JOIN MY 12TH CBSE PAID WHATSAPP DAILY TEST GROUP WITH ANSWERS. ONE TIME FEES RS.3000 TILL 2026 FINAL EXAM

UPLOADING SUBJECTS - MAT PHY CHEM BIO ENG

RAVI TEST PAPERS & NOTES , WHATSAPP - 8056206308

WWW.ravitestpapers.com & www.ravitestpapers.in

Test / Exam Name: Moving Charges And Magnetism

Standard: 12th Science

Subject: Physics

Instructions

- 1. JOIN MY PAID GROUP IF YOU NEED ANSWERS FOR ALL MY DPP. WHATSAPP 8056206308
- 2. FEES RS.500 PER MONTH OR RS.3000 TILL FINAL EXAM
- Q1. An electron and a proton are moving along the same direction with the same kinetic energy. They enter a uniform 1 Mark magnetic field acting perpendicular to their velocities. The dependence of radius of their paths on their masses is:

A $r \propto m$

C $r \propto \frac{1}{m}$

B $r \propto \sqrt{m}$

D $r \propto {1 \over {\sqrt m}}$

Q2. A current of 10A is flowing from east to west in a long straight wire kept on a horizontal table. The magnetic field 1 Mark developed at a distance 10cm vertically above the wire is:

A 1.2×10^{-5} T, acting towards south.

B 2×10^{-5} T, acting towards north.

C 3×10^{-5} T, acting downwards.

D 2×10^{-5} T, acting upwards.

There are uniform electric and magnetic fields in a region pointing along X-axis. An α — particle is projected along 1 Mark Y-axis with a velocity v. The shape of the trajectory will be:

A Circular in XZ plane.

B Circular in YZ plane.

C Helical with its axis parallel to X-axis.

D Helical with its axis parallel to Y-axis.

Q4. A straight current carrying conductor is placed inside a uniform magnetic field. The force per unit length acting on **1 Mark** the conductor is:

A Maximum when the conductor is perpendicular to the direction of magnetic field.

C Minimum when the conductor is perpendicular to the direction of magnetic field.

- **B** Maximum when the conductor is along the direction of magnetic field.
- **D** Minimum when the conductor makes an angle of 45° with the direction of magnetic field.
- Q5. A loop carrying a current I clockwise is placed in x y plane, in a uniform magnetic field directed along z-axis. The tendency of the loop will be to:

A move along x-axis

B move along y-axis

C shrink

D expand

Q6. A current of 5A is flowing from east to west in a long straight wire kept on a horizontal table. The magnetic field 1 Mark developed at a distance of 10cm due south on the table is:

A 1×10^{-5} T acting downwards.

B 1×10^{-5} T acting upwards.

C 2×10^{-5} T acting downwards.

D 2×10^{-5} T acting upwards.

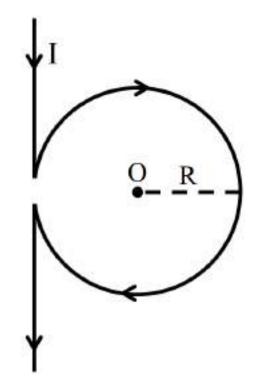
Q7. A current of 10A is flowing from east to west in a long straight wire kept on a horizontal table. The magnetic field 1 Mark developed at a distance of 10cm due north on the table is:

A 2×10^{-5} T, acting downwards.

B 2×10^{-5} T, acting upwards.

C 4×10^{-5} T, acting downwards.

D 4×10^{-5} T, acting upwards.


Q8. A current I flows through a long straight conductor which is bent into a circular loop of radius R in the middle as shown in the figure:

www.ravitestpapers.com

ANSWERS AVAILABLE IN MY YOUTUBE CHANNEL

RAVI TEST PAPERS

www.ravitestpapers.in

JOIN MY PAID

WHATSAPP TEST GROUP

CBSE CLASS - 10 & 12

EACH CLASS SEPARATE GROUP

MAIN SUBJECTS GROUP FEES RS.3000 ONLY MATHS GROUP FEES RS.750 **FOR 1 YEAR**

MONTHLY MINIMUM 10 PAPERS & NOTES UPLOAD

RAVI TEST PAPERS & NOTES WHATSAPP - 8056206308

The magnitude of the net magnetic field at point O will be:

- A Zero
- C

- $egin{aligned} \mathbf{B} & rac{\mu_0 \mathrm{I}}{2\mathrm{R}} (1+\pi) \ \mathbf{D} & rac{\mu_0 \mathrm{I}}{2\mathrm{R}} \Big(1-rac{1}{\pi}\Big) \end{aligned}$
- Q9. An electron is released from rest in a region of uniform electric and magnetic fields acting parallel to each other. 1 Mark The electron will:
 - **A** Move in a straight line.

B Move in a circle.

C Remain stationary.

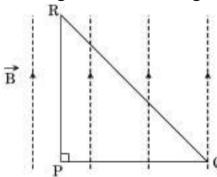
- **D** Move in a helical path.
- Q10. Two identical circular coaxial coils A and B, arranged in vertical planes parallel to each other, carry currents in the same direction.

If the distance between the coils is decreased at a constant rate, the current:

A Increases in A and decreases in B.

B Decreases in both A and B.

C Increases in both A and B.


- **D** Remains same in both A and B.
- A bar magnet is dropped in a hollow metallic cylinder along its vertical axis. The acceleration of the falling magnet 1 Mark Q11. will be:
 - A Zero

- **B** Equal to g
- **C** Less than g
- **D** Greater than g
- A charge particle after being accelerated through a potential difference 'V' enters in a uniform magnetic field and 1 Mark Q12. moves in a circle of radius r. If V is doubled, the radius of the circle will become:
 - A 2r

 $\mathbf{B} \sqrt{2}\mathbf{r}$

 $\mathsf{C} \ 4\mathrm{r}$

- An isosceles right angled current carrying loop PQR is placed in a uniform magnetic field $ec{B}$ pointing along PR. If Q13. 1 Mark the magnetic force acting on the arm PQ is F, then the magnetic force which acts on the arm QR will be:

A F

 $c \sqrt{2}F$

- $\mathbf{D} \mathbf{F}$
- The sensitivity of a tangent galvanometer can be increased by increasing: Q14.

1 Mark

A The radius of the coil

to the galvanometer.

B The external magnetic field

C The number of turns of the coil

- **D** All the above
- How is galvanometer converted into a voltmeter? Q15.

1 Mark

- **A** By connecting a high resistance multiplier in parallel
- **B** By connecting a low resistance multiplier in parallel to the galvanometer.

