

**JOIN MY PAID WHATSAPP GROUP & GET
PDF FORMAT PAPERS WITH ANSWERS.
FEES RS.300 TODAY (24/1) TO TILL FINAL EXAM
RAVI TEST PAPERS & NOTES
WHATSAPP – 8056206308**

Q1. The principal value of $\tan^{-1} \left(\tan \frac{3\pi}{5} \right)$ is: 1 Mark
A $\frac{2\pi}{5}$ **B** $\frac{-2\pi}{5}$ **C** $\frac{3\pi}{5}$ **D** $\frac{-3\pi}{5}$

Q2. The value of $\tan^{-1} \left(\tan \frac{7\pi}{6} \right)$ is: 1 Mark
A $\frac{\pi}{6}$ **B** $\frac{\pi}{2}$ **C** $\frac{\pi}{3}$ **D** $\frac{7\pi}{6}$

Q3. If A is a square matrix of order 3 and $|A| = 5$, then the value of $|2A'|$ is: 1 Mark
A -10 **B** 10 **C** -40 **D** 40

Q4. The principal value of $\cot^{-1}(-\sqrt{3})$ is 1 Mark
A $-\frac{\pi}{6}$ **B** $\frac{\pi}{6}$ **C** $\frac{2\pi}{3}$ **D** $\frac{5\pi}{6}$

Q5. If f and g are two functions from R to R defined as $f(x) = |x| + x$ and $g(x) = |x| - x$, then fog (x) for $x < 0$ is 1 Mark
A $4x$ **B** $2x$ **C** 0 **D** $-4x$

Q6. Let A be a 3×3 matrix such that $|\text{adj } A| = 64$. Then $|A|$ is equal to: 1 Mark
A 8 only **B** -8 only **C** 64 **D** 8 or -8

Q7. The function $f : R \rightarrow [-1, 1]$ defined by $f(x) = \cos x$ is 1 Mark
A Both one-one and onto. **B** Not one-one, but onto.
C One-one, but not onto. **D** Neither one-one, nor onto.

Q8. If a matrix has 36 elements, the number of possible orders it can have, is: 1 Mark
A 13 **B** 3 **C** 5 **D** 9

Q9. The principal value of $\cos^{-1} \left(\cos \frac{13\pi}{6} \right)$ is: 1 Mark
A $\frac{13\pi}{6}$ **B** $\frac{\pi}{2}$ **C** $\frac{\pi}{3}$ **D** $\frac{\pi}{6}$

Q10. If $|A| = 2$, where A is a 2×2 matrix, then $|4A^{-1}|$ equals: 1 Mark
A 4 **B** 2 **C** 8 **D** $\frac{1}{32}$

Q11. If A is a square matrix such that $A^2 = A$, then $(I - A)^3 + A$ is equal to: 1 Mark
A I **B** 0 **C** $I - A$ **D** $I + A$

Q12. $\tan \left(\sin^{-1} \frac{3}{5} + \tan^{-1} \frac{3}{4} \right)$ is equal to: 1 Mark
A $\frac{7}{24}$ **B** $\frac{24}{7}$ **C** $\frac{3}{2}$ **D** $\frac{3}{4}$

Q13. $\begin{bmatrix} x+1 & x-1 \\ x^2 + x + 1 & x^2 - x + 1 \end{bmatrix}$ is equal to: 1 Mark
A $2x^3$ **B** 2 **C** 0 **D** $2x^3 - 2$

Q14. If A is a non-singular square matrix of order 3 such that $A^2 = 3A$, then value of $|A|$ is: 1 Mark
A -3 **B** 3 **C** 9 **D** 27

Q15. If $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $(3I + 4A)(3I + 4A) = x^2I$, then the value(s) x is/ are: 1 Mark
A $\pm\sqrt{7}$ **B** 0 **C** ± 5 **D** 25

Q16. Let A = {1, 3, 5}. Then the number of equivalence relations in A containing (1, 3) is: 1 Mark

A 1**B 2****C 3****D 4**

Q17. The two lines $x = ay + b$, $z = cy + d$; and $x = a'y + b'$, $z = c'y + d'$ are perpendicular to each other, if:

1 Mark

A $\frac{a}{a'} + \frac{c}{c'} = 1$

C $aa' + cc' = 1$

B $\frac{a}{a'} + \frac{c}{c'} = -1$

D $aa' + cc' = -1$

Q18. If $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $(3I + 4A)(3I + 4A) = x^2I$, then the value(s) x is/ are:

1 Mark

A $\pm\sqrt{7}$

B 0

C ± 5

D 25

Q19. A function $f : R_+ \rightarrow R$ (where R_+ is the set of all non-negative real numbers) defined by $f(x) = 4x + 3$ is:

1 Mark

A one-one but not onto

B onto but not one-one

C both one-one and onto

D neither one-one nor onto

Q20. $\tan^{-1} 3 + \tan^{-1} \lambda = \tan^{-1} \left(\frac{3+\lambda}{1-3\lambda} \right)$ is valid for what values of λ ?

