TEST ANSWERS AVAILABLE IN MY BLOG- www.ravitestpapers.in

MY YOUTUBE CHANNEL NAME- RAVI TEST PAPERS

JOIN MY PAID WHATSAPP GROUP 8056206308 FOR DPPS WITH ANSWERS

Q1. The radius of the nth orbit in Bohr model of hydrogen atom is proportional to:

1 Mark

A $\frac{1}{n^2}$ **C** n^2

 \mathbf{D} n

Q2. The electric potential on the axis of an electric dipole at a distance 'r from it's centre is V. Then the potential at a point at the 1 Mark same distance on its equatorial line will be:

A 2V

B-V

 $\mathsf{c}^{-\frac{\mathrm{V}}{2}}$

D Zero

Q3. If the magnetizing field on a ferromagnetic material is increased, its permeability.

1 Mark

A Decreases.

B Increases.

C Remains unchanged.

D First decreases and then increases.

Q4. Assertion (A) and Reason (R) type questions. Two statements are given - one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the codes (a), (b), (c) and (d) as given below.

1 Mark

Assertion (A): The phase difference between any two points on a wavefront is zero.

Reason (R): All points on a wavefront are at the same distance from the source and thus oscillate in the same phase.

A Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).

B Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).

C Assertion (A) is true, but Reason (R) is false.

D Assertion (A) is false and Reason (R) is also false.

Q5. An ac source of voltage is connected in series with a p-n junction diode and a load resistor. The correct option for output 1 Mark voltage across load resistance will be:

A (a) V

C who

D (d) \(^1

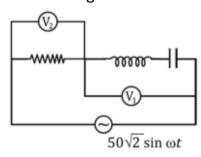
Q6. A diamagnetic substance is brought near the north or south pole of a bar magnet. It will be:

1 Mark

1 Mark

A repelled by both the poles.

B attracted by both the poles.


C repelled by the north pole and attracted by the south pole.

D attracted by the north pole and repelled by the south

pole.

Q7. If the reading of the voltmeter V_1 is 40V, then the reading of voltmeter V_2 is

B " ,

CBSE 10 & 12 - FEES RS.1250 CBSE 9 & 11 - FEES RS.750 JEE - FEES RS.1000 **NEET - FEES RS.2000**

A 30V

B 58V

C 29V

D 15V

SEARCH GOOGLE

www.ravitestpapers.in
RAVI MATHS TUITION CENTER

Q8. In the process of charging of a capacitor, the current produced between the plates of the capacitor is: 1 Mark

A $\mu_0 rac{\mathrm{d}\phi\mathrm{E}}{\mathrm{dt}}$

 $\mathbf{c} \in_0 rac{\mathrm{d}\phi \mathrm{E}}{\mathrm{d}\mathrm{t}}$

 $\begin{array}{ccc} \mathbf{B} & \frac{1}{\mu_0} \frac{\mathrm{d}\phi E}{\mathrm{d}t} \\ \mathbf{D} & \frac{1}{\in_0} \frac{\mathrm{d}\phi E}{\mathrm{d}t} \end{array}$

A galvanometer of resistance G Ω is converted into an ammeter of range 0 to I A. If the current through the galvanometer is **1 Mark** Q9. 0.1% of I A, the resistance of the ammeter is:

A $\frac{G}{999}\Omega$ C $\frac{G}{1001}\Omega$

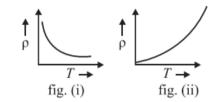
 $\begin{array}{c} \textbf{B} \quad \frac{G}{1000}\Omega \\ \textbf{D} \quad \frac{G}{100.1}\Omega \end{array}$