ANS	SWERS AVAILA	ABLE IN MY YOUTUB	E CHANNEL NA	ME - RAVITEST PAR	PERS
	C By connecting a low with the galvanome	resistance multiplier in series ter.	D By connecting a high with the galvanometer	resistance multiplier in series er.	
Q16.	Lorentz force is:				1 Mark
	 A Electrostatic force acting on a charged particle. C The vector sum of electrostatic and magnetic force acting on a moving charged particle. D The vector sum of gravitational and magnetic force acting on a moving charged particle. 		avitational and magnetic force		
Q17.	A steady electric curre	ent is flowing through a cylindrical	conductor.		1 Mark
	A The electric field at the axis of the conductor is zero.			the axis of the conductor is	
	C The electric field in zero.	the vicinity of the conductor is	zero. D The magnetic field in zero.	the vicinity of the conductor is	
Q18.	A charged particle mo of the following are po	ves along a circle under the actior ossible?	of possible constant elec	ctric and magnetic fields. Which	1 Mark
	A $\mathrm{E}=0,~\mathrm{B}=0$		B $\mathrm{E}=0,\ \mathrm{B} eq0$		
	$\mathbf{C} \mathrm{E} \neq 0, \mathrm{B} = 0$		$\mathbf{D} \mathrm{E} \neq 0, \mathrm{B} \neq 0$		
Q19.	The current sensitibilit	ty of a moving coil galanometer in	creases with decrease in:		1 Mark
	1 Magnetic field	2 Area of a coil	3 Number of turns	4 None of these	
Q20.	A charged particle mo	ves through a magnetic field in a o	direction perpendicular to	it. Then the:	1 Mark
	 A Velocity remains unchanged. B Speed of the particle remains unchanged. D Acceleration remains unchanged. 				
Q21.	A charged particle enters a magnetic field H with its initial velocity making an angle of 45° with H. Then the pat of the particle will be:		le of 45° with H. Then the path	1 Mark	
	A Circle	B Helical	C A straight line	D A circle	
Q22.	Two streams of protor	ns move parallel to each other in t	he same direction. They v	vill:	1 Mark
	A Attract each other C Neither attract nor i	repel	B Repel each otherD Rotate		
Q23.			n e.m.f induced in it. 5° to the magnetic lines of force,	1 Mark	
	A I and II.	B II and III.	C II only.	D IV only.	
Q24.	Cyclotron is a device u	sed to .			1 Mark
	A Slow down chargedC Stop the charged page	particles	B Accelerate the positive D None of the options	vely charged particles	
Q25.		ace is filled with some uniform ele with velocity v and a positron ent	•		1 Mark
	identical acceleration	on both the particles cause ons. or loose energy at the same rate.	B The magnetic forces of equal accelerations.D The motion of the cedetermined by B alor	• •	
Q26.	•	ular loop of radius R is placed in that it now lies in the y-z plane.	he x-y plane with centre a	t the origin. Half of the loop with	1 Mark
		nagnetic moment now	B he magnetic moment	does not change.	

ANS		of B at (0, 0, z), z > R increases.	D The magnitude of B at (0, 0, z), z >> R is unchanged.	PERS		
Q27.	A milli voltmeter o	•	ted into an ammeter of 25 ampere range. The value (in ohm)	1 Mark		
	A 0.001.	B 0.01.	C 1. D 0.05.			
Q28.	Which of the follow direction?	ving statement is not correct abou	t two parallel conductors carrying equal currents in the same	1 Mark		
		luctors will experience a force ntric lines of force around each	B The two conductors will repel each otherD Each of the conductors will move if not prevented from doing so			
Q29.		A beam consisting of protons and electrons moving at the same speed goes through a thin region in which there is a magnetic field perpendicular to the beam. The protons and the electrons:				
	A Will go undeviat	ed.	B Will be deviated by the same angle and will not separate.			
	C Will be deviated separate.	by different angles and hence	D Will be deviated by the same angle but will separate.			
Q30.	Magnetic field at tl	ne centre of a circular coil of radius	s r, through which a current I flows is:	1 Mark		
	A Directly proportion C Directly proportion		B Inverseley proportional to I.D Directly proprotional to I2.			
Q31.	What is moving co	il galvanometer used for?		1 Mark		
	A Measurement of C Measurement of		B Measurement of resistanceD Measurement of electric field			
Q32.	In a coaxial, straight cable, the central conductor and the outer conductor carry equal currents in opposite directions. The magnetic field is zero:					
	A Outside the cabl C Inside the outer		B Inside the inner conductor.D In between the tow conductors.			
Q33.	An electron having The force on the el		in X-direction. An electric field acts on it in Y-direction?	1 Mark		
	A Positive direction C Positive direction		B Negative direction of Y-axis.D Negative direction of Z-axis.			
Q34.	answer to these question: The sen core inside the coil	uestions from the codes (a), (b), (c) sitivity of a moving coil galvanome	ter is increased by placing a suitable magnetic material as a	1 Mark		
		ias high magnetic permeability and true and R is the correct	d cannot be easily magnetized or demagnetized. B Both A and R are true but R is not the correct			
	explanation of A		explanation of A.			
	C A is true but R is	false.	D A is false and R is also false.			
Q35.	Under what condit	ion the force acting on the charge	particle moving in the magnetic field maximum?	1 Mark		
	vector.	noves perpendicular to the velocit noves with an angle 60 with the	B Charge particle moves in straight line with the velocity vector.D All			
Q36.	The magnetic field	at the origin due to a current elem	nent $\operatorname{id}\ \vec{\operatorname{l}}$ placed at a position $\overrightarrow{\operatorname{r}}$ is:	1 Mark		
	$oldsymbol{A} \hspace{0.1cm} rac{\mu_0 \mathrm{i}}{4\pi} \hspace{0.1cm} rac{\mathrm{d} \overset{ ightarrow}{1} imes \overset{ ightarrow}{\mathrm{r}^3}}{\mathrm{r}^3}$		$\mathbf{B} = \frac{\mu_0 \mathbf{i}}{4\pi} \xrightarrow{\overrightarrow{\mathbf{r}} \times \mathbf{d} \overrightarrow{\mathbf{l}}} \mathbf{r}^3$			
	$egin{array}{c} 4\pi & { m r}^3 \ rac{\mu_0 { m i}}{4\pi} & rac{\overrightarrow{{ m r}} imes { m d} \ { m l}}{{ m r}^3} \end{array}$		$egin{array}{lll} oldsymbol{B} & -rac{\mu_0 \mathrm{i}}{4\pi} rac{\overrightarrow{\mathrm{r}} imes \mathrm{d} \overrightarrow{\mathrm{l}}}{\mathrm{r}^3} \ oldsymbol{D} & -rac{\mu_0 \mathrm{i}}{4\pi} rac{\mathrm{d} \overrightarrow{\mathrm{l}} imes \overrightarrow{\mathrm{r}}}{\mathrm{r}^3} \end{array}$			
Q37.	Which of the follow	ving particles will describe the sma	allest circle when projected with the same velocity	1 Mark		

