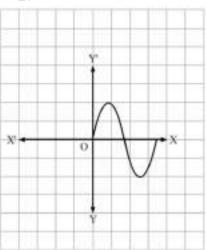
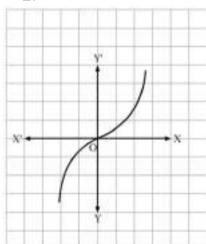
#### UPLOADING SUBJECTS - MAT PHY CHEM BIO ENG

RAVI TEST PAPERS & NOTES, WHATSAPP - 8056206308 FREE PRACTICE PAPERS AVAILABLE IN MY WEBSITE www.ravitestpapers.com & www.ravitestpapers.in

### Instructions


1. JOIN MY 12TH CBSE PAID WHATSAPP DAILY SLIP TEST GROUP WITH ANSWERS. ONE TIME FEES RS.3000 TILL 2026 FINAL EXAM. WHATSAPP - 8056206308

1


2. ANSWERS UPLOAD ONLY IN MY PAID WHATSAPP GROUP SOME FREE PDF ANSWERS UPLOAD IN MY WEBSITES www.ravitestpapers.com & www.ravitestpapers.in

#### Q1. Which of the following graphs represents a one-one fu

1.



2.



- Let  $f(x) = \left\{ egin{array}{ll} 1+x, & 0 \leq x \leq 2 \\ 3-x, & 2 < x < 3 \end{array} 
  ight.$  . Find fof. **Q2.**
- If  $f: R \to R$  is given by  $f(x) = x^3$ , write  $f^{-1}(1)$ . Q3.
- If f(x) = x + 7 and g(x) = x 7,  $x \in R$ , write fog (7). Q4.
- Q5. If f: A  $\rightarrow$  B is an injection, such that range of f = {a}, determine the number of elements in A.
- If  $f: C \rightarrow C$  is defined by  $f(x) = x^4$ , write  $f^{-1}(1)$ . Q6.
- Q7. If  $f: A \rightarrow A$ ,  $g: A \rightarrow A$  are two bijections, then prove that: fog is an injection.
- If f: R  $\rightarrow$  R, g: R  $\rightarrow$  R are given by  $f(x) = (x + 1)^2$  and  $g(x) = x^2 + 1$ , then write the value of fog(-3). Q8.
- Q9. Let  $A = \{1, 2, 3\}$ ,  $B = \{4, 5, 6, 7\}$  and let  $f = \{(1, 4), (2, 5), (3, 6)\}$  be a function from A to B. State whether f is one-one or not.
- Q10. Which one the following relations on  $A = \{1, 2, 3\}$  is a function?  $f = \{(1, 3), (2, 3), (3, 2)\}, g = \{(1, 2), (1, 3), (3, 1)\}$
- If f(x) = 2x + 5 and  $g(x) = x^2 + 1$  be two real functions, then describe the following functions: Q11.

2 Marks

2 Marks

2 Marks

2 Marks

#### MATHS NOTES & MODEL PAPER WORD RS.200 MATHS PREVIOUSLY ASKED QUS ANS PDF RS.200 PHYSICS MCQS 2 3 5 MARKS QUS ANS PDF RS.400 PHYSICS EXAMPLER RS.200 PHYSICS NOTES & MODEL PAPER RS.200 PHYSICS PREVIOUSLY ASKED QUS ANS PDF RS.200 CHEMISTRY MCQS 2 3 5 MARKS QUS ANS PDF RS.400 CHEMISTRY EXAMPLER WORD RS.200

PDF MATERIALS SALES PRICE LIST 2025 -26

CLASS 12 CBSE

MATHS MCQS 2 3 5 MARKS QUS ANS PDF

CHEMISTRY NOTES & MODEL PAPER WORD

MATHS EXAMPLER WORD

#### CHEMISTRY PREVIOUSLY ASKED QUS ANS PDF RS.200 BIOLOGY MCQS 2 3 5 MARKS QUS ANS PDF RS.400 RS.200 **BIOLOGY EXAMPLER WORD BIOLOGY NOTES & MODEL PAPER WORD** RS.200 BIOLOGY PREVIOUSLY ASKED QUS ANS PDF RS.200 COMP SCIENCE MCQS 2 3 5 MARKS QUS ANS PDF RS.300 ACCOUNTS MCQS 2 3 5 MARKS QUS ANS PDF RS.300 BUS STUDIES MCQS 2 3 5 MARKS QUS ANS PDF RS.300

JOIN MY 12TH CBSE SCIENCE PAID WHATSAPP DAILY SLIP TEST GROUP WITH ANSWERS.

