.** Find graphically, the maximum value of z = 2x + 5y, subject to constraints given below:

$$2x+4y\leq 8$$

$$3x + y \le 6$$

$$x+y \leq 4$$

$$x \ge 0, y \ge 0$$

Q2. Solve the following L.P.P. graphically:

Minimise
$$Z = 5x + 10y$$

Subsect to
$$x + 2y \le 120$$

Constraints
$$x + y > 60$$

$$x - 2y \ge 0$$

and
$$x, y \ge 0$$

Q3. Solve the following LPP graphically:

$$\hbox{Minimise } z = 5x + 7y$$

subject to the constraints

$$2x + y \ge 8$$

$$x + 2y > 10$$

$$x, y \ge 0$$

Q4. Solve the following L.P.P. graphically:

$$Z = 4x + y$$

Subject to following constraints

$$x + y \le 50$$

$$3x + y \le 90$$

$$x~\geq 10$$

$$x, \mathrm{y} \geq 0$$

Q5. Solve the following linear programming problem graphically:

Maximise
$$Z = 7x + 10y$$

subject to the constraints

$$4x + 6y \le 240$$

$$6x + 3y < 240$$

$$x \ge 0$$
, $y \ge 0$

Q6. Maximise Z = x + 2y

subject to the constraints

$$x+2y\geq 100$$

$$2x - y \le 0$$

$$2x + y \le 200$$

$$x, y \ge 0$$

Solve the above LPP graphically.

Q7. Solve the following LPP graphically:

Maximise Z = 1000x + 600y

$$x+y \leq 200$$

$$x \ge 20$$

$$y - 4x \ge 0$$

$$x, y \ge 0$$
.

Q8. Solve the following L.P.P. graphically:

Maximise Z = 20x + 10y

Subject to the following constraints $x + 2y \le 28$,

$$3x + y \le 24$$
,

 $x \ge 2$,

$$x, y \ge 0$$

Q9. Solve the following linear programming problem graphically:

Maximise Z = 34x + 45y

under the following constraints

$$x + y < 300$$

$$2x + 3y \le 70$$

$$x \ge 0$$
, $y \ge 0$

Q10. Solve the following LPP graphically:

Maximise Z = 105x + 90y

subject to the constraints

$$x + y \le 50$$

$$2x + y \le 80$$

$$x \ge 0$$
, $y \ge 0$.

Q11. Solve the following LPP graphically:

Minimise Z = 3x + 9y

subject to the constraints

$$x + 3y \le 60$$

$$x + y \ge 10$$

$$x \leq y$$

$$x \ge 0$$
, $y \ge 0$.

Q12. Solve the following linear programming problem graphically:

Maximise z = 5x - 2y,

subject to constraints

$$x+2y\leq 120\,$$

$$x + y \ge 60$$

$$x-2y\geq 2$$

$$x, y \ge 0$$

Q13. Solve the following linear programming problem graphically:

Maximise z = 500x + 300y,

subject to constraints

$$x+2y\leq 12$$

$$2x + y \leq 12$$

$$4x+5y\geq 20$$

$$x\geq 0, y\geq 0$$

Q14. Solve the following linear programming problem graphically:

Maximise z = 5x + 4y,

subject to constraints

$$x+2y\geq 4$$

$$3x + y \leq 6$$

$$x + y \leq 4$$

$$x, y \ge 0$$

WHATSAPP TEST GROUP FEES
FROM JULY 1 TO TILL FINAL EXAM
WITH PDF ANSWERS
CBSE 12 RS.2500
CBSE 11 RS.2000
CBSE 10 RS.2500
CBSE 9 RS.1500

OR MONTHLY FEES RS.500
WHATSAPP - 8056206308
CHECK MY WEBSITES FOR FREE PAPERS

www.ravitestpapers.com

www.ravitestpapers.in

VI TEST PAPERS & NO WHATSAPP 80562063

4 Marks

4 Marks

3 Marks

Q15. Solve the following linear programming problem graphically:

Maximize P = 100x + 5y

subject to the constraints

$$x + y \le 300,$$

$$3x + y \le 600,$$

$$y \le x + 200,$$

$$x,y\geq 0. \\$$

Q16. Solve the following linear programming problem graphically:

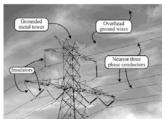
3 Marks

3 Marks

Maximize
$$z = 600x + 400y$$

subject to the constraints:

$$x + 2y \le 12$$
,


$$2x + y \le 12$$
,

$$x + 1.25y \ge 5,$$

$$x, y \geq 0$$

- **Q17.** Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector $2\hat{i} + 3\hat{j} + 4\hat{k}$ to the plane \overrightarrow{r} . $(2\hat{i} + \hat{j} + 3\hat{k}) 26 = 0$. Also find image of P in the plane.
- Q18. Find the coordinates of the foot of the perpendicular and the perpendicular distance of the point P(3, 2, 1) from the plane 2x y + z + 1 = 0. Find also, the image of the point in the plane.
- Q19. If the lines $\frac{x-1}{-3} = \frac{y-2}{-2k} = \frac{z-3}{2}$ and $\frac{x-1}{k} = \frac{y-2}{1} = \frac{z-3}{5}$ are perpendicular, find the value of k and hence find the equation of plane containing these lines.
- **Q20.** Find the equation of the plane containing two parallel lines $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{3}$ and $\frac{x}{4} = \frac{y-2}{-2} = \frac{z+1}{6}$. Also, find if the plane obtained contains the line $\frac{x-2}{3} = \frac{y-1}{1} = \frac{z-2}{5}$ or not.
- **Q21.** From the point P (1, 2, 4), a perpendicular is drawn on the plane 2x + y 2z + 3 = 0. Find the equation, the length and the coordinates of the foot of the perpendicular.
- Q22. Show that the lines $\frac{x-2}{1} = \frac{y-2}{3} = \frac{z-3}{1}$ and $\frac{x-2}{1} = \frac{y-3}{4} = \frac{z-4}{2}$ intersect. Also, find the coordinates of the point of intersection. Find the equation of the plane containing the two lines.
- **Q23.** If lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ intersect, then find the value of k and hence find the equation of the plane containing these lines.
- **Q24.** Find the distance of the point (- 1, 5, 10), from the point of intersection of the line $\overrightarrow{r} = (2\hat{i} \hat{j} + 2\hat{k}) + \lambda(3\hat{i} + 4\hat{j} + 2\hat{k})$ and the plane $\overrightarrow{r} \cdot (\hat{i} \hat{j} + \hat{k}) = 5$.
- Q25. Find the coordinates of the foot of perpendicular and perpendicular distance from the point P(4, 3, 2) to the plane x + by + 3z = 2. Also, find the image of P in the plane.
- **Q26.** Find the vector equation of the line passing through (2, 1, -1) and parallel to the line $\vec{r} = (\hat{i} + \hat{j}) + \lambda(2\hat{i} \hat{j} + \hat{k})$. Also, find the distance between these two lines.
- Q27. Find the coordinates of the foot of the perpendicular Q drawn from P(3, 2, 1) to the plane 2x y + z + 1 = 0. Also, 6 Marks find the distance PQ and the image of the point P treating this plane as a mirror.
- **Q28.** The image of point P(x, y, z) with respect to line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ is P' (1, 0, 7). Find the coordinates of point P. **5 Marks**
- **Q29.** Find the vector and the Cartesian equations of a line passing through the point (1, 2, -4) and parallel to the line joining the points A (3, 3, -5) and B (1, 0, -11). Hence, find the distance between the two lines.