	A 975 nm	B 740 nm	C 523 nm	D 95 nm	
Q11.	$egin{aligned} \operatorname{Region} & \operatorname{I}: \operatorname{E}_{\operatorname{x}} = \operatorname{E}_0 \sin \operatorname{E}_{\operatorname{x}} \\ \operatorname{Region} & \operatorname{III}: \operatorname{E}_{\operatorname{x}} = \operatorname{E}_0 \sin \operatorname{E}_{\operatorname{x}} \\ \operatorname{Region} & \operatorname{IV}: \operatorname{E}_{\operatorname{x}} = \operatorname{E}_0 \cos \operatorname{E}_{\operatorname{x}} \end{aligned}$	$\operatorname{in} \mathrm{kz}$	ibed as:		1 Mark
	ΑΙ	B IV	CII	D III	
Q12.	The work function for a	metal surface is 4.14 eV. The thresho	ld wavelength for t	his metal surface is:	1 Mark
	A 4125Å	B 2062.5Å	c 3000Å	D 6000Å	
Q13.		io of the magnitudes of magnetic fie	·	. The current is uniformly distributed across $\frac{a}{2}$ above the surface of wire to that at a	1 Mark
	A 4:1	B 1:1	C 4:3	D 3:4	
Q14.	For Questions two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below. Assertion (A): The mutual inductance between two coils is maximum when the coils are wound on each other. Reason (R): The flux linkage between two coils is maximum when they are wound on each other.				
		d Reason (R) are true and Reason anation of the Assertion (A). out Reason (R) is false.	(R) is not the co	(A) and Reason (R) are true, but Reason orrect explanation of the Assertion (A). s false and Reason (R) is also false.	
Q15.	A thin plastic rod is bent electric field at its centr	_	niformly charged w	ith charge density $\lambda.$ The magnitude of the	1 Mark
	A $rac{\lambda}{2\epsilon_0 \mathrm{R}}$		B Zero		
	C $\frac{\lambda}{4\pi\epsilon_0 \mathrm{R}}$		D $rac{\lambda}{4\epsilon_0 ext{R}}$		
Q16.	Reason (R). Select the co	orrect answer from the codes (a), (b),	, (c) and (d) as giver	elled Assertion (A) and the other labelled below. field lines get concentrated inside the bar.	1 Mark
		d Reason (R) are true and Reason anation of the Assertion (A). out Reason (R) is false.	(R) is not the co	(A) and Reason (R) are true, but Reason orrect explanation of the Assertion (A). s false and Reason (R) is also false.	
Q17.	·	hrough a metallic wire whose area of nagnitude of drift velocity (v _d) of the f		ncreases continuously from one end of the unction of 'A' can be shown by:	1 Mark
	$oldsymbol{A} \overset{\mathrm{v}_{\mathbf{d}}}{\overbrace{\bigcap_{(\mathbf{a})}^{\mathbf{A}}}}$	B vd A	C Vd A	\mathbf{D} $\overset{\mathrm{v_d}}{\overbrace{\underset{(\mathrm{d})}{\bigwedge}}}$	
Q18.	Which of the following	statements about nuclear forces is no	t true?		1 Mark
	zero as their distance C The force is attractive	ween two nucleons falls rapidly to is more than a few femtometres. for distances larger than 0.8 fm and eparated by distances less than	force. D The nuclear for	rce is much weaker than the Coulomb rce between neutron-neutron, proton- roton-proton is approximately the same.	
Q19.		ments are given — one labelled as As questions from the codes (a), (b), (c)	. ,	other labelled as Reason (R). Select the low.	1 Mark

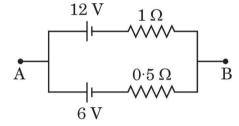
Assertion (A): In photoelectric effect, the kinetic energy of the emitted photoelectrons increases with increase in the

Reason (R): Photoelectric current depends on the wavelength of the incident light.

intensity of the incident light.


- A Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- **C** Assertion (A) is true, but Reason (R) is false.
- **B** Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
- **D** Assertion (A) is false and Reason (R) is also false.
- Q20. A circular coil of radius 8:0cm and 40 turns is rotated about its vertical diameter with an angular speed of $\frac{25}{\pi}$ rad s⁻¹ in a uniform horizontal T magnetic field of magnitude 3.0×10^{-2} T. The maximum emf induced in the coil is:

1 Mark


- **A** 0.12V
- **B** 0.15V

C 0.19V

- **D** 0.22V
- Q21. The temperature (T) dependence of resistivity of materials A and material B is represented by fig.(i) and fig (ii) respectively. 1 Mark Identify material A and material B.