	A Electron	B Proton	C He⁺	D Li ⁺	
Q38.	There will be no force bet	ween two wires carrying curre	ents if currents are:		1 Mark
	A Parallel to each other C Perpendicular to each o	other	B Antiparallel to eacD None of these.	h other	
Q39.	answer to these questions Assertion: Diamagnetic m	iven-one labelled Assertion (Assertion) (As from the codes (a), (b), (c) an aterials can exhibit magnetismerials have permanent magneticals.	nd (d) as given below. m.	d Reason (R). Select the correct	1 Mark
	A Both A and R are true a explanation of A.C A is true but R is false.	nd R is the correct	B Both A and R are t explanation of A.D A is false and R is a	rue but R is not the correct also false.	
Q40.	·	magnetic moment M is in an a	•	an external magnetic field B. The	1 Mark
	A MB. C $\frac{\mathrm{MB}}{2}$		B $\sqrt{3} rac{ ext{MB}}{2}$ D Zero.		
Q41.	A moving charge produces	s:			1 Mark
	A Electric field only.	B Magnetic field only.	C Both of them.	D None of them.	
Q42.	A moving coil type of galv	anometer is based upon the p	orinciple that:		1 Mark
	A Coil carrying current ex magnetic field.	periences a torque in	B A coil carrying curi	rent produces a magnetic field.	
	C A coil carrying current e magnetic field.	experiences impulse in a	D A coil carrying cur magnetic field.	rent experiences a force in a	
Q43.	•	ream and above it. If the curre		or carrying a current is supported from left to right, what will be the	1 Mark
	A The electron stream will C The electron stream will			m will be pulled upwards. n will be speeded up towards the	
Q44.	In a cyclotron, a charged p	particle:			1 Mark
	A Undergoes acceleration	all the time.	B Speeds up betwee magnetic field.	n the dees because of the	
	C Speeds up in a dee.		D Slows down within dees.	n a dee and speeds up between	
Q45.	Which of the following is i	not a point of similarity betwe	een Biot-Savart law and	l Coulomb's law.	1 Mark
	A Both fields depend invedors distance from the source observation.	ersely on the square of the ce to the point of	B They are not a uni	versal law.	
	C The principle of superposition both.	osition does not apply to	D Both are long-rang	ge fields.	
Q46.	answer to these questions Assertion: If a compass n direction.	s from the codes (a), (b), (c) a eedle be kept at magnetic no	nd (d) as given below. rth pole of the earth th	ed Reason (R). Select the correct ne compass needle may stay in any	1 Mark
	·	ay vertical at the north pole o		ruo but Dia not the accurat	
	A Both A and R are true a explanation of A.C A is true but R is false.	na k is the correct	explanation of A. D A is false and R is a	rue but R is not the correct also false.	
Q47.					1 Mark
~ (-T/•					T IVIALK

ANSWERS AVAILABLE IN MY YOUTUBE CHANNEL NAME - RAVI TEST PAPERS

ANSWERS AVAILABLE IN MY YOUTUBE CHANNEL NAME - RAVI TEST PAPERS The couple developed in the suspension wire and the loose spring in a suspension type of moving coil galvanometers called: **A** Deflecting couple **D** None of these **B** Restoring couple **C** Twisting couple For two statements are given-one labelled Assertion (A) and the other labelled Reason (R). Select the correct Q48. 1 Mark answer to these questions from the codes (a), (b), (c) and (d) as given below. **Assertion:** The poles of magnet can not be separated by breaking into two pieces. **Reason:** The magnetic moment will be reduced to half when a magnet is broken into two equal pieces. A Both A and R are true and R is the correct **B** Both A and R are true but R is not the correct explanation of A. explanation of A. **C** A is true but R is false. **D** A is false and R is also false. Q49. A proton, a deuteron and an α particle are accelerated through same potential difference and then they enter in a **1 Mark** normal uniform magnetic field, the ratio of their kinetic energies will be: **B** 1:1:2 **A** 2:1:3 C 1:1:1 **D** 1:2:4 Q50. 1 Mark Which of the following is true? A Parallel currents repel, and antiparallel currents **B** Parallel currents attract, and antiparallel currents attract. repel. **C** Both parallel and antiparallel currents attract. **D** Both parallel and antiparallel currents repel. Q51. A vertical wire carries a current in upward direction. An electron beam sent horizontally towards the wire will be 1 Mark deflected: C Upwards. **D** Downwards. **A** Towards right. **B** Towards left. 1 Mark Q52. The path of an electron in a uniform magnetic field may be: A Circular but not helical **B** Helical but not circular **C** Neither helical nor circular **D** Either helical or circular Q53. A charged particle moves in a magnetic field. The only force influencing the particle is the force caused by the 1 Mark magnetic field. During the particle's movement in the magnetic field, what will NOT change? **A** The particle's velocity **B** The particle's acceleration **C** The particle's speed **D** The particle's momentum **E** The particle's position 1 Mark Q54. In a cyclotron, a charged particle. A Undergoes acceleration all the time. **B** Speeds up between the dees because of the magnetic field. **D** Slows down within a dee and speeds up between **C** Speeds up in a dees. dees. Q55. 1 Mark To convert galvanometer into voltmeter one should connect: **A** High resistance in series with galvanometer. **B** Low resistance in series with galvanometer. **C** High resistance in parallel with galvanometer. **D** Low resistance in parallel with galvanometer. Q56. Two ions have equal masses but one is singly-ionised and the other is doubly-ionised. They are projected from the 1 Mark same place in a uniform magnetic field with the same velocity perpendicular to the field. **B** The circle described by the singly-ionised charge will **A** Both ions will move along circles of equal radii. have a radius that is, double that of the other circle. **C** The two circles do not touch each other. **D** The two circles touch each other. Q57. When current passes through the circuit a compass needle rests in which direction (with respect to the Earth)? 1 Mark C East - west A South - north **B** North - south **D** West - east What is the angle of dip at the magnetic poles? 1 Mark Q58. **C** 45° **D** None of these **A** 30° **B** 0°