- Show that the lines $\frac{X+1}{3} = \frac{y+3}{5} = \frac{z+5}{7}$ and $\frac{x-2}{1} = \frac{y-4}{3} = \frac{z-6}{5}$ intersect. Also find their point of intersection. Q31. 4 Marks
- Q32. Find the length and the foot of the perpendicular drawn from the point (2, -1, 5) to the line 4 Marks $\frac{x-11}{10} = \frac{y+2}{4} = \frac{z+8}{11}$.
- Q33. Find the shortest distance between the following lines whose vector equations are: 4 Marks $\overrightarrow{r}=(1$ - $\mathbf{t})\hat{\mathbf{i}}+(\mathbf{t}$ - $2)\hat{\mathbf{j}}+(3$ - $2\mathbf{t})\hat{\mathbf{k}}$ and $\overrightarrow{r} = (s+1)\hat{i} + (2s-1)\hat{j} - (2s+1)\hat{k}$
- Find the value of p, so that the lines $l_1:\frac{1-\mathbf{x}}{3}=\frac{7\mathbf{y}-14}{\mathbf{p}}=\frac{\mathbf{z}-3}{2}$ and $l_2:\frac{7-7\mathbf{x}}{3\mathbf{p}}=\frac{\mathbf{y}-5}{1}=\frac{6-\mathbf{z}}{5}$ are perpendicular to each **4 Marks** Q34. other. Also find the equations of a line passing through a point (3, 2, - 4) and parallel to line l_1 .
- Find the Vector and Cartesian equations of the line passing through the point (1, 2, 4) and perpendicular to the two lines $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$ and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$. Q35.
- Find the angle between the following pair of lines: $\frac{-x+2}{-2} = \frac{y-1}{7} = \frac{z+3}{-3} \text{ and } \frac{x+2}{-1} = \frac{2y-8}{4} = \frac{z-5}{4}$ and check whether the lines are parallel or perpendicular. Q36.
- Q37. Electrical transmission wires which are laid down in winters are stretched tightly to accommodate expansion in summers.

Two such wires lie along the following lines :
$$l_1:\frac{x+1}{3}=\frac{y-3}{-2}=\frac{z+2}{-1}$$

$$l_2:\frac{x}{-1}=\frac{x-7}{3}=\frac{z+7}{-2}$$

Based on the given information, answer the following questions:

Are the lines l_1 and l_2 coplanar? Justify your answer.

Find the point of intersection of the lines l_1 and l_2 .

Q38. Two motorcycles A and B are running at the speed more than the allowed speed on the roads represented by the lines $ec{\mathbf{r}}=\lambda\Big(\hat{\mathbf{i}}+2\hat{\mathbf{j}}-\hat{\mathbf{k}}\Big)$ and $ec{\mathbf{r}}=\Big(3\hat{\mathbf{i}}+3\hat{\mathbf{j}}\Big)+\mu(2\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})$ respectively.

Based on the above information, answer the following Questions:

- 1. Find the shortest distance between the given lines.
- 2. Find the point at which the motorcycles may collide
- Find the shortest distance between the lines Q39.

$$\vec{r} = 2\hat{i} - \hat{j} + \hat{k} + \lambda(3\hat{i} - 2\hat{j} + 5\hat{k})$$

 $\vec{r} = 3\hat{i} + 2\hat{j} + 4\hat{k} + \mu(4\hat{i} - \hat{j} + 3\hat{k})$

Q40. Find the shortest distance between the following lines:

$$\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$$
 and $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$

4 Marks

Find the distance between the planes 2x - y + 2z = 5 and 5x - 2.5y + 5z = 20. Q41.

1 Mark

 $\text{if } \vec{a} = 2\hat{i} + \hat{j} - \hat{k}, \vec{b} = 4\hat{i} - 7\hat{j} + \hat{k}, \text{find a vector } \vec{c} \text{ such that } \vec{a} \times \vec{c} = \vec{b} \text{ and } \vec{a} \cdot \vec{c} = 6.$ Q42.

4 Marks

Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are Q43. $(2\overrightarrow{a}+\overrightarrow{b})$ and $(\overrightarrow{a}-3\overrightarrow{b})$ respectively, externally in the ratio 1:2. Also, show that P is the mid point of the line segment RQ.

4 Marks

Find the angle between the vectors $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$ If $\overrightarrow{a} = 2\hat{i} - \hat{j} + 3\hat{k}$ and $\overrightarrow{b} = 3\hat{i} + \hat{j} - 2\hat{k}$, and hence find a vector perpendicular to both $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$. Q44.

