TEST ANSWERS AVAILABLE IN MY BLOG- www.ravitestpapers.in

MY YOUTUBE CHANNEL NAME- RAVI TEST PAPERS

JOIN MY PAID WHATSAPP GROUP 8056206308 FOR DPPS WITH ANSWERS

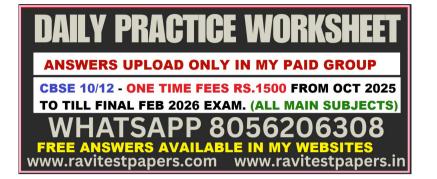
The integrating factor of the differential equation $(1-x^2)\frac{\mathrm{d}y}{\mathrm{d}x}+xy=ax, -1 < x < 1$, is: Q1.

1 Mark

A
$$\frac{1}{x^2-1}$$

C
$$\frac{1}{1-x^2}$$

 $\begin{array}{c} {\bf B} \ \, \frac{1}{\sqrt{{\bf x}^2 - 1}} \\ {\bf D} \ \, \frac{1}{\sqrt{1 - {\bf x}^2}} \end{array}$


Q2. $\int_{1}^{e} \frac{\log x}{x} dx$, is equal to:

A
$$\frac{\mathrm{e}^2}{2}$$
 C $\frac{1}{2}$

B 1

$$\mathbf{C} \frac{1}{2}$$

 \mathbf{D} $-\infty$

The maximum value of slope of the curve $y=-x^3+3x^2+12x-5$ is Q3.

1 Mark

A 15

B 12

C 9

D 0

Which of the following statements is true for the function $f(x) = \begin{cases} x+3, & x \neq 0 \\ 1, & x=0 \end{cases}$? Q4.

1 Mark

A f(x) is continuous and differentiable $\forall x \in \mathbb{R}$

B f(x) is continuous $\forall \ x \in \mathbb{R}$

C f(x) is continuous and differentiable \forall x \in $\mathbb{R} - (0)$ **D** f(x) is discontinuous at infinitely many points

The value of k for which $f(x)=egin{cases} 3x+5, & x\geq 2 \\ kx^2, & x<2 \end{cases}$ is a continuous function, is: Q5.

1 Mark

A
$$-\frac{11}{4}$$

C 11

D $\frac{11}{4}$

The function f(x) = |x| - x is: **Q6**.

1 Mark

A Continuous but not differentiable at x = 0.

B Continuous and differentiable at x = 0.

C Neither continuous nor differentiable at x = 0.

D Differentiable but not continuous at x = 0.

 $\int x^2 e^{x^3} dx$ equals: Q7.

1 Mark

A
$$\frac{1}{3}e^{x^3} + C$$

B $\frac{1}{3}e^{x^4} + C$

$$c \frac{1}{2} e^{x^3} + C$$

 $\mathbf{D} \frac{1}{2} e^{x^2} + C$

The sum of the order and the degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right) = \sin y$ is: Q8.

1 Mark

A 5

B 2

C 3

D 4

For what value of k may the function $\begin{cases} k(3x^2-5x), & x\leq 0\\ \cos x, & x>0 \end{cases}$ become continuous? Q9.

1 Mark

A 0

B 1

 $C - \frac{1}{2}$

D No value

The derivative of log x with respect to $\frac{1}{x}$ is Q10.

1 Mark

A
$$-\frac{1}{x^3}$$

 ${f B} - {1 \over x} {f D} {1 \over x}$

 $\mathbf{C} - \mathbf{x}$

The interval in which the function f given by $f(x)=x^2\mathrm{e}^{-x}$ is strictly increasing, is: Q11.

1 Mark

A
$$(-\infty,\infty)$$

B $(-\infty,0)$

c $(2,\infty)$

D(0,2)

 $\int\limits_{0}^{rac{\pi}{6}}\sec^{2}(\mathrm{x}-rac{\pi}{6})~\mathrm{dx}$ is equal to: Q12.