1 Mark

A $\lambda \in \left(-\frac{1}{3}, \frac{1}{3} \right)$

C $\lambda < \frac{1}{3}$

B $\lambda > \frac{1}{3}$

D All real values of λ

Q21. If $\cos \left(\sin^{-1} \frac{2}{\sqrt{5}} + \cos^{-1} x \right) = 0$, then x is equal to

1 Mark

A $\frac{1}{\sqrt{5}}$

B $-\frac{2}{\sqrt{5}}$

C $\frac{2}{\sqrt{5}}$

D 1

Q22. $\left(\tan^{-1} \frac{7}{9} + \tan^{-1} \frac{1}{8} \right)$ is equal to

1 Mark

A $\tan^{-1} \left(\frac{65}{72} \right)$

C $\frac{\pi}{4}$

B $\tan^{-1} \left(\frac{63}{65} \right)$

D $\frac{\pi}{2}$

Q23. If $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$, then $\det(\text{adj } A)$ equals:

1 Mark

A a^{27}

B a^9

C a^6

D a^2

Q24. If A is a 3×3 matrix and $|A| = -2$, then value of $|A(\text{adj } A)|$ is:

1 Mark

A -2

B 2

C -8

D 8

Q25. If $A = \begin{bmatrix} 3 & 4 \\ 5 & 2 \end{bmatrix}$ and $2A + B$ is a null matrix, then B is equal to:

1 Mark

A $\begin{bmatrix} 6 & 8 \\ 10 & 4 \end{bmatrix}$

C $\begin{bmatrix} 5 & 8 \\ 10 & 3 \end{bmatrix}$

B $\begin{bmatrix} -6 & -8 \\ -10 & -4 \end{bmatrix}$

D $\begin{bmatrix} -5 & -8 \\ -10 & -3 \end{bmatrix}$

Q26. If A is a square matrix of order 3, such that $A(\text{adj } A) = 10I$, then $|\text{adj } A|$ is equal to:

1 Mark

A 1

B 10

C 100

D 101

Q27. The domain of the function $f(x) = \sin^{-1}(2x)$ is

1 Mark

A $[0, 1]$

C $\left[-\frac{1}{2}, \frac{1}{2} \right]$

B $[-1, 1]$

D $[-2, 2]$

Q28. If A is a skew symmetric matrix of order 3, then the value of $|A|$ is:

1 Mark

A 3

B 0

C 9

D 27

Q29. If $\begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 0 \end{bmatrix} = 0$, then x equals:

1 Mark

A 0

B -2

C -1

D 2

Q30. The number of corner points of the feasible region determined by the constraints $x - y \geq 0$, $2y \leq x + 2$, $x \geq 0$, $y \geq 0$ is:

1 Mark

A 2

B 3

C 4

D 5

Q31.

1 Mark

If $A = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$, then the value of $|\text{adj } A|$ is

A 64

B 16

C 0

D -8

Q32. If $\begin{bmatrix} x & 2 \\ 3 & x-1 \end{bmatrix}$ is a singular matrix, then the product of all possible values of x is: **1 Mark**

A 6

B -6

C 0

D -7

Q33. The matrix $\begin{bmatrix} 2 & -1 & 3 \\ \lambda & 0 & 7 \\ -1 & 1 & 4 \end{bmatrix}$ is not invertible for: **1 Mark**

A $\lambda = -1$

C $\lambda = 1$

B $\lambda = 0$

D $\lambda \in \mathbb{R} - \{-1\}$

Q34. Let $A = \begin{bmatrix} 200 & 50 \\ 10 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 50 & 40 \\ 2 & 3 \end{bmatrix}$, then $|AB|$ is equal to **1 Mark**

A 460

B 2000

C 3000

D -7000

Q35. The value of $\tan^{-1} \left[\frac{1}{2} \cos^{-1} \left(\frac{\sqrt{5}}{3} \right) \right]$ is: **1 Mark**