ANS	SWERS AVAILAB	LE IN MY YOUTU	IBE CHANNEL	NAME - RAVITEST PA	PERS
Q59.	Isoclinic lines are the line	s joining places with:			
	A Equal dipC jequal dip and declinat	ion	B Equal declinationD None of these	1	1 Mark
Q60.	field is turned off, the par particle is observed to co	ticle is observed to move to	oward the earth. When the earth, no matter the str	and direction. When the magnetic the magnetic field is turned on, the ength or the direction of the n particle?	1 Mark
	A Beta particle E Gamma ray	B Alpha particle	C Positron	D Neutron	
Q61.	A tangent galvanometer i deflection will:	s connected directly to an i	deal battery. If the numl	per of turns in the coil is doubled the	1 Mark
	A Increase.C Remain unchanged.		B Decrease.D Either increase of	or decrease.	
Q62.	A charged particle goes u	ndeflected in a region cont	aining an electric and a	magnetic field. It is possible that	1 Mark
	A $\overrightarrow{\mathrm{E}} \overrightarrow{\mathrm{B}}, \ \overrightarrow{\mathrm{v}} \overrightarrow{\mathrm{E}}$		${f B}\stackrel{ ightarrow}{ m E}$ is not parallel	to \overrightarrow{B}	
	$oldsymbol{c} \overset{\longrightarrow}{\mathbf{v}} \overset{\longrightarrow}{\mathbf{B}}$ but $\overset{\longrightarrow}{\mathbf{E}}$ is not pa	rallel to $\overset{ ightarrow}{ m B}$	$\mathbf{D}\stackrel{ ightarrow}{ ightarrow} \stackrel{ ightarrow}{ ightarrow} $ but $\stackrel{ ightarrow}{ m v}$ is	not parallel to $\overset{ ightarrow}{ m E}$	
Q63.	What is the work done by the magnetic field on a moving charged particle?				
	A Maximum		B Minimum	B Minimum	
	C Depends on the streng	th of the magnetic field	D Zero		
Q64.	•	gh a magnetic field. The for e charged particle and the r		um when the angle between the	1 Mark
	A 0°	B 45°	c 90°	D 180°	
Q65.	A current-carrying, straight wire is kept along the axis of a circular loop carrying a current. The straight wire: 1				
	A Will exert an inward fo C Will not exert any force			ward force on the circular loop. e on the circular loop parallel to	
Q66.	The AC voltage across a resistance can be measured using a:				1 Mark
	A Hot wire voltmeter.C Potential coil galvanom		B Moving coil galvaD Moving magnet		
Q67.	For two statements are given-one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below. Assertion: Magnetic Resonance Imaging (MRI) is a useful diagnostic tool for producing images of various parts of human body. Reason: Protons of various tissues of the human body play a role in MRI.			1 Mark	
	A Both A and R are true a explanation of A.C A is true but R is false.	and R is the correct	B Both A and R are explanation of A D A is false and R is		
Q68.	In an electric motor, wire	s carrying a current of 5A are 20cm, then the force actin	re placed at right angles	to a magnetic field of induction 0.8T.	1 Mark
	A 0.2N	B 0.4N	C 0.6N	D 0.8N	
Q69.	If a charged particle move	es unaccelerated in a regior	n containing electric and	magnetic fields	1 Mark
٠,٠٠٠	$egin{array}{c} {f A} \stackrel{ ightarrow}{\overrightarrow{E}} { m must} \ { m be} \ { m perpendicut} \ {f C} \stackrel{ ightarrow}{\overrightarrow{V}} { m must} \ { m be} \ { m perpendicut} \ { m constant} \ { m $	ılar to $\overset{ ightarrow}{ m B}$	$egin{array}{c} \mathbf{B} \stackrel{ ightarrow}{V} & \mathbf{m}$ must be perp \mathbf{D} E must be equal	endicular to $\overrightarrow{\operatorname{E}}$	
Q70.				1 Mark	

C Volt

D Watt

B Coulomb

A Ampere

				NAME - RAVITEST PAI	PERS
Q71.	The north pole of a experienced by it at	magnet is brought near a stationate the poles?	ary negatively charged	conductor. What is the force	1 Mark
	A MaximumC Zero		B MinimumD Depend on the	nature of the conductor	
Q72.	The concept of displ	lacement current was introduced	by .		1 Mark
·	A Newton	B Ampere	C Maxwell	D Fleming	
Q73.	•	point midway between the wires		nts are in the same direction, the on of i ₂ is reversed, the field becomes	1 Mark
	A 4	B 3	C 2	D 1	
Q74.	•	ea 1cm ² , carrying a current of 10, he torque on the loop due to the	•	etic field of 0.1T perpendicular to the	1 Mark
	A Zero	B 10 ⁴ N-m	C 10 ² N-m	D 1N-m	
Q75.	answer to these que Assertion: Ferro-ma	are given-one labelled Assertion estions from the codes (a), (b), (c) gnetic substances become paran ee destroyed at high temperature	and (d) as given below nagnetic above Curie to		1 Mark
	A Both A and R are explanation of A.C A is true but R is f	true and R is the correct	B Both A and R are explanation of A D A is false and R	4.	
Q76.	A metallic rod of mass per unit length 0.5kg m ⁻¹ is lying horizontally on a smooth inclined plane which n angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it who magnetic field of induction 0.25 T is acting on it in the vertical direction. The current flowing in the rod t stationary is:		wing a current through it when a	1 Mark	
	A 7.14 A.	B 5.98 A.	C 11.32 A.	D 14.76 A.	
Q77.			•	ntre of a circular loop carrying as eriphery of the wire is B. The radius of	1 Mark
	A Very nearly $2\pi { m ail}$ wire.	B perpendicular to the plane of the	he $$ B $2\pi { m aiB}$ in the pl	ane of the wire.	
	C πaiB along the m	agnet.	D Zero.		
Q78.	Consider the situation loop will:	on shown in figure. The straight v	vire is fixed but the loo	p can move under magnetic force. The	1 Mark
	\mathbf{i}_1	i_2			
	A Remain stationary C Move away from		B Move towards tD Rotate about th		
Q79.	·	bled, the deflection is also double		·· - ·	1 Mark
QIJ.	A A tangent galvano		B A moving-coil g	alvanometer	TIVICIN
	C Both		D None of these		
Q80.	When the charged p	particles move in a combined mag	gnetic and electric field	d, then the force acting is known as	1 Mark

ANSWERS AVAILABLE IN MY YOUTUBE CHANNEL NAME - RAVI TEST PAPERS **B** Centrifugal force **C** Lorentz force A Centripetal force **D** Orbital force A charged particle moves in a uniform magnetic field. The velocity of the particle at some instant makes an acute **1 Mark** Q81. angle with the magnetic field. The path of the particle will be: **A** A straight line. **B** A circle. **C** A helix with uniform pitch. **D** A helix with nonuniform pitch. Q82. A charged particle moves in a gravity-free space without change in velocity. Which of the following is are possible: 1 Mark $\mathbf{B}\;\mathrm{E}=0,\;\mathrm{B}\neq0$ **A** E = 0, B = 0**c** E \neq 0, B = 0 **D** $E \neq 0$, $B \neq 0$ If the current is doubled, the deflection is also doubled in: Q83. 1 Mark **B** A moving-coil galvanometer. **A** A tangent galvanometer. **C** Both. **D** None. Q84. A particle moves in a region having a uniform magnetic field and a parallel, uniform electric field. At some instant, **1 Mark** the velocity of the particle is perpendicular to the field direction. The path of the particle will be: **A** A straight line. **B** A circle. **C** A helix with uniform pitch. **D** A helix with nonuniform pitch. The gyro-magnetic ratio of an electron in an H-atom, according to Bohr model, is: Q85. 1 Mark A Independent of which orbit it is in. **B** Negative. C Positive. **D** Increases with the quantum number n. Q86. The current sensitivity of a galvanometer is defined as:. 1 Mark A The current flowing through the galvanometer **B** Current per unit deflection. when a unit voltage is applied across its terminals. **C** Deflection per unit current. **D** Dflection per unit current when a unit voltage is applied across its terminals Q87. A hollow tube is carrying an electric current along its length distributed uniformly over its surface. The magnetic 1 Mark A Increases linearly from the axis to the surface. **B** Is constant inside the tube. **C** Is zero at the axis. **D** Is zero just outside the tube. Q88. For two statements are given-one labelled Assertion (A) and the other labelled Reason (R). Select the correct 1 Mark answer to these questions from the codes (a), (b), (c) and (d) as given below. **Assertion:** The true geographic north direction is found by using a compass needle. **Reason:** The magnetic meridian of the earth is along the axis of rotation of the earth. A Both A and R are true and R is the correct **B** Both A and R are true but R is not the correct explanation of A. explanation of A. **C** A is true but R is false. **D** A is false and R is also false. Q89. A charged particle is moved along a magnetic field line. The magnetic force on the particle is: 1 Mark A Along its velocity. **B** Opposite to its velocity. **D** Zero. **C** Perpendicular to its velocity. Q90. Two parallel wires carry currents of 20A and 40A in opposite directions. Another wire carying a current anti-1 Mark parallel to 20A is placed midway between the two wires. The magnetic force on it will be: A Towards 20A. **B** Towards 40A. **C** Zero. **D** Perpendicular to the plane of the currents. Q91. If a charged particle at rest experiences no electromagnetic force: 1 Mark **A** The electric field must be zero. **B** The magnetic field must be zero. **C** The electric field may or may not be zero. **D** The magnetic field may or may not be zero.