- **A** Material A is copper and material B is germanium.
- **B** Material A is germanium and material B is copper.
- **C** Material A is nichrome and material B is germanium.
- **D** Material A is copper and material B is nichrome.
- **Q22.** Consider the circuit shown in the figure. The potential difference between points A and B is:

A 6 V

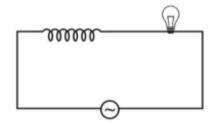
A.

B 8 V

c 9 V

D 12 V

Q23. Diraction: Two statements are given-one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer **1 Mark** to these questions from the codes (a), (b), (c) and (d) as given below.


Assertion (A): In an interference pattern observed in Young's double slit experiment, if the separation (d) between coherent sources as well as the distance (D) of the screen from the coherent sources both are reduced to $\frac{1}{3}$ 3rd, then new fringe width remains the same.

Reason: Fringe width is proportional to $(\frac{d}{D})$

- **A** Both A and R are true and R is the correct explanation of
- **B** Both A and R are true and R is NOT the correct explanation of A1.

C A is true but R is false.

- **D** A is false and R is also false.
- Q24. The transition of electron that gives rise to the formation of the second spectral line of the Balmer series in the spectrum of hydrogen atom corresponds to:
 - **A** $n_f = 2$ and $n_i = 3$
- **B** $n_f = 3$ and $n_i = 4$
- **C** $n_f = 2$ and $n_i = 4$
- **D** $n_f = 2$ and $n_i = \infty$
- **Q25.** An iron cored coil is connected in series with an electric bulb with an AC source as shown in figure. When iron piece is taken **1 Mark** out of the coil, the brightness of the bulb will.

- A Decrease.
- **B** Increase.
- **C** Remain unaffected.
- **D** Fluctuate.
- **Q26.** For Questions two statements are given one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below.

1 Mark

Assertion (A): Two long parallel wires, freely suspended and connected in series to a battery, move apart.

Reason (R): Two wires carrying current in opposite directions repel each other.

- A Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- C Assertion (A) is true, but Reason (R) is false.
- **B** Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
- **D** Assertion (A) is false and Reason (R) is also false.