4 Marks

Q45. If $ec{\mathbf{a}}$ and $\dot{\mathbf{b}}$ are two vectors of equal magnitude and lpha is the angle between them, then prove that $\frac{|\vec{a} + \vec{b}|}{|\vec{a} - \vec{b}|} = \cot(\frac{\alpha}{2}).$

3 Marks

AVI TEST PAPERS & NOTE WHATSAPP 8056206308

- ABCD is a parallelogram such that $\overrightarrow{AC} = \hat{i} = \hat{j}$ and $\overrightarrow{BD} = 2\hat{i} + \hat{j} = \hat{k}$ Find \overrightarrow{AB} and \overrightarrow{AD} . Also, find the area of Q46. the parallelogram ABCD.

If $ec{a}=2\hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}-2\hat{k}$ and $\vec{c}=\hat{i}+3\hat{j}-\hat{k}$ and the projection of vector $\vec{c}+\lambda\vec{b}$ on vector \vec{a} is $2\sqrt{6}$,

- Q48. If \vec{a}, \vec{b} and \vec{c} are mutually perpendicular vectors of equal magnitude, then prove that the vector $(2\vec{a} + \vec{b} + 2\vec{c})$ is equally inclined to both $ec{a}$, $ec{b}$ and $ec{c}$. Also, find the angle between a and $(2ec{a}+ec{b}+2ec{c})$.
- The two adjacent sides of a parallelogram are represented by ai $2\hat{i}-4\hat{j}-5\hat{k}$ and $2\hat{i}-4\hat{j}-3\hat{k}$. Find the unit Q49. vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram also.
- If $\vec{a}, \vec{b}, \vec{c}$ are there vectors such that $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ and $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}, \vec{a} \neq 0$, then Show that $\vec{b} = \vec{c}$. Q50.
- If \vec{a} and \vec{b} are unit vectors inclined at an angle 30° to each other, then find the area of the parallelogram with Q51. $(ec{a}+3ec{b})$ and $(3ec{a}+ec{b})$ as adjacent sides.
- Let $\vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{i}-\hat{j}$ and $\vec{c}=\hat{i}+\hat{j}+\hat{k}.$ If \hat{n} is a unit vector such that $\vec{a}.$ $\hat{n}=0$ and $\vec{b}.$ $\hat{n}=0$ then find Q52.
- If \vec{a} and \vec{b} areunit vectors and θ is the angle between them, then prove that $\sin \frac{\theta}{2} = \frac{1}{2} |\vec{a} \vec{b}|$. Q53.
- If $ec{a}$ and $ec{b}$ are two vectors such that $\left| ec{a} + ec{b} \right| = \left| ec{b} \right|$, then prove that $\left(ec{a} + 2 ec{b} \right)$ s perpendicular to $ec{a}$ Q54.

3 Marks

 \vec{a} and \vec{b} are two unit vectors such that $|2\vec{a}+3\vec{b}|=|3\vec{a}-2\vec{b}|.$ Find the angle between \vec{a} and \vec{b} . Q55.

2 Marks

- The two adjacent sides of a parallelogram are represented by vectors $2{
 m i}-4{
 m j}+5{
 m \hat{k}}$ and ${
 m \hat{i}}-2{
 m \hat{j}}-3{
 m \hat{k}}$. Find the unit $\,$ 3 Marks Q56. vector parallel to one of its diagonals. Also, find the area of the parallelogram.
- If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, \vec{a} . $\vec{b} = 1$ and $\vec{a} \times \vec{b} = \hat{j} \hat{k}$, then find $|\vec{b}|$ Q57.

2 Marks

- Find the vector equation of a line passing through a point with position vector $2\hat{\bf i}-\hat{\bf j}+\hat{\bf k}$ and parallel to the line **2 Marks** Q58. joining the points $-\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$
- Q59.

Q47.

then find the value of λ .