A long, straight wire of radius R carries a current distributed uniformly over its cross section. The magnitude of

1 Mark

Q92.

the magnetic field is:

ANSWERS AVAILABLE IN MY YOUTUBE CHANNEL NAME - RAVI TEST PAPERS A Maximum at the axis of the wire. **B** Minimum at the axis of the wire. **C** Maximum at the surface of the wire. **D** Minimum at the surface of the wire. Q93. What is shape of magnet in moving coil galvanometer to make the radial magnetic field? 1 Mark **A** Concave **C** Convex **D** None of the above **B** Horse shoe magnet Q94. Two particles X and Y having equal charge, after being accelerated through the same potential difference enter a 1 Mark region of uniform magnetic field and describe circular paths of radii R₁ and R₂ respectively. The ratio of the mass of X to that of Y is: $\mathbf{A} \ \left(\frac{R_1}{R_2}\right)^{\frac{1}{2}}$ $\mathbf{D} \, \mathbf{R}_1 \mathbf{R}_2$. Q95. Energy in a current carrying coil is stored in the form of: 1 Mark A Electric field. **B** Magnetic field. **C** Dielectric strength. **D** Heat. Q96. Which of the following particles will have minimum frequency of revolution when projected with the same 1 Mark velocity perpendicular to a magnetic field? **D** Li⁺ **A** Electron **B** Proton C He⁺ Q97. In a moving coil galvanometer, the deflection of the coil θ is related to the electrical current i by the relation: 1 Mark B i $\propto \theta$ **A** i $\propto \tan \theta$ C i $\propto heta^2$ D i $\propto \theta$ A proton beam is going from north to south and an electron beam is going from south to north. Neglecting the Q98. 1 Mark earth's magnetic field, the electron beam will be deflected **B** Away from the proton beam. **A** Towards the proton beam. C Upwards. **D** Downwards. Q99. A charged particle would continue to move with a constant velocity in a region wherein: 1 Mark **C** B \neq 0, E = 0. **A** E = 0, $B \ne 0$. **B** B \neq 0, E \neq 0. **D** E = 0, B = 0. Q100. A circular loop is kept in that vertical plane which contains the north-south direction. It carries a current that is 1 Mark towards north at the topmost point. Let A be a point on the axis of the circle to the east of it and B a point on this axis to the west of it. The magnetic field due to the loop A Is towards east at A and towards west at B. **B** Is towards west at A and towards east at B. **C** Is towards east at both A and B. **D** Is towards west at both A and B. A rod AB moves with a uniform velocity v in a uniform magnetic field as shown in figure. Q101. 1 Mark **A** The rod becomes electrically charged. **B** The end A becomes positively charged. **C** The end B becomes positively charged. **D** The rod becomes hot because of Joule heating. Which of the following particles will experience maximum magnetic force circle when projected with the same Q102. 1 Mark velocity perpendicular to a magnetic field? **B** Proton **D** Li** **A** Electron **C** He⁺ A charged particle is whirled in a horizontal circle on a frictionless table by attaching it to a string fixed at one Q103. 1 Mark point. If a magnetic field is switched on in the vertical direction the tension in the string.

D May increase or decrease.

1 Mark

B Will decrease.

A long, straight wire carries a current along the z-axis, One can find two points in the x-yplane such that:

A Will increase.

Q104.

C Will remain the same.

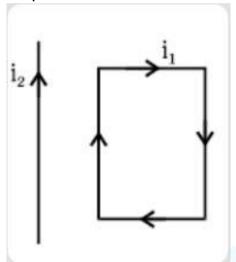
ANSWERS AVAILABLE IN MY YOUTUBE CHANNEL NAME - RAVI TEST PAPERS

- A The magnetic fields are equal.
- **C** The magnitudes of the magnetic fields are equal.
- **B** The directions of the magnetic fields are the same.
- **D** The field at one point is opposite to that at the other point.

Q105. Find the true statement.

1 Mark

- A Ammeter is an instrument used to measure potential difference across any element in a circuit.
- **C** Galvanometer constant is dimensionless.
- **B** Voltmeter is an instrument used to measure current in a circuit.
- **D** Current sensitivity is expressed as the exact reverse of the galvanometer constant.
- **Q106.** The magnetic dipole moment of a current loop is independent of:


1 Mark

- A Magnetic field in which it is lying.
- **C** Area of the loop.

- **B** Number of turns.
- **D** Current in the loop.
- **Q107.** It two parallel wires carry current in opposite directions:

1 Mark

- **A** The wires attract each other.
- **C** The wires experience neither attraction nor repulsion.
- **B** The wires repel each other.
- **D** The forces of attraction or repulsion do not depend on current direction.
- Q108. A rectangular loop carrying a current i₁, is situated near a long straight wire carrying a steady current i₂. The wire **1 Mark** is parallel to one of the sides of the loop and is in the plane of the loop as shown in the figure. Then the current loop will:

JOIN MY PAID
WHATSAPP TEST GROUP

NEET / JEE
EACH SEPARATE GROUP

FEES FOR 1 YEAR - ₹ 4000
FEES FOR 1 MONTH -₹500

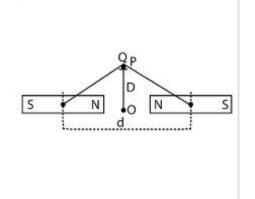
MONTHLY MINIMUM 20 PAPERS & NOTES UPLOAD
RAVI TEST PAPERS & NOTES
WHATSAPP - 8056206308

- A Move away from the wire
- **C** Remain stationary

- **B** Move towards the wire
- **D** Rotate about an axis parallel to the wire
- Q109. How will two parallel beams of electron behave while moving in the same direction?