ONE TIME FEES RS.3000 TILL 2026 FINAL **EXAM. WHATSAPP - 8056206308** 

### CHECK GOOGLE FOR FREE TEST PAPERS

www.ravitestpapers.com & www.ravitestpapers.in

RS.400 RS.200

RS.200

Also, show that fof  $\neq$  f<sup>2</sup>

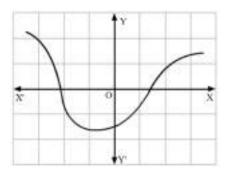
Q12. Which of the following functions from A to B are one-one and onto?  $f_2 = \{(2, a), (3, b), (4, c)\}; A = \{2, 3, 4\}, B = \{a, b, c\}$ 

2 Marks

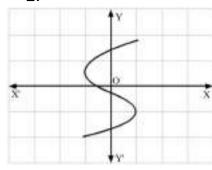
Write the domain of the real function f defined by  $f(x) = \sqrt{25 - x^2}$ . Q13.

2 Marks

If  $f: R \to R$  be defined by  $f(x) = x^4$ , write  $f^{-1}(1)$ . Q14.


- 2 Marks
- Let C denote the set of all complex numbers. A function  $f: C \to C$  is defined by  $f(x) = x^3$ . Write  $f^{-1}(1)$ . Q15.
- 2 Marks
- Let A and B be two sets, each with a finite number of elements. Assume that there is an injective map Q16. from A to B and that there is an injective map from B to A. Prove that there is a bijection from A to B.
- If f: R  $\rightarrow$  R be defined by  $f(x) = (3 x^3)^{\frac{1}{3}}$ , then find fof(x). Q17.
- Let  $A = \{1, 2, 3, 4\}$  and  $B = \{a, b\}$  be two sets. Write the total number of onto functions from A to B. Q18.
- If f: R  $\rightarrow$  R is defined by f(x) =  $x^2$ , write f<sup>-1</sup>(25). Q19.
- Let  $f: R \to R$ ,  $g: R \to R$  be two functions defined by  $f(x) = x^2 + x + 1$  and  $g(x) = 1 x^2$ . Write fog (-2). Q20.
- Which of the following functions from A to B are one-one and onto? Q21.  $f_1 = \{(1, 3), (2, 5), (3, 7)\}; A = \{1, 2, 3\}, B = \{3, 5, 7\}$
- Q22. Write the total number of one-one functions from set  $A = \{1, 2, 3, 4\}$  to set  $B = \{a, b, c\}$ .
- If f: R  $\rightarrow$  R is defined by f(x) = 10x 7, then write f<sup>-1</sup>(x). Q23.
- If f(x) = 2x + 5 and  $g(x) = x^2 + 1$  be two real functions, then describe the following functions: Q24. gof Also, show that fof  $\neq$  f<sup>2</sup>
- Let  $f: R \to R$  and  $g: R \to R$  be defined by  $f(x) = x^2$  and g(x) = x + 1. Show that fog  $\neq$  gof. Q25.
- Write whether f : R  $\rightarrow$  R, given by  $f(x) = x + \sqrt{x^2}$ , is one-one, many-one, onto or into. Q26.
- If f, g: R  $\rightarrow$  R be two functions defined as f(x) = |x| + x and g(x) = |x| x,  $\forall x \in \mathbb{R}$ . Then find fog and gof. Q27. Hence find fog(-3), fog(5) and gof(-2).
- If  $f : R \rightarrow R$  is defined by  $f(x) = x^2$ , find  $f^{-1}(-25)$ . Q28.
- Let A =  $\{x \in R : -4 \le x \le 4 \text{ and } x \ne 0\}$  and f : A  $\rightarrow$  R be defined by  $f(x) = \frac{|x|}{x}$ . Write the range of f. Q29.
- Find fog (2) and gof (1) when : f : R  $\rightarrow$  R; f(x) =  $x^2 + 8$  and g : R  $\rightarrow$  R; g(x) =  $3x^3 + 1$ . Q30.
- Q31. If  $A = \{1, 2, 3, 4\}$  and  $B = \{a, b, c, d\}$  define any four bijections from A to B. Also give their inverse functions.
- 2 Marks
- If  $A = \{a, b, c\}$  and  $B = \{-2, -1, 0, 1, 2\}$ , write the total number of one-one functions from A to B. Q32.