- **Q60.** If $\vec{a}=2\vec{i}+y\vec{j}+\vec{k}$ and $\vec{b}=\vec{i}+2\vec{j}+3\vec{k}$ are two vectors for which the vector $(\vec{a}+\vec{b})$ is perpendicular to the vector $(\vec{a}-\vec{b})$, then find all the possible values of y.
- 2 Marks
- **Q61.** If \overrightarrow{a} and \overrightarrow{b} are two non-zero vectors such that $(\overrightarrow{a} + \overrightarrow{b}) \perp \overrightarrow{a}$ and $(2\overrightarrow{a} + \overrightarrow{b}) \perp \overrightarrow{b}$, then prove that $|\overrightarrow{b}| = \sqrt{2} |\overrightarrow{a}|$.
- 2 Marks

 $\label{eq:Q62.} \textbf{Q62.} \quad \text{In a parallelogram PQRS, } \overrightarrow{PQ} = 3\hat{i} - 2\hat{j} + 2\hat{k} \text{ and } \overrightarrow{PS} = -\hat{i} - 2\hat{k}. \text{ Find } |\overrightarrow{PR}| \text{ and } |\overrightarrow{QS}|.$

- 2 Marks
- **Q63.** For two non-zero vectors \overrightarrow{a} and \overrightarrow{b} , if $|\overrightarrow{a} \overrightarrow{b}| = |\overrightarrow{a} + \overrightarrow{b}|$, then find the angle between \overrightarrow{a} and \overrightarrow{b} .
- 2 Marks

Q64. Find all the vectors of magnitude $3\sqrt{3}$ which are collinear to vector $\hat{i}+\hat{j}+\hat{k}$.

2 Marks

WHATSAPP 8056206308

- **Q65.** If $|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 400$ and $|\vec{b}| = 5$, than the value of $|\vec{a}|$
- **Q66.** The value of $(\hat{i} \times \hat{j}) \cdot \hat{j} + (\hat{j} \times \hat{i}) \cdot \hat{k}$ is:
 - **A** 2

B (

C 1

- **D** -1
- **Q67.** Suppose 5% of men and 0.25% of women have grey hair. Agrey haired person is selected at random. What is the probability of this person being male? Assume that there are equal number of males and females.
- **Q68.** A bag contains 5 red and 3 black balls and another bag contains 2 red and 6 black balls. Two balls are drawn at random (without replacement) from one of the bags and both are found to be red. Find the probability that balls are drawn from the first bag.
- Q69. There are two boxes I and II. Box I contains 3 red and 6 black balls. Box II contains 5 red and 'n' black balls. One of the two boxes, box I and box II is selected at random and a ball is drawn at random. The ball drawn is found to be red. If the probability that this red ball comes out from box II is $\frac{3}{5}$, find the value of 'n'.
- **Q70.** A bag contains 4 balls. Two balls are drawn at random, and are found to be white. What is the probability that all balls are white?
- **Q71.** An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probability of an accident involving a scooter, a car and a truck are 0.01, 0.03 and 0.15 respectively. One of the insured persons meets with an accident. What is the probability that he is a scooter driver.
- **Q72.** A discrete random variable X has the following probability distribution:

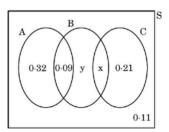
,,						
x	0	1	2	3	4	5
P(X)	4C ²	3C ²	$2C^2$	C^2	C	2C

- 1. Find the value of C.
- 2. Find the mean of the distribution.
- 3. Given $\Sigma x_i^2 p_i = 14$, find the variance of the distribution.
- Q73. In a bulb factory, machines A, B and C manufacture 60%, 30% and 10% bulbs respectively. 1%, 2% and 3% of the bulbs produced respectively by A, B and C are found to be defective. A bulb is picked up at random from the total production and found to be defective. Find the probability that this bulb was produced by the machine A.
- **Q74.** Coloured balls are distributed in three bags as shown in the following table:

6 Marks

Bag	Colour of the ba	Colour of the ball				
	Black	White	Red			
I	1	2	3			
II	2	4	1			

A bag is selected at random and then two balls are randomly drawn from the selected bag. They happen to be black and red. What is the probability that they came from bag I?


Q75. This section comprises 3 case study based questions of 4 marks each.