1 Mark

- A Repel each other
- **C** Not interact with each other


- **B** Attract each other
- **D** Annihilate each other
- Q110. Two statements are given-one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer 1 Mark to these questions from the codes (a), (b), (c) and (d) as given below.

Assertion (A): Voltmeter is connected in parallel with the circuit.

Reason (R): Resistance of a voltmeter is very large.

- A Both A and R are true and R is the correct explanation of A.
- **C** A is true but R is false.

- **B** Both A and Rare true but R is NOT the correct explanation of A.
- **D** A is false and R is also false.
- Q111. Two identical bar magnets are fixed with their centres at a distance d apart. A stationary charge Q is placed at P in between the gap of the two magnets at a distance D from the centre O as shown in the figure. The force on the charge Q is:

ANSWERS AVAILABLE IN MY YOUTUBE CHANNEL NAME - RAVI TEST PAPERS A Zero

B Directed along OP

C Directed along PO

D Directed perpendicular to the plane of paper

Q112. Two particles X and Y having equal charges, after being accelerated through the same potential difference, enter a **1 Mark** region of uniform magnetic field and describe circular paths of radii R₁ and R₂ respectively. The ratio of masses of X to that of Y is:

$$m{A} \left(rac{R_1}{R_2}
ight)^{rac{1}{2}}$$

$$\mathbf{C} \left(\frac{\mathrm{R}_1}{\mathrm{R}_2} \right)^2$$

 $\mathbf{D} \left(rac{\mathrm{R}_1}{\mathrm{R}_2}
ight)$

Q113. Lorentz force is given by the formula:

1 Mark

$$A F = q(v + B + E)$$

$$\mathbf{B} \ \mathsf{F} = \mathsf{q}(\mathsf{v} - \mathsf{B} - \mathsf{E})$$

$$\mathbf{C} \ \mathsf{F} = \mathsf{q}(\mathsf{v} \times \mathsf{B} \times \mathsf{E})$$

Q114. Identify the quantity which changes when a charged particle moves through a magnetic field?

1 Mark

A Energy

B Mass

C Speed

D Direction of motion

D $F = q(v \times B + E)$

In ballistic galvanometer, the frame on which the coil is wound is non - metallic to: Q115.

1 Mark

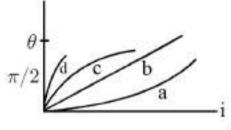
A Avoid the production of induced emf.

B Avoid the production of eddy currents.

C Increase the production of eddy currents.

D Increase the production of induced emf.

When a charged particle moves through a magnetic field, the quantity which is not affected in the magnetic field Q116. 1 Mark is:


A Particle velocity

B Particle acceleration

C Linear momentum of the particle

D Kinetic energy of the particle

Which of the following four graphs may best represent the current-deflection relation in a tangent galvanometer? 1 Mark

A b

B a

C d

D c

A current carrying loop is placed in a uniform magnetic field. The torque acting on it does not depend upon: Q118. 1 Mark

A Shape of the loop.

B Area of the loop.

C Value of the current.

D Magnetic field.

Best method to increase the sensitivity of the moving coil galvanometer is to decrease: 1 Mark

A Radius of the coil

B Number of turns of the coil

C External magnetic field **D** Couple per unit twist

1 Mark

A No work is done by the magnetic field on the

B Work done will be maximum.

moving charge.

D Both A and B

C Work done will be minimum.

Q121. The radial magnetic field is used in a suspended coil galvanometer to provide:

Q120. What is the work done by the magnetic field on the moving charge?

1 Mark

A A uniform torque on the coil.

B Maximum torque on the coil in all positions.

C A uniform and maximum torque in all positions of the coil.

D A non uniform torque on the coil.

Q122. In cyclotron the gyro radius is: 1 Mark

A Proportional to momentum.

B Proportional to energy.

C Inversely proportional to momentum.

D Inversely proportional to energy.

Q123. Pick the correct options:

1 Mark

A Magnetic field is produced by electric charges only.

B Magnetic poles are only mathematical assumptions having no real existence.

ANS	WERS AVAILABL	E IN MY YOUTUBE	E CHANNEL NAM	E - RAVITEST PAI	PERS
	C A north pole is equivaler a south pole is equivaler current.	nt to a clockwise current and nt to an anticlockwise	D A bar magnet is equivale current.	nt to a long, straight	
Q124.	answer to these questions		d (d) as given below.	has been cooled by liquid	1 Mark
	C A is true but R is false.		D A is false and R is also fal	se.	
Q125.	The SI unit of magnetic dip	oole moment is'.			1 Mark
	A Ampere	B Ampere metre ²	C Tesla	D None of these	
Q126.		g the positive x-axis. You want rection and move parallel to t			1 Mark
	A y-axis.	B z-axis.	C y-axis only.	D z-axis only.	
Q127. An electric current i enters and leaves a uniform circular wire of radius a through diametrically opportunity charged particle q moving along the axis of the circular wire passes through its centre at speed v. To force acting on the particle when it passes through the centre has a magnitude:				1 Mark	
	A $ ext{qv} rac{\mu_0 ext{i}}{2 ext{a}}$ C $ ext{qv} rac{\mu_0 ext{i}}{ ext{a}}$		B $ ext{qv} rac{\mu_0 ext{i}}{2\pi ext{a}}$ D $ ext{Zero}$		
Q128.	answer to these questions Assertion: In high latitudes	ven-one labelled Assertion (A) from the codes (a), (b), (c) an sone sees colourful curtains of harged particles from the sun	d (d) as given below. of light hanging down from h	igh altitudes	1 Mark
	A Both A and R are true ar	nd R is the correct	B Both A and R are true bu	t R is not the correct	
	explanation of A. C A is true but R is false.		explanation of A. D A is false and R is also fal	se.	
Q129.	A particle of mass m and c the circular path described	harge q enters a magnetic fiel I by it will be:	d B perpendicularly with a ve	elocity v. The radius of	1 Mark
	A Bq/mv.	B mq/Bv.	C mB/qv.	D mv/Bq.	
Q130.	130. For two statements are given-one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below. Assertion: Electromagnetic are made of soft iron. Reason: Coercivity of soft iron is small.		on (R). Select the correct	1 Mark	
	A Both A and R are true are explanation of A.C A is true but R is false.	nd R is the correct	B Both A and R are true bu explanation of A.D A is false and R is also fal		
Q131.	Consider three quantities a	${f x}=rac{{f E}}{{f B}},\ {f y}=\sqrt{rac{1}{\mu_0\epsilon_0}}$ and ${f z}={f z}$	$\frac{1}{CD}$. Here, I is the length of a	a wire, C is a capacitance	1 Mark
		ther symbols have standard m			
	A x, y have the same dimeC z, x have the same dime		B y, z have the same dimerD None of the three pairs h		
Q132.	An electron is ejected from perpendicular to the condi	_	traight conductor carrying a	current, initially in a direction	1 Mark
	A Ultimately return to the C Gradually move away from		B Move in a circular path aD Move in a helical path, w		

axis.

spiral.