A 3		B 9		
$C \frac{1}{3}$		D $\frac{1}{9}$		
•	acitor of capacitance C connected to ource is tripled, the reactance will be	•	ency nce of the capacitor is doubled and	1 Mar
$\mathbf{A} \frac{\mathbf{X}}{6}$		B 6X		
$c^{\frac{2}{3}}X$		D $\frac{3}{2}X$		
	along y-axis. It carries a current of 1.0		on. A magnetic field	1 Mar
$ m B^{'}=(5~mT)\hat{j}-(8~m)$	${ m nT})\hat{ m k}$ exists in the region. The force o	on the wire is:		
A $(0.8~\mathrm{mN})\mathrm{\hat{i}}$ C $(8~\mathrm{mN})\mathrm{\hat{i}}$		${f B} - (0.8 \; { m mN}) \hat{{f i}}$ ${f D} - (80 \; { m mN}) \hat{{f i}}$		
In the energy-band dia Ep is of the order of:	gram of n-type Si, the gap between t	he bottom of the cond	luction band E¢ and the donor energy level	1 Mar
A 10 eV	B 1 eV	C 0.1 eV	D 0.01 eV	
The electric potential V	/ as a function of distance X is shown	in the figure.		1 Mar
	itude of electric field intensity E as a $\mathbf{B} = \mathbf{B} + \mathbf{A}$	function of X is.	D	
The graph of the magn A Fectangular, a square with a constant velocity	${f B}$, a circular and an elliptical loop, all in ${f V} = {f v} \hat{1}$ The magnetic field is direct	C in the (x - y) plane, are ed along the negative	D moving out of a uniform magnetic field z-axis direction. The induced emf, during	1 Mar
The graph of the magn A rectangular, a square with a constant velocity the passage of these lo	${f B}$, a circular and an elliptical loop, all in ${f v}$ $\vec{V}={f v}\hat{1}$ The magnetic field is direct pops, out of the field region, will not recovery ${f v}$ \vec{v}	c in the (x - y) plane, are ed along the negative remain constant for	moving out of a uniform magnetic field z-axis direction. The induced emf, during	1 Mar
The graph of the magn A rectangular, a square with a constant velocity the passage of these loop. A Any of the four loop.	${f B}$, a circular and an elliptical loop, all in ${f v}$ $\vec{V}={f v}\hat{1}$ The magnetic field is direct pops, out of the field region, will not recovery ${f v}$ \vec{v}	C in the (x - y) plane, are ed along the negative	moving out of a uniform magnetic field z-axis direction. The induced emf, during elliptical loops.	1 Mai
The graph of the magn A rectangular, a square with a constant velocity the passage of these loop. C The rectangular, circulars and Reason (A) and Reason (R). Select the constant (A): Photoele	B. \vec{v} , a circular and an elliptical loop, all into \vec{v} , \vec{v}	n the (x - y) plane, are ed along the negative remain constant for B The circular and D Only the ellipticates are given - one label (), (c) and (d) as given to enature of light.	moving out of a uniform magnetic field z-axis direction. The induced emf, during elliptical loops. Illed Assertion (A) and the other labelled	
The graph of the magn A rectangular, a square with a constant velocity the passage of these look A Any of the four loop: C The rectangular, circulars and Reason (R). Select the constant (R): Photoelect frequency. A Both Assertion (A) and (R) is the correct expenses.	B. \vec{v} , a circular and an elliptical loop, all into \vec{v} , \vec{v}	n the (x - y) plane, are ed along the negative remain constant for B The circular and D Only the ellipticates are given - one labeled), (c) and (d) as given the nature of light. y of incident radiation B Both Assertion (A) (R) is not the core	moving out of a uniform magnetic field z-axis direction. The induced emf, during elliptical loops. Illed Assertion (A) and the other labelled pelow.	1 Mar
A rectangular, a square with a constant velocity the passage of these look. Any of the four loop: C The rectangular, circulars and Reason (R). Select the constant (R): Photoelect frequency. A Both Assertion (A) and (R) is the correct exp. C Assertion (A) is true,	e, a circular and an elliptical loop, all into $V = v \hat{I}$. The magnetic field is direct pops, out of the field region, will not rest. Ular and elliptical loops. on (R) type questions. Two statements correct answer from the codes (a), (be extric effect demonstrates the particular current is proportional to intensit and Reason (R) are true and Reason planation of the Assertion (A). But Reason (R) is false.	n the (x - y) plane, are ed along the negative remain constant for B The circular and D Only the ellipticates are given - one labeled), (c) and (d) as given be nature of light. y of incident radiation B Both Assertion (A) (R) is not the core	moving out of a uniform magnetic field z-axis direction. The induced emf, during elliptical loops. Illed Assertion (A) and the other labelled below. for frequencies more than the threshold A) and Reason (R) are true, but Reason rect explanation of the Assertion (A).	
A rectangular, a square with a constant velocity the passage of these look. Any of the four loop: C The rectangular, circulars and Reason (R). Select the constant (R): Photoelect frequency. A Both Assertion (A) and (R) is the correct exp. C Assertion (A) is true, A loop carrying a curre	e, a circular and an elliptical loop, all into $V = v \hat{I}$. The magnetic field is direct pops, out of the field region, will not rest. Ular and elliptical loops. on (R) type questions. Two statements correct answer from the codes (a), (be extric effect demonstrates the particular current is proportional to intensit and Reason (R) are true and Reason planation of the Assertion (A). But Reason (R) is false.	n the (x - y) plane, are ed along the negative remain constant for B The circular and D Only the ellipticates are given - one labeled), (c) and (d) as given be nature of light. y of incident radiation B Both Assertion (A) (R) is not the core	moving out of a uniform magnetic field z-axis direction. The induced emf, during elliptical loops. Illed Assertion (A) and the other labelled below. for frequencies more than the threshold A) and Reason (R) are true, but Reason rect explanation of the Assertion (A). Islae and Reason (R) is also false.	1 Mar
A rectangular, a square with a constant velocity the passage of these look. Any of the four loop: C The rectangular, circulars and Reason (R). Select the constant (R): Photoelect frequency. A Both Assertion (A) and Reason (R): Photoelect frequency. A Both Assertion (A) and (R) is the correct expect (R	e, a circular and an elliptical loop, all in $y = v \hat{1}$ The magnetic field is direct cops, out of the field region, will not rest. ular and elliptical loops. on (R) type questions. Two statements correct answer from the codes (a), (be extric effect demonstrates the particular current is proportional to intensit and Reason (R) are true and Reason clanation of the Assertion (A). but Reason (R) is false. Int I clockwise is placed in x y plane, in	n the (x - y) plane, are ed along the negative remain constant for B The circular and D Only the ellipticates are given - one labeled), (c) and (d) as given the enature of light. y of incident radiation B Both Assertion (A) (R) is not the core D Assertion (A) is for a uniform magnetic for a uniform magnetic for the core of th	moving out of a uniform magnetic field z-axis direction. The induced emf, during elliptical loops. Al loops. Bled Assertion (A) and the other labelled below. for frequencies more than the threshold A) and Reason (R) are true, but Reason rect explanation of the Assertion (A). False and Reason (R) is also false. Field directed along z-axis. The tendency of D expand	1 Mar