1 Mark

A
$$\frac{1}{\sqrt{3}}$$

B
$$-\frac{1}{\sqrt{3}}$$

$$c \sqrt{3}$$

D
$$-\sqrt{3}$$

Q13. If
$$\frac{d}{dx}(f(x)) = \log x$$
, then f(x) equals:

1 Mark

$$A - \frac{1}{x} + C$$

$$\textbf{B}\ x(\log x - 1) + C$$

$$\mathbf{c} \times (\log x + x) + C$$

$$\mathbf{D} \, \, \frac{1}{2} + \mathbf{C}$$

The value of k so that f defined by
$$f(x)=\begin{cases} x^2\sin\left(\frac{1}{x}\right) & \text{if} \quad x\neq 0\\ k & \text{if} \quad x=0 \end{cases}$$
 is continuous at x = 0 is

1 Mark

$$\mathbf{A} 0$$

B
$$\frac{1}{2}$$

Q15.
$$\int \frac{1}{x \log x} dx$$
 is equal to:

1 Mark

A
$$\frac{(\log x)^2}{2} + c$$

B
$$\log |\log x| + c$$

$$c \log |x \log x| + c$$

D
$$\frac{1}{\log x} + c$$

1 Mark

A 1

B 2

C 3

D 4

Q17.
$$\int 4^x 3^x dx$$
 equals:

A
$$rac{12^x}{\log 12} + C$$

$$\mathbf{B} \,\, \tfrac{4^{\mathrm{x}}}{\log 4} + \mathrm{C}$$

$$\mathsf{C}\left(rac{4^{\mathrm{x}}.3^{\mathrm{x}}}{\log 4.\log 3}
ight) + \mathrm{C}$$

$$\begin{array}{l} \textbf{B} \ \frac{4^x}{\log 4} + C \\ \textbf{D} \ \frac{3^x}{\log 3} + C \end{array}$$

Q18. The primitive of
$$\frac{2}{1+\cos 2x}$$
 is:

$$A \sec^2 x$$

B
$$2 \sec^2 x \tan x$$

www.ravitestpapers.com www.ravitestpapers.in

Q19.
$$\int \frac{1+\tan x}{1-\tan x} dx$$
 is equal to:

1 Mark

$$\mathsf{A} \sec^2\left(\frac{\pi}{4} + \mathsf{x}\right) + \mathsf{C}$$

$$\mathbf{B} \sec^2\left(\frac{\pi}{4} - \mathbf{x}\right) + \mathbf{C}$$

$$|\mathbf{C}| \log \left| \sec \left(\frac{\pi}{4} + \mathbf{x} \right) \right| + C$$

$$\mathbf{D} \log \left| \sec \left(\frac{\pi}{4} - \mathbf{x} \right) \right| + \mathbf{C}$$

Q20. If
$$f(x) = a(x - \cos x)$$
 is strictly decreasing in R, then 'a' belongs to:

1 Mark

A {0}

- **B** $(0, \infty)$
- \mathbf{C} $(-\infty, 0)$
- $D (-\infty, \infty)$

Q21. If $y = \log_e\left(\frac{x^2}{e^2}\right)$, then $\frac{d^2y}{dx^2}$ is equal to:

1 Mark

A
$$-\frac{1}{x}$$
 C $\frac{2}{x^2}$

$$\mathbf{B} - \frac{1}{\mathbf{x}^2}$$

$$C = \frac{1}{x^2}$$

$${f B} - rac{1}{{{f x}^2}} \ {f D} - rac{2}{{{f x}^2}}$$

Q22. The number of arbitrary constants in the particular solution of a differential equation of second order is (are):

1 Mark

A 0

B 1

C 2

D 3

Q23. The general solution of the differential equation x dy -
$$(1 + x^2)$$
 dx = dx is:

1 Mark

A
$$y = 2x + \frac{x^3}{3} + C$$

$$\mathbf{B} \ \mathbf{y} = 2\log \mathbf{x} + \frac{\mathbf{x}^3}{3} + \mathbf{C}$$

$$\mathbf{C} \; \mathbf{y} = \frac{\mathbf{x}^2}{2} + \mathbf{C}$$

$$extstyle extstyle ext$$

Q24. The integrating factor of the differential equation
$$(x+3y^2) rac{\mathrm{d}y}{\mathrm{d}x} = y$$
 is:

1 Mark

A y

 $\mathbf{B} - \mathbf{y}$

$$D - \frac{1}{v}$$

Q25.
$$\int e^{x} \left(\frac{x \log x + 1}{x} \right) dx$$
 is equal to:

1 Mark

A
$$\log(e^x \log x) + c$$

$$\mathbf{B} \frac{\mathrm{e}^{\mathrm{x}}}{\mathrm{x}} + \mathrm{c}$$

$$\mathbf{c} \times \log x + e^x + c$$

$$\mathbf{D} e^{x} \log x + c$$

A 1

B 2

C 3

D 6

The function $f(x) = \frac{x-1}{x(x^2-1)}$ is discontinuous at Q27.