4 Marks

There are different types of Yoga which involve the usage of different poses of Yoga Asanas, Meditation and Pranayam as shown in the figure below:

The Venn diagram below represents the probabilities of three different types of Yoga, A, B and C performed by the people of a society. Further, it is given that probability of a member performing type C Yoga is 0.44.

On the basis of the above information, answer the following questions:

- 1. Find the value of x.
- 2. Find the value of y.
- 3. Find $P(\frac{C}{B})$.

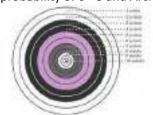
OR

- 3. Find the probability that a randomly selected person of the society does Yoga of type A or B but not C.
- Q76. At the start of a cricket match, a coin is tossed and the team winning the toss has the opportunity to choose to bat or bowl. Such a coin is unbiased with equal probabilities of getting head and tail.

 Based on the above information, answer the following questions:
 - 1. If such a coin is tossed 2 times, then find the probability distribution of number of tails. 2
 - 2. Find the probability of getting at least one head in three tosses of such a coin.
- Q77. There are two boxes, namely box-1 and box-II. Box-I contains 3 red and 6 black balls. Box-II contains 5 red and 5 black balls. One of the two boxes, is selected at random and a ball is drawn at random. The ball drawn is found to be red. Find the probability that this red ball comes out from box-II.

4 IVIAI N

Q78. Three persons A, B and C apply for a job of manager in a private company. 4 Chances of their selection are in the ratio 1:2:4. The probability that A, B and C can introduce changes to increase the profits of a company are 0.8, 0.5 and 0.3 respectively. If increase in the profit does not take place, find the probability that it is due to the appointment of A.


4 Marks

- **Q79.** A man is known to speak truth 7 out of 10 times. He threw a pair of dice and reports that doublet appeared. Find **4 Marks** the probability that it was actually a doublet.
- **Q80.** A card from a pack of 52 playing cards is lost. From the remaining cards, 2 cards are drawn at random without replacment, and are found to be both aces. Find the Probability that lost card being an ace.

4 Marks

Q81.

In a game of Archery, each ring of the Archery target is valued. The centremost ring is worth 10 points and rest of the rings are allotted points 9 to 1 in sequential order moving outwards. Archer A is likely to earn 10 points with a probability of 0 - 8 and Archer B is likely the earn 10 points with a probability of 0-9.

Based on the above information, answer the following questions: If both of them hit the Archery target, then find the probability that

- 1. exactly one of them earns 10 points.
- 2. both of them earn 10 points.
- **Q82.** In a factory, machine A produces 30% of total output, machine B produces 25% and the machine C produces the remaining output. The defective items produced by machines A, B and C are 1%, 1.2%, 2% respectively. An item is picked at random from a day's output and found to be defective. Find the probability that it was produced by machine B?
- **Q83.** A shopkeeper sells three types of flower seeds A1, A2, A3. They are sold in the form of a mixture, where the proportions of these seeds are 4 : 4 : 2, respectively. The germination rates of the three types of seeds are 45%, 60% and 35% respectively.

Based on the above information:

- 1. Calculate the probability that a randomly chosen seed will germinate;
- 2. Calculate the probability that the seed is of type A2, given that a randomly chosen seed germinates.

Q84. Case Study

According to recent research, air turbulence has increased in various regions around the world due to climate change. Turbulence makes flights bumpy and often delays the flights. Assume that, an airplane observes severe turbulence, moderate turbulence or light turbulence with equal probabilities. Further, the chance of an airplane reaching late to the destination are 55%, 37% and 17% due to severe, moderate and light turbulence respectively.

On the basis of the above information, answer the following questions:

- 1. Find the probability that an airplane reached its destination late.
- 2. If the airplane reached its destination late, find the probability that it was due to moderate turbulence.
- **Q85.** E and F are two independent events such that $P(\bar{a})=0\cdot 6$ and $P(E\ \cup F)=0\cdot 6$ Find P(F) and $P(\bar{E}\ \cup \bar{F}\)$.
- **Q86.** The probability distribution of a random variable X is given below:

Х	1	2	3
P(x)	<u>k</u>	<u>k</u>	<u>k</u>

- 1. Find the value of k.
- 2. Find $P(1 \le X < 3)$.
- 3. Find E(X), the mean of X.
- **Q87.** A and B are independent events such that $P(A \cap \bar{B}) = \frac{1}{4}$ and $P(\bar{A} \cap B) = \frac{1}{6}$. Find P(A) and P(B).
- **Q88.** Three friends A, B and C got their photograph clicked. Find the probability that B is standing at the central position, given that A is standing at the left corner.
- **Q89.** Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of spade cards.