C 0.94

D 0.85

Q28.

Q29.

Q30.

Q31.

Q32.

Q33.

Q34.

Q35.

Q36.

A 0.80

B 0.74

Q37.	Diraction: Two statements are given-one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below. Assertion (A): The electrical conductivity of a semiconductor increases on doping. Reason: Doping always increases the number of electrons in the semiconductor.			1 Mark	
	A Both A and R are true and R A.	R is the correct explanation of	B Both A and R are true and F explanation of A1.	R is NOT the correct	
	C A is true but R is false.		D A is false and R is also false		
Q38.	The waves associated with a r same:	noving electron and a moving p	roton have the same wavelengt	th. It implies that they have the	1 Mark
	A momentum	B angular momentum	C speed	D energy	
Q39.	correct answer to these quest Assertion (A): Plane and conv	s are given — one labelled as As ions from the codes (a), (b), (c) ex mirrors cannot produce real innot serve as an object to prod	and (d) as given below. images under any circumstance		1 Mark
	A Both Assertion (A) and Real (R) is the correct explanation C Assertion (A) is true, but Real (B)	on of the Assertion (A).	B Both Assertion (A) and Reas(R) is not the correct explanD Assertion (A) is false and Reas	nation of the Assertion (A).	
Q40.	to these questions from the constraints. The photoelectron kinetic energies. Reason: The energy of electrons.	odes (a), (b), (c) and (d) as given s produced by a monochromations emitted from inside the met	below. c light beam incident on a meta al surface, is lost in collision wit	th the other atoms in the metal.	1 Mark
	A Both A and R are true and RA.C A is true but R is false.	R is the correct explanation of	B Both A and R are true and F explanation of A.D A is false and R is also false		
Q41.	Ge is doped with As. Due to d	oping,			1 Mark
	A the structure of Ge lattice is distorted. B the number of conduction electrons increases. C the number of holes increases. D the number of conduction electrons decreases.				
Q42.	According to Coulomb's law, very $q_1 \xrightarrow{\overrightarrow{F}_{12}} q_2$ A $q^1 q^2 > 0$	which is the correct relation for t		JOIN WHATSAPP PAID GROUP NOVEMBER 1 ST 2025 TO TILL 2026 FINAL EXAM WHATSAPP 8056206308 CBSE 10 & 12 - FEES RS.1250 CBSE 9 & 11 - FEES RS.750	1 Mark
	C $q^1 q^2 = 0$		B $q^1 q^2 < 0$ D $\frac{>q^1}{q^2>0}$	JEE - FEES RS.1000 NEET - FEES RS.2000 SEARCH GOOGLE www.ravitestpapers.com www.ravitestpapers.lin RAVI MATHS TUITION CENTER	
Q43.	Which of the following statem	nent is NOT true about the prop	erties of electromagnetic waves	s?	1 Mark
	A These waves do not require their propagation.C The energy in electromagne between electric and magn	etic wave is divided equally	B Both electric and magnetic maxima and minima at theD Both electric and magnetic each other.	same time.	
Q44.	Ten capacitors, each of capaci	tance 1 μF, are connected in pa	rallel to a source of 100 V. The t	otal energy stored in the system	1 Mark
	A 10 ⁻² J	B 10 ⁻³ J	C 0·5 ×10 ⁻³ J	D 0.5 ×10 ⁻² J	
Q45.	The mass density of a nucleus	of mass number A is:			1 Mark
	A proportional to $A^{\frac{1}{3}}$ C proportional to A^3		$f B$ proportional to $A^{rac{2}{3}}$ $f D$ independent of A		
Q46.	When an intrinsic semiconduc	ctor is doped with a small amou	nt of trivalent impurity, then:		1 Mark
-	A its resistance increases. B it becomes a p-type semiconductor.				