A $\frac{3+\sqrt{5}}{2}$

C $\frac{-3+\sqrt{5}}{2}$

B $\frac{3-\sqrt{5}}{2}$

D $\frac{-3-\sqrt{5}}{2}$

Q36. If $\begin{bmatrix} 3 & 4 \\ 5 & 2 \end{bmatrix}$ and $2A + B$ is a null matrix, then B is equal to: **1 Mark**

A $\begin{bmatrix} 6 & 8 \\ 10 & 4 \end{bmatrix}$

C $\begin{bmatrix} 5 & 8 \\ 10 & 3 \end{bmatrix}$

B $\begin{bmatrix} -6 & -8 \\ -10 & -4 \end{bmatrix}$

D $\begin{bmatrix} -5 & -8 \\ -10 & -3 \end{bmatrix}$

Q37 Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as: **1 Mark**

A Both A and R are true and R is the correct explanation of A.

B Both A and R are true but R is not the correct explanation of A.

C A is true but R is false.

D A is false but R is true.

E Both A and R are false.

B Both A and R are true but R is not the correct explanation of A.

D A is false but R is true.

Q38 Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as: **1 Mark**

Assertion: The function $f : \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = |x|$ is not one - one.

Reason: The function $f(x) = |x|$ is not onto.

A Both A and R are true and R is the correct explanation of A.

B Both A and R are true but R is not the correct explanation of A.

C A is true but R is false.

D A is false but R is true.

E Both A and R are false.

Q39 Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as: **1 Mark**

If $A = \{1, 2, 3\}$, $B = \{4, 5, 6, 7\}$ and $f = \{(1, 4), (2, 5), (3, 6)\}$ is a function from A to B.

Assertion: $f(x)$ is a one - one function.

Reason: $f(x)$ is an onto function.

A Both A and R are true and R is the correct explanation of A.

B Both A and R are true but R is not the correct explanation of A.

C A is true but R is false.

D A is false and R is true.

Q40 Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as: **1 Mark**

Assertion: If $X = \{0, 1, 2\}$ and the function defined by $f(x) = x^2 - 2$ is surjection then $Y = \{-2, -1, 0\}$.

Reason: If $f : X \rightarrow Y$ is surjective if $f(X) = Y$.

- A** Both A and R are true and R is the correct explanation of A.
- C** A is true but R is false.
- E** Both A and R are false.

- B** Both A and R are true but R is not the correct explanation of A.
- D** A is false but R is true.

Q41.Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as: **1 Mark**

Assertion: Matrix $A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$, satisfies the equation $x^2 - 2x + 5I = 0$, then A is invertible.

Reason: If a square matrix satisfies the equation $a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0 I^2 = 0$ and $a_n \neq 0$, Then A is invertible.

- A** Both A and R are true and R is the correct explanation of A.
- C** A is true but R is false.
- E** Both A and R are false.

- B** Both A and R are true but R is not the correct explanation of A.
- D** A is false but R is true.

Q42.Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as: **1 Mark**

Consider the set $A = \{1, 3, 5\}$.

Assertion: The number of reflexive relations on set A is 2^9 .

Reason: A relation is said to be reflexive if $xRx, \forall x \in A$.

- A** Both A and R are true and R is the correct explanation of A.
- C** A is true but R is false.

- B** Both A and R are true but R is not the correct explanation of A.
- D** A is false and R is true.

Q43.Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as: **1 Mark**

Assertion: Inverse of a matrix $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ is the matrix $A^{-1} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$.

Reason: Inverse of a square matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is $\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

- A** Both A and R are true and R is the correct explanation of A.
- C** A is true but R is false.
- E** Both A and R are false.

- B** Both A and R are true but R is not the correct explanation of A.
- D** A is false but R is true.

Q44.Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as: **1 Mark**

Assertion: If $0 < x \leq \frac{\pi}{2}$, then $\sin^{-1}(\cos x) + \cos^{-1}(\sin x) = \pi - 2x$.

Reason: $\cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x$ for all $x \in [-1, 1]$.

- A** Both A and R are true and R is the correct explanation of A.
- C** A is true but R is false.
- E** Both A and R are false.

- B** Both A and R are true but R is not the correct explanation of A.
- D** A is false but R is true.

Q45.Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as: **1 Mark**

Assertion: If $A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 0 & 3 \\ -1 & 3 & 4 \end{pmatrix}$, then A^{-1} is symmetric matrix.

Reason: If A is symmetric matrix then A^{-1} is symmetric matrix.

- A** Both A and R are true and R is the correct explanation of A.
- C** A is true but R is false.
- E** Both A and R are false.