2 Marks

3 Marks

2 Marks

Probabilities of A and B solving a specific problem are $\frac{2}{3}$ and $\frac{3}{5}$ respectively. If both of them try independently to Q91. solve the problem, then find the probability that the problem is solved.

2 Marks

Q92. A coin is tossed twice. The following table shows the probability distribution of number of tails: 2 Marks

x	0	1	2
P(X)	K	6K	9K

- 1. Find the value of K.
- 2. Is the coin tossed biased or unbiased? Justify your answer.
- Find $\left[P\left(\frac{B}{A}\right) + P\left(\frac{A}{B}\right)\right]$, if $P(A) = \frac{3}{10}$, $P(B) = \frac{2}{5}$ and $P(A \cup B) = \frac{3}{5}$. Q93.

2 Marks

Q94. A bag contains 3 red and 4 white balls. Three balls are drawn at random, one-by-one without replacement from the bag. If the first ball drawn is red in colour, then find the probability that the remaining two balls drawn are also red in colour.

2 Marks

WHATSAPP 805620630

- Q95. A pair of dice is thrown. It is given that the sum of numbers appearing on both dice is an even number. Find the probability that the number appearing on at least one die is 3.
- Q96. There are two bags. Bag I contains 1 red and 3 white balls, and Bag II contains 3 red and 5 white balls. A bag is selected at random and a ball is drawn from it. Find the probability that the ball so drawn is red in colour.
- Q97. A die, whose faces are marked 1, 2, 3 in red and 4, 5, 6 in green, is tossed. Let A be the event "number obtained is even" and B be the event "number obtained is red". Find if A and B are independent events.
- Q98. If $A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 2 \\ -3 & 1 & -1 \end{bmatrix}$, find A–1 and hence solve the system of equations 2x + y - 3z = 13,
- If $A=\begin{bmatrix}1&-1&0\\2&3&4\\0&1&2\end{bmatrix}$ and $B=A=\begin{bmatrix}2&2&-4\\-4&2&-4\\2&-1&5\end{bmatrix}$ are two square matrices, find AB and hence solve the Q99. system of linear equations x - y = 3, 2x + 3y + 4z = 17 and y + 2z = 7.
- If $A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{bmatrix}$ If A =, find A^{-1} and hence solve the system of equations x 2y = 10, 2x + y + 3z = 8 and -2yQ100.
 - 6 Marks

6 Marks

2x - 3y + 5z = 113x + 2y - 4z = -5

x + y - 2z = -3

Q101. Using matrices, solve the following system of equations:

Use product $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix} \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$ to solve the system of equations x + 3z = 9, -x + 2y - 2z = 4, 2x - 2

Q102.

Q103. If $A = \begin{pmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{pmatrix}$, find A^{-1} . Using A^{-1} Solve the system of equation

6 Marks

$$5x - v + 4z = 5$$

$$2x + 3y + 5z = 2$$

$$5x - 2y + 6z = -1$$

Q105. Solve the following system of equations by matrix method:

$$x - y + 2z = 7$$

$$2x - y + 3z = 12$$

$$3x + 2y - z = 5$$

Q106. If $A=\begin{bmatrix}1&-2&0\\2&-1&-1\\0&-2&1\end{bmatrix}$ find A^{-1} and use it to solve the following system of equations:

VI TEST PAPERS & NO WHATSAPP 80562063

- Q107. If $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ and $B^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$, find (AB)⁻¹.
- Q108. If $A = \begin{bmatrix} -1 & a & 0 \\ 1 & 2 & x \\ 3 & 1 & 1 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 1 & -1 & 1 \\ -8 & 7 & -5 \\ b & y & 3 \end{bmatrix}$, find the value of (a + x) (b + y).
- **Q109.** If $A=\begin{bmatrix} -3 & 2 \\ 1 & -1 \end{bmatrix}$ and $I=\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$, Find scalar k so that A² + I = kA.
- Q110. If $\begin{pmatrix} 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = A$, then write the order of matrix A.
- **Q111.** If $A=\begin{bmatrix}3&4\\5&2\end{bmatrix}$ and 2A + B is a null matrix, then B is equal to:

$$\mathbf{A} \begin{bmatrix} 6 & 8 \\ 10 & 4 \end{bmatrix} \\
\mathbf{C} \begin{bmatrix} 5 & 8 \\ 10 & 3 \end{bmatrix}$$

- **Q112.** If $A=\begin{bmatrix}3&1\\-1&2\end{bmatrix}$, show the $A^2-5A+7I=0$. Hence find A-1.
- **Q114.** Let $A = \{x \in Z : 0 \le x \le 12\}$. Show that, $R = \{(a,b) : a,b \in A, |a-b| \text{ is divisible by 4} \}$ is an equivalence function. Find the set of all elements related to 1. Also write the equivalence class [2].
- Q115. A relation R is defined on a set of real numbers R as

 R = {(x, y) : x . y is an irrational number}.

 Check whether R is reflexive, symmetric and transitive or not.

- 5 Marks
- **Q116.** Show that the relation S in the set A = $\{x \in Z : 0 \le x \le 12\}$ given by S = $\{(a, b): a, b \in Z, | a b | \text{ is divisible by 4}\}$ is **4 Marks** an equivalence relation. Find the set of all elements related to 1.

- Q117. Let N be the set of natural numbers and R be the relation on N × N defined by (a, b) R (c, d) iff ad = bc for all a, b, c, d ∈ N. Show that R is an equivalence relation.
 4 I
 - 4 Marks
- **Q118.** Prove that the relation R in the set A=(1,2,3,4,5) given by R=(a,b):|a-b| is even, is an equivalence relation.
- 4 Marks
- **Q119.** Prove that the relation R on Z, defined by R $\{(x, y) : (x y) \text{ is divisible by 5} \}$ is an equivalence relation.
- 4 Marks
- Q120. Let Z be the set of all integers and R be the relation on Z defined as $R = \{(a, b): a, b \in Z, and (a b) \text{ is divisible by } 5.\}$ Prove that R is an equivalence relation.
- 4 Marks
- **Q121.** Prove that the relation R in the set $A = \{1, 2, 3, 4, 5, 6, 7\}$ given by $R = \{(a, b) : |a b| \text{ is even}\}$ is an equivalence relation.
- 4 Marks
- Q122. Show that the relation R on the set Z of all integers, given by R = {(a, b) : 2 divides (a b)} is an equivalence relation.
- 4 Marks
- **Q123.** Show that the relation R on defined as $R = \{(a,b) : a \leq b\}$, is reflexive, and transitive but not symmetric.
- **Q124.** Check whether the relation R defined on the set $A = \{1, 2, 3, 4, 5, 6\}$ as $R = \{(a, b) : b = a + 1\}$ is reflexive, symmetric or transitive.
- **Q125.** Check whether the relation R in the set N of natural numbers given by $R = \{(a, b) : a \text{ is divisor of } b\}$ is reflexive, symmetric or transitive. Also determine whether R is an equivalence relation.
- **Q126.** Show that the relation S in the set $A=\left\{x\in Z:0\leq x\leq 12\right\}$ given by $S=\left\{(a,b):a,\ b\in Z,\ |a-b|\ \text{is divisible by }3\right\}$ is an equivalence relation.
- **Q127.** Check if the relation R on the set $A = \{1, 2, 3, 4, 5, 6\}$ defined as $R = \{(x, y) : y \text{ is divisible by } x\}$ is (i) symmetric (ii) transitive.
- **Q128.** State the reason for the relation R in the set $\{1, 2, 3\}$ given by R = $\{(1, 2), (2, 1)\}$ not to be transitive.