C there will be more free electrons than holes in the **D** dopant atoms become donor atoms. semiconductor. Q47. The potential difference across a cell in an open circuit is 8 V. It falls to 4V when a current of 4 A is drawn from it. The 1 Mark internal resistance of the cellis: A 4Ω **B** 3Ω $\mathbf{C} \ 2\Omega$ D 1Ω For a concave mirror of focal length 'f', the minimum distance between the object and its real image is: Q48. 1 Mark A zero **B** f **C** 2f **D** 4f The radius of the innermost electron orbit of a hydrogen atom is 5.3×10^{-11} m. The radius of the n = 3 orbit is: Q49. 1 Mark **A** 1.01×10^{-10} m **B** 1.59×10^{-10} m **C** 2.12×10^{-10} m **D** 4.77×10^{-10} m Figure shows a rectangular conductor PSRQ in which movable arm PQ has a resistance 'r' and resistance of PSRQ is Q50. 1 Mark negligible. The magnitude of emf induced when PQ is moved with a velocity \overrightarrow{v} does not depend on: \mathbf{A} magnetic field (\overrightarrow{B}) **B** velocity (\overrightarrow{v}) **D** length of PQ **C** resistance (r) Q51. A point charge situated at a distance 'r' from a short electric dipole on its axis, experiences a force \overrightarrow{F} . If the distance of the 1 Mark charge is '2r', the force on the charge will be:

Q52. Two concentric and coplanar circular loops P and Q have their radii in the ratio 2 : 3. Loop Q carries a current 9A in the anticlockwise direction. For the magnetic field to be zero at the common centre, loop P must carry.

A 3A in clockwise direction.

 $egin{array}{c} \hline 16 \
ightarrow F \ \hline 4 \ \end{array}$

B 9A in clockwise direction.

C 6A in anti-clockwise direction.

D 6A in the clockwise direction.

JEE NEET CBSE AVAILABLE PDF SALES MATERIALS

	T	
1.	1. JEE MAIN 2013 TO 2025	RS.200
2.	2. JEE ADV 2013 TO 2025	RS.200
3.	3. JEE JAN 2025 ALL SHIFTS QUS ANS	RS.200
4.	4. JEE 40 DAYS PCM 120 CHAPTER WISE TESTS	RS.500
5.	5. JEE PYQ PCM CHAPTERWISE	RS.500
6.	6. JEE CHAPTER WISE 10 DPPS PCM CLASS 11 & 12	RS.350
7.	7. JEE 25 FULL MOCK TESTS WITH SOLUTIONS	RS.500
8.	8. MATHS 11 12 MCQS WORD FORMAT	RS.250
9.	9. CHEMISTRY 11 12 MCQS WORD FORMAT	RS.250
10.	10. PHYSICS 11 12 MCQS WORD FORMAT	RS.250
11.	11. CHEMISTRY FOUNDATION 11TH WORD PDF	RS.200
12.	12. CHEMISTRY FOUNDATION 12TH WORD PDF	RS.200
13.	13. MATHS FOUNDATION 11TH WORD PDF	RS.200
14.	14. MATHS FOUNDATION 12TH WORD PDF	RS.200
15.	15. PHYSICS FOUNDATION 11TH WORD PDF	RS.200
16.	16. PHYSICS FOUNDATION 12TH WORD PDF	RS.200
17.	17. 80 NEET FULL MOCK TEST PAPERS	RS.2000
18.	18. 80 நீட் தமிழ் மீடியம் FULL MOCK TEST PAPERS	RS.1500
19.	19. NEET 45 PCB EM SUBJECT 200 MARKS TESTS	RS.1000
20.	20. NEET 45 PCB தமிழ் மீடியம் SUBJECT 200 MARKS TESTS	RS.1000