1 Mark

A Exactly one point.

B Exactly two points.

C Exactly three points.

D No point.

 $\int \frac{\mathrm{e}^{\mathrm{x}(1+\mathrm{x})}}{\cos^2(\mathrm{x}\mathrm{e}^{\mathrm{x}})} \mathrm{d}\mathrm{x}$ is equal to Q28.

1 Mark

A $tan(xe^x) + c$

 $\mathbf{B} \cos(\mathbf{x} \mathbf{e}^{\mathbf{x}}) + \mathbf{c}$

 $\mathbf{C} \cot(\mathbf{e}^{\mathbf{x}}) + \mathbf{c}$

D $tan[e^{x}(1+x)] + c$

 $\int_{\pi}^{\frac{\pi}{4}} \sec^2 x \ dx$ is equal to:

1 Mark

A -1

B 0

C 1

D 2

Q30. The function f: R \rightarrow R given by f(x) = -|x-1| is: 1 Mark

A Continuous as well as differentiable at x = 1.

B Not continuous but differentiable at x = 1.

C Continuous but not differentiable at x = 1.

D Neither continuous nor differentiable at x = 1.

Q31. $\int\limits_{-rac{\pi}{x}}^{rac{1}{x^2}} \sin\left(rac{1}{x}
ight)\!dx,$ wheere x
eq 0 is equal to:

1 Mark

A -2

C 1

 $D \pi$

 $\int_a^b f(x) dx$ is equal to: Q32.

1 Mark

A
$$\int_a^b f(a-x)dx$$

A
$$\int_a^b f(a-x)dx$$

C $\int_a^b f(x-(a+b))dx$

$$\textbf{B} \, \int_a^b f(a+b-x) dx$$

$$\begin{array}{l} \textbf{B} \ \int_a^b f(a+b-x) dx \\ \textbf{D} \ \int_a^b f((a-(a-x)+(b-x)) dx \end{array}$$

A tank, as shown in the figure below, formed using a combination of a cylinder and a cone, offers better Q33. 4 Marks drainage as compared to a flat bottomed tank.

MY WHATSAPP GROUP 'COMMUNITY" BASED GROUP

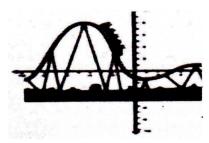
only ADMIN control. No one can TRACK others numbers & SEND MESSAGES

UNKNOWN RANDOM GROUPS ANYONE CAN SEE YOUR NUMBER AND SEND UNWANTED LINKS, MESSAGES & PICTURES

IF YOU KNOW GROUP ADMIN PERSONALLY ONLY JOIN OTHERS GROUP

MY ONLY WHATSAPP JMBER 8056206308

FREE PAPERS YOU CAN CHECK MY WEBSITES www.ravitestpapers.in


A tap is connected to such a tank whose conical part is full of water. Water is dripping out from a tap at the bottom at the uniform rate of 2cm³/s. The semi-vertical angle of the conical tank is 45°.

On the basis of given information, answer the following questions:

- 1. Find the volume of water in the tank in terms of its radius r.
- 2. Find rate of change of radius at an instant when $r = 2\sqrt{2}cm$.
- 3. Find the rate at which the wet surface of the conical tank is decreasing at an instant when radius $r=2\sqrt{2}cm$.

OR

- 3. Find the rate of change of height 'h' at an instant when slant height is 4cm.
- The equation of the path traced by a roller-coaster is given by the polynomial f(x) = a(x + 9)(x + 1)(x 3). If the Q34. roller-coaster crosses y-axis at a point (0, -1), answer the following:

Find the value of 'a'.
 Find f"(x) at x = 1.

DAILY PRACTICE WORKSHEET

ANSWERS UPLOAD ONLY IN MY PAID GROUP

CBSE 10/12 - ONE TIME FEES RS.1500 FROM OCT 2025

TO TILL FINAL FEB 2026 EXAM. (ALL MAIN SUBJECTS)

WHATSAPP 8056206308

www.ravitestpapers.com www.ravitestpapers.ir