ANSWERS AVAILABLE IN MY YOUTUBE CHANNEL NAME - RAVI TEST PAPERS **Q133.** Two parallel wires carrying currents in the same direction attract each other because of: 1 Mark A Potential difference between them. **B** Mutual inductance between them. **C** Electric forces between them. **D** Magnetic forces between them. A positively charged particle projected towards east is deflected towards north by a magnetic field. The field may 1 Mark be: A Towards west. **B** Towards south. **C** Upward. **D** Downward. Q135. Magnetic dipole moment of a rectangular loop is: 1 Mark **A** Inversely proportional to current in loop. **B** Inversely proportional to area of loop. **C** Parallel to plane of loop and porportional to area of **D** Perpendicular to plane of loop and porportional to loop. area of loo. Q136. If a charged particle kept at rest experiences an electromagnetic force: 1 Mark **A** The electric field must not be zero. **B** The magnetic field must not be zero. **C** The electric field may or may not be zero. **D** The magnetic field may or may not be zero. **Q137.** A deuteron of kinetic energy 50 keV is describing a circular orbit of radius 0.5 metre in a plane perpendicular to 1 Mark the magnetic field B. The kinetic energy of the proton that describes a circular orbit of radius 0.5 metre in the same plane with the same B is: **A** 25 keV. C 200 keV. **B** 50 keV. **D** 100 keV. Consider a long, straight wire of cross-sectional area A carrying a current i. Let there be n free electrons per unit Q138. 1 Mark volume. An observer places himself on a trolley moving in the direction opposite to the current with a speed $v = \frac{1}{nAe}$ and separated from the wire by a distance r. The magnetic field seen by the observer is very nearly: **B** Zero C $\frac{\mu_0 \mathrm{i}}{\pi \mathrm{r}}$ **Q139.** A charged particle enters in a uniform magnetic field with a certain velocity. The power delivered to the particle 1 Mark by the magnetic field depends on: A Force exerted by magnetic field and velocity of the **B** Angular speed w and radius r of the circular path. particle. **C** Angular speed w and acceleration of the particle. **D** None of these. 1 Mark Q140. If a charged particle projected in a gravity-free room deflects: **A** There must be an electric field. **B** There must be a magnetic field. **C** Both fields cannot be zero. **D** Both fields can be non zero. Two parallel circular coils of equal radii having equal number of turns placed coaxially and separated by a distance **1 Mark** equal to the radii of the coils carrying equal currents in same direction are known as: A Biot-savart's coils. **B** Ampere's coils **C** Helmholtz coils. **D** Oersted's coils. **Q142.** The coil of the moving coil galvanometer is wound over an aluminium frame: 1 Mark A Because aluminium is a good conductor. **B** Because aluminium is very light. **C** Because aluminium is comparatively cheaper. **D** To provide electro-magnetic damping. For two statements are given-one labelled Assertion (A) and the other labelled Reason (R). Select the correct 1 Mark Q143. answer to these questions from the codes (a), (b), (c) and (d) as given below. **Assertion:** We cannot think of a magnetic field configuration with three poles Reason: A bar magnet does exert a torque on itself due to its own field. A Both A and R are true and R is the correct **B** Both A and R are true but R is not the correct explanation of A. explanation of A.

D A is false and R is also false.

1 Mark

For two statements are given-one labelled Assertion (A) and the other labelled Reason (R). Select the correct

Assertion: A paramagnetic sample display greater magnetisation (for the same magnetic field) when cooled.

answer to these questions from the codes (a), (b), (c) and (d) as given below.

C A is true but R is false.

Q144.

ANSWERS AVAILABLE IN MY YOUTUBE CHANNEL NAME - RAVI TEST PAPERS **Reason:** The magnetisation does not depend on temperature. A Both A and R are true and R is the correct **B** Both A and R are true but R is not the correct explanation of A. explanation of A. **D** A is false and R is also false. **C** A is true but R is false. Q145. If a current is passed through a spring then the spring will: 1 Mark **A** Expand. **B** Compress. **C** Remains same. **D** None of these. A particle is projected in a plane perpendicular to a uniform magnetic field. The area bounded by the path Q146. 1 Mark described by the particle is proportional to: **A** The velocity. **B** The momentum. **C** The kinetic energy. **D** None of these. Q147. For two statements are given-one labelled Assertion (A) and the other labelled Reason (R). Select the correct 1 Mark answer to these questions from the codes (a), (b), (c) and (d) as given below. **Assertion:** The ferromagnetic substance do not obey Curie's law. **Reason:** At Curie point a ferromagnetic substance start behaving as a paramagnetic substance. A Both A and R are true and R is the correct **B** Both A and R are true but R is not the correct explanation of A. explanation of A. **C** A is true but R is false. **D** A is false and R is also false. Q148. Scale used in moving coil galvanometer is: 1 Mark **A** Function scale **B** Linear scale **C** Exponential scale **D** None of these Let \overrightarrow{E} and \overrightarrow{B} denote electric and magnetic fields in a frame S and \overrightarrow{E} and \overrightarrow{B} in another frame S moving with Q149. 1 Mark respect to S at a velocity \overrightarrow{v} . Two of the following equations are wrong. Identify them. **A** B_y , = $B_y + \frac{vE_z}{c^2}$ B $E_y,=E_y+rac{vB_z}{c^2}$ D $\mathrm{E_{v}^{\prime}}=\mathrm{E_{y}}+\mathrm{vB_{z}}$ $c B'_v = B_v + vE_z$ There are two conductors X and Y carrying a current I and moving in the same direction. p and q are two electron **1 Mark** Q150. beams also moving in the same direction. Will there be attraction or repulsion between the 2 conductors and between the two electron beams separately? A The electron beams will repel each other and **B** The electron beams will attract each other and the conductors attract each other. conductors also attract each other. **C** The electron beams will attract each other and the **D** The electron beams will repel each other and the conductors repel each other. conductors also repel each other. Q151. An electron moving with a velocity of 15ms⁻¹ enters a uniform magnetic field of 0.2 T, along a direction parallel to 1 Mark the field. What would be its trajectory in this field? **C** Helical **A** Elliptical **B** Straight path **D** Circular Q152. The length of a solenoid is 0.4m and the number turns in it is 500. A current of 3 amp, is flowing in it. In a small 1 Mark coil of radius 0.01m and number of turns 10, a current of 0.4 amp. is flowing. The torque necessary to keep the axis of this coil perpendicular to the axis of solenoid will be: **A** 5.92×10^{-6} N-m. **B** 5.92×10^{-4} N-m. **C** 5.92 × 10^{-6} dyne-cm. **D** 5.92×10^{-4} dyne-cm. **Q153.** An electron is projected with uniform velocity along the axis of a current carrying long solenoid. Which of the 1 Mark following is true? **A** The electron will be accelerated along the axis. **B** The electron path will be circular about the axis. **C** The electron will experience a force at 45° to the **D** The electron will continue to move with uniform axis and hence execute a helical path. velocity along the axis of the solenoid. Q154. The restoring couple in the moving coil galvanometer is due to: 1 Mark **A** Current in the coil **B** Magnetic field of the magnet.