21.	21. NEET BIOLOGY CHAPTER QUS BANK	RS.500
22.	22. NEET CHEMISTRYY CHAPTER QUS BANK	RS.500
23.	23. NEET PHYSICS CHAPTER QUS BANK	RS.500
24.	24. NEET இயற்பியல் CHAPTERS QUS BANK	RS.500
25.	25. NEET உயிரியல் CHAPTERS QUS BANK	RS.500
26.	26. NEET வேதியல் CHAPTERS QUS BANK	RS.500
27.	27. NEET 60 MARKS EM PCB SLIP 99 TESTS	RS.500
28.	28. NEET நீட் PCB 100 MARKS 86 CHAPTERS SLIP TESTS	RS.500
29.	29. NEET 9528 MCQS ANS TN உயிரியல் வேதியல் இயற்பியல் NOT SOLVED ONLY ANSWERS	RS.500
30.	30. NEET 16000 MCQS ANS TN STATE BIOLOGY CHEMISTRY PHYSICS NOT SOLVED ONLY ANSWERS	RS.750
31.	31. BIOLOGY FOUNDATION 11TH WORD PDF	RS.200
32.	32. BIOLOGY FOUNDATION 12TH WORD PDF	RS.200
33.	33. NEET 54 PCB FULL TESTS	RS.500
34.	34. PYQS SINGLE BIOLOGY NEET	RS.250
35.	35. PYQS SINGLE CHEMISTRY NEET	RS.250
36.	36. PYQS SINGLE PHYSICS NEET	RS.250
37.	37. NEET BIOLOGY CHAP PRE QUESTION WITH SOLUTION WORD PDF	RS.200
38.	38. NEET CHEMISTRY CHAP PRE QUS WITH SOLUTION WORD PDF	RS.200
39.	39. NEET PHYSICS CHAP PRE QUESTION WITH SOLUTION WORD PDF	RS.200
40.	40. NEET JUNE TO MARCH 47 PCB COMBINED 300+ QUS TESTS	RS.1000

41.	1. 12TH CBSE MATHS CHAPTER STUDY MATERIAL	RS.250
42.	2. 12TH CBSE PHYSICS CHAPTER STUDY MATERIAL	RS.250
43.	3. 12TH CBSE CHEMISTRY CHAPTER STUDY MATERIAL	RS.250
44.	4. 12TH CBSE BIOLOGY CHAPTER STUDY MATERIAL	RS.250
45.	5. 12TH CBSE COMPUTER CHAPTER STUDY MATERIAL	RS.250
46.	6. 12TH CBSE MATHS SLIP CHAPTER TESTS	RS.200
47.	7. 12TH CBSE PHYSICS CHAPTERS TESTS	RS.200
48.	8. 12TH CBSE CHEMISTRY SLIP CHAPTER TESTS	RS.200
49.	9. 12TH CBSE PCMB CSC MCQS ONLY (PER SUBJECT)	RS.100
50.	10. 12TH CBSE PCMB PREVIOUSLY ASKED QB (PER SUBJECT)	RS.150
51.	11. 12TH NOTES AND SAMPLE PAPER PCMB	RS.400
52.	12. 12TH CBSE ACCOUNTS STUDY MATERIALS	RS.250
53.	13. 12TH ECONOMICS STUDY MATERIALS	RS.250
54.	14. 12TH CBSE BUS STUDIES CHAPTER STUDY MATERIAL	RS.250
55.	15. 12TH CBSE AC BST ECO PRE YEAR PAPERS (PER SUBJECT)	RS.150
56.	16. 12TH NOTES AND SAMPLE PAPER AC BST ECO	RS.300
57.	17. 11TH CBSE MATHS CHAPTER STUDY MATERIAL	RS.250
58.	18. 11TH CBSE PHYSICS CHAPTER STUDY MATERIAL	RS.250
59.	19. 11TH CBSE CHEMISTRY CHAPTER STUDY MATERIAL	RS.250
60.	20. 11TH CBSE BIOLOGY CHAPTER STUDY MATERIAL	RS.250
61.	21. 11TH NOTES AND SAMPLE PAPER AC BST ECO	RS.300
62.	22. 11TH NOTES AND SAMPLE PAPER PCMB	RS.400