- B** Both A and R are true but R is not the correct explanation of A.
- D** A is false but R is true.

Q46.Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as: **1 Mark**

Assertion: If $A = \begin{pmatrix} 0 & -2 & 3 \\ 2 & 0 & 6 \\ -3 & -6 & 0 \end{pmatrix}$, then A^{-1} does not exist.

Reason: If A is a skew symmetric matrix of odd order, then A is singular.

A Both A and R are true and R is the correct explanation of A.
C A is true but R is false.
E Both A and R are false.

B Both A and R are true but R is not the correct explanation of A.
D A is false but R is true.

Q47 Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as: **1 Mark**

Let R be the relation in the set of integers Z given by $R = \{a, b\} : 2 \text{ divides } a - b\}$.

Assertion: R is a reflexive relation.

Reason: A relation is said to be reflexive if $xRx, \forall x \in Z$.

A Both A and R are true and R is the correct explanation of A.
C A is true but R is false.

B Both A and R are true but R is not the correct explanation of A.
D A is false and R is true.

Q48 Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as: **1 Mark**

Assertion: If $x = \frac{1}{5\sqrt{2}}$ then $\{x \cos(\cot^{-1} x) + \sin(\cot^{-1} x)\}^2 = \frac{51}{50}$.

Reason: $\tan \left[\cos^{-1} \left(\frac{1}{5\sqrt{2}} \right) - \sin^{-1} \left(\frac{4}{\sqrt{17}} \right) \right] = \frac{29}{3}$.

A Both A and R are true and R is the correct explanation of A.
C A is true but R is false.
E Both A and R are false.

B Both A and R are true but R is not the correct explanation of A.
D A is false but R is true.

Q49 Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as: **1 Mark**

Assertion: A function $f : A \rightarrow B$, cannot be an onto function if $n(A) < n(B)$.

Reason: A function f is onto if every element of co-domain has at least one pre-image in the domain.

A Both A and R are true and R is the correct explanation of A.
C A is true but R is false.
E Both A and R are false.

B Both A and R are true but R is not the correct explanation of A.
D A is false but R is true.

Q50 Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as: **1 Mark**

Assertion: The value of x for which $\begin{bmatrix} 3 & x \\ x & 1 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}$ is $\pm 2\sqrt{2}$.

Reason: The determinant of a matrix A order 2×2 , $A \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is $= ad - bc$.

A Both A and R are true and R is the correct explanation of A.
C A is true but R is false.
E Both A and R are false.

B Both A and R are true but R is not the correct explanation of A.
D A is false but R is true.

Q51. If $A = \begin{bmatrix} -3 & 2 \\ 1 & -1 \end{bmatrix}$ and $I = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$, Find scalar k so that $A^2 + I = kA$. **2 Marks**

Q52. If $A = \begin{bmatrix} -3 & 6 \\ -2 & 4 \end{bmatrix}$ then show that $A^3 = A$. **2 Marks**

Q53. Find the matrix A such that $A \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ -1 & 6 \end{bmatrix}$. **2 Marks**

Q54. Find $(AB)^{-1}$ if $A = \begin{bmatrix} 1 & 0 \\ -4 & 2 \end{bmatrix}$ and $B^{-1} = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$. **2 Marks**

Q55. **2 Marks**

If $A = \begin{bmatrix} 3 & 9 & 0 \\ 1 & 8 & -2 \\ 7 & 5 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 0 & 2 \\ 7 & 1 & 4 \\ 2 & 2 & 6 \end{bmatrix}$, then find the matrix $B'A'$.

Q56. Express $A = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$ as a sum of a symmetric and a skew symmetric matrix. **2 Marks**

Q57. If $A = \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$, show that $(A - 2I)(A - 3I) = 0$. **2 Marks**

Q58. Check if the relation R on the set $A = \{1, 2, 3, 4, 5, 6\}$ defined as $R = \{(x, y) : y \text{ is divisible by } x\}$ is (i) symmetric (ii) transitive. **2 Marks**

Q59. Express $\tan^{-1} \left(\frac{\cos x}{1 - \sin x} \right)$, $-\frac{3\pi}{2} < x < \frac{\pi}{2}$ in the simplest form. **2 Marks**

Q60. Check if the relation R in the set of real numbers defined as $R = \{(a, b) : a < b\}$ is (i) symmetric, (ii) transitive. **2 Marks**

www.ravitestpapers.in
WHATSAPP - 8056206308
www.ravitestpapers.com