C Material of the coil.

D Twist produced in the suspension wire.

12TH MONTHWISE TEST AND NOTES SCHEDULE 2026

JOIN MY 12TH CBSE PAID WHATSAPP TEST GROUP WITH ANSWERS.

ONE TIME FEES RS.3000 TILL 2026 FINAL EXAM. WHATSAPP - 8056206308

JOIN DECEMBER TO TILL EXAM FEES RS.1500

MAY SCHEDULE

55.112 411					
2 INVERSE TRIGNOMETRIC	3 MATRICES				
PHY ELECTRIC CHARGES	PHY ELECTROSTATIC				
AND FIELDS	POTENTIAL AND				
	CAPACITANCE				
CHEM ELECTROCHEMISTRY	BIO SEXUAL				
	REPRODUCTION IN				
	FLOWERING PLANTS				
CSC REVISION OF THE	SOME ENGLISH				
BASICS OF PYTHON					
	PHY ELECTRIC CHARGES AND FIELDS CHEM ELECTROCHEMISTRY CSC REVISION OF THE				

JUNE SCHEDULE

WHATSAPP - 8056206308

5 CONTINUITY AND	6.APPLICATION OF	CURRENT ELECTRICITY
DIFFERENTIABILITY	DERIVATIVES	
MOVING CHARGES AND	3. CHEMICAL KINETICS	4. D- AND F- BLOCK
MAGNETISM		ELEMENTS
3 REPRODUCTIVE HEALTH	4 PRINCIPLES OF	2 FUNCTIONS
	INHERITANCE AND	
	VARIATION	
3 FILE HANDLING	SOME ENGLISH	

JULY SCHEDULE

7.INTEGRALS	8.APPLICATION OF	MAGNETISM AND MATTER
	INTEGRALS	
ELECTROMAGNETIC	5 COORDINATION	6 HALOALKANES AND
INDUCTION	COMPOUNDS	HALOARENES

WEBSITE <u>www.ravitestpapers.com</u> BLOG <u>www.ravitestpapers.in</u>

PDF MATERIALS SALES PRICE LIST 2025 -26

_	CLASS 12 CBSE	
1	MATHS MCQS 2 3 5 MARKS QUS ANS PDF	RS.400
	MATHS EXAMPLER WORD	RS.200
	MATHS NOTES & MODEL PAPER WORD	RS.200
	MATHS PREVIOUSLY ASKED QUS ANS PDF	RS.200
2	PHYSICS MCQS 2 3 5 MARKS QUS ANS PDF	RS.400
	PHYSICS EXAMPLER	RS.200
	PHYSICS NOTES & MODEL PAPER	RS.200
	PHYSICS PREVIOUSLY ASKED QUS ANS PDF	RS.200
3	CHEMISTRY MCQS 2 3 5 MARKS QUS ANS PDF	RS.400
	CHEMISTRY EXAMPLER WORD	RS.200
	CHEMISTRY NOTES & MODEL PAPER WORD	RS.200
	CHEMISTRY PREVIOUSLY ASKED QUS ANS PDF	RS.200
4	BIOLOGY MCQS 2 3 5 MARKS QUS ANS PDF	RS.400
	BIOLOGY EXAMPLER WORD	RS.200
	BIOLOGY NOTES & MODEL PAPER WORD	RS.200
	BIOLOGY PREVIOUSLY ASKED QUS ANS PDF	RS.200
5	COMP SCIENCE MCQS 2 3 5 MARKS QUS ANS PDF	RS.300
6	ACCOUNTS MCQS 2 3 5 MARKS QUS ANS PDF	RS.300
7	BUS STUDIES MCQS 2 3 5 MARKS QUS ANS PDF	RS.300

JOIN MY 12[™] CBSE SCIENCE PAID WHATSAPP DAILY SLIP TEST GROUP WITH ANSWERS.

ONE TIME FEES RS.3000 TILL 2026 FINAL EXAM. WHATSAPP – 8056206308

CHECK GOOGLE FOR FREE TEST PAPERS

www.ravitestpapers.com & www.ravitestpapers.in

RAVI TEST PAPERS & NOTES, WHATSAPP - 8056206308

5 MOLECULAR BASIS OF	6 EVOLUTION	4 USING PYTHON LIBRARIES
INHERITANCE		
5 DATA STRUCTURES	SOME ENGLISH	

AUGUST SCHEDULE

9. DIFFERENTIAL	10.VECTOR ALGEBRA	ALTERNATING CURRENT
EQUATIONS		
ELECTROMAGNETIC WAVES	7 ALCOHOLS PHENOLS AND	8 ALDEHYDES, KETONES
	ETHERS	AND CARBOXYLIC
7 HUMAN HEALTH AND	8 MICROBES IN HUMAN	6 COMPUTER NETWORKS
DISEASE	WELFARE	
7 DATA BASE	SOME ENGLISH	
MANAGEMENT		

SEPTEMBER SCHEDULE

11.THREE DIMENSIONAL	12. LINEAR	RAY OPTICS AND OPTICAL	
GEOMETRY	PROGRAMMING	INSTRUMENTS	
WAVE OPTICS	9 AMINES	8 STRUCTURED QUERY	
		LANGUAGE (SQL)	
9 INTERFACE OF PYTHON	SOME ENGLISH		
WITH AN SQL DATABASE			

OCTOBER SCHEDULE

WHATSAPP - 8056206308

13. PROBABILITY	DUAL NATURE OF	ATOMS
	RADIATION AND MATTER	
10 BIOMOLECULES	9 BIOTECHNOLOGY	10 BIOTECHNOLOGY AND
	PRINCIPLES AND	ITS APPLICATIONS
	PROCESSES	
11 ORGANISMS AND		
POPULATIONS		

NOVEMBER SCHEDULE

NUCLEI	SEMICONDUCTOR	12 ECOSYSTEM
	ELECTRONICS	
13 BIODIVERSITY AND		
CONSERVATION		

THIS ONE APPROXIMATE FREE TESTS SCHEDULE FOR COMMON WHATSAPP GROUP

WEBSITE <u>www.ravitestpapers.com</u> BLOG <u>www.ravitestpapers.in</u>

IN MY PAID GROUP MONTHLY YOU CAN CUSTOMIZE ANY 10 TEST PAPERS

ACCORDING TO YOUR REQUIRED CHAPTERS