63.	23. 10TH CBSE MATHS CHAPTER STUDY MATERIAL	RS.250
64.	24. 10TH CBSE SCIENCE CHAPTER STUDY MATERIAL	RS.250
65.	25. 10TH CBSE SOCIAL SCIENCE CHAPTER STUDY MATERIAL	RS.250
66.	26. 10TH CBSE ENGLISH CHAPTER STUDY MATERIAL	RS.150
67.	27. 10TH CBSE HINDI CHAPTER STUDY MATERIAL	RS.150
68.	28. 10TH CBSE MATHS SLIP TESTS	RS.200
69.	29. 10TH CBSE SCIENCE SLIP TESTS	RS.200
70.	30. 10TH CBSE SST SLIP TESTS	RS.200
71.	31. 10TH CBSE MATHS FOUNDATION	RS.150
72.	32. 10TH CBSE SCIENCE FOUNDATION	RS.150
73.	33. 10TH CBSE SST FOUNDATION	RS.150
74.	34. 10TH NOTES AND SAMPLE PAPER MAT SCI SST	RS.300
75.	35. 9TH CBSE MATHS CHAPTER STUDY MATERIAL	RS.250
76.	36. 9TH CBSE SCIENCE CHAPTER STUDY MATERIAL	RS.250
77.	37. 9TH CBSE SST CHAPTER STUDY MATERIAL	RS.250
78.	38. 9TH NOTES AND SAMPLE PAPER MAT SCI SST	RS.300
79.	39. 9TH CBSE MATHS FOUNDATION	RS.150
80.	40. 8TH NOTES AND SAMPLE PAPER MAT SCI SST	RS.300
81.	41. 8TH CBSE MATHS FOUNDATION	RS.150
82.	42. 7TH NOTES AND SAMPLE PAPER MAT SCI SST	RS.300
83.	43. 7TH CBSE MATHS FOUNDATION	RS.150
84.	44. 6TH NOTES AND SAMPLE PAPER MAT SCI SST	RS.300

85.	45. 6TH CBSE MATHS FOUNDATION	RS.150
86.	46. 10TH MATHS FULL PAPERS COLLECTIONS	RS.250
87.	47. 10TH SCIENCE FULL PAPERS COLLECTIONS	RS.250
88.	48. 10TH SST FULL PAPERS COLLECTIONS	RS.250
00.	46. IOTH 331 FOLET AT ERS COLLECTIONS	113.230
89.	49. 12TH MATHS FULL PAPERS COLLECTIONS	RS.250
90.	50. 12TH PHYSICS FULL PAPERS COLLECTIONS	RS.250
91.	51. 12TH CHEMISTRY FULL PAPERS COLLECTIONS	RS.250
J1.	31. 12.11 GILLINGTH FOLLT AT ENG COLLECTIONS	113.230
92.	52. 12TH BIOLOGY FULL PAPERS COLLECTIONS	RS.250

JOIN 2026 - 27 WHATSAPP JEE NEET TEST GROUP 1 YEAR FEES RS.4000

JOIN 2026 - 27 WHATSAPP CBSE 10 & 12TH TEST GROUP 1 YEAR FEES RS.3000

JOIN WHATSAPP PAID GROUP

NOVEMBER 1ST 2025 TO TILL 2026 FINAL EXAM

WHATSAPP 8056206308

CBSE 10 & 12 - FEES RS.1250

CBSE 9 & 11 - FEES RS.750

JEE - FEES RS.1000

NEET - FEES RS.2000

SEARCH GOOGLE

www.ravitestpapers.com www.ravitestpapers.in RAVI MATHS TUITION CENTER