2 Marks


**2 Warks** 

Q33. Which one of the following graphs represents a function?

1.



2.



- **Q34.** Let  $f:R-\left\{-\frac{3}{5}\right\} o R$  be a function defined as  $f(x)=\frac{2x}{5x+3}$ . Write  $f^{\text{-}1}$ : Range of  $f o R-\left\{-\frac{3}{5}\right\}$ .
- **Q35.** Let f, g : R  $\rightarrow$  R be defined by f(x) = 2x + 1 and g(x) =  $x^2$  2 for all x  $\in$  R, respectively. Then, find gof.
- **Q36.** Let f be a real function given by  $f(x)=\sqrt{x-2}$ . Find the following:  $f^2$  Also, show that fof  $\neq$   $f^2$ .
- **Q37.** If  $f : A \rightarrow A$ ,  $g : A \rightarrow A$  are two bijections, then prove that: fog is a surjection.
- **Q38.** If  $f : R \rightarrow R$  is defined by f(x) = 3x + 2, find f(f(x)).
- **Q39.** Find gof and fog when  $f : R \rightarrow R$  and  $g : R \rightarrow R$  are defined by:  $f(x) = 2x + x^2$  and  $g(x) = x^3$
- **Q40.** What is the range of the function  $f(x) = \frac{|x-1|}{x-1}$ ?
- **Q41.** Let  $f: R \to R^+$  be defined by f(x) = ax, a > 0 and  $a \ne 1$ . Write  $f^{-1}(x)$ .
- **Q42.** Let f: R {-1}  $\rightarrow$  R {1} be given by  $f(x) = \frac{x}{x+1}$ . Write f<sup>-1</sup>(x).
- **Q43.** Let f be a function from C (set of all complex numbers) to itself given by  $f(x) = x^3$ . Write  $f^{-1}(-1)$ .
- Q44. If f(x) = 2x + 5 and  $g(x) = x^2 + 1$  be two real functions, then describe the following functions: fof Also, show that fof  $\neq f^2$
- **Q45.** Classify the following functions as injection, surjection or bijection:  $f: N \rightarrow N$  given by  $f(x) = x^2$
- **Q46.** Write the domain of the real function  $f(x) = \sqrt{[x] x}$ .
- **Q47.** If  $f(x) = 4 (x 7)^3$ , then write  $f^{-1}(x)$ .
- **Q48.** If  $f: R \to R$  defined by f(x) = 3x 4 is invertible, then write  $f^{-1}(x)$ .
- **Q49.** Let A = {a, b, c, d} and f : A  $\rightarrow$  A be given by f = {(a, b), (b, d), (c, a), (d, c)}. Write f<sup>-1</sup>.
- **Q50.** Write the domain of the real function  $f(x) = \frac{1}{\sqrt{|x|-x}}$ .
- Q51. Find the number of all onto functions from the set A = {1, 2, 3, ..., n} to itself.

  JOIN MY 12TH CBSE PAID WHATSAPP DAILY SLIP TEST GROUP WITH ANSWERS.

  ONE TIME FEES RS.3000 TILL 2026 FINAL EXAM. WHATSAPP 8056206308

2 Marks

2 Marks

2 Marks

If  $A = \{1, 2, 3\}$  and  $B = \{a, b\}$ , write the total number of functions from A to B. Q52.

2 Marks

If f(x) = 2x + 5 and  $g(x) = x^2 + 1$  be two real functions, then describe the following functions: Q53.

2 Marks

- Also, show that fof  $\neq$  f<sup>2</sup>
- If  $f: C \to C$  is defined by  $f(x) = x^2$ , write  $f^{-1}(-4)$ . Here, C denotes the set of all complex numbers. Q54.

2 Marks

If  $f: C \rightarrow C$  is defined by  $f(x) = (x - 2)^3$ , write  $f^{-1}(-1)$ . Q55.

2 Marks

- Let  $f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to R$  be a function defined by  $f(x)=\cos[x]$ . write range (f). Q56.
- Show that the function f : R  $\rightarrow$  {3}  $\rightarrow$  R {2} given by  $f(x) = \frac{x-2}{x-3}$  is a bijection. Q57.
- Let  $f:\left[-\frac{\pi}{2},\frac{\pi}{2}\right] \to A$  be defined by f(x)= sinx. If f is a bijection, write set A. Q58.
- Q59. Which of the following functions from A to B are one-one and onto?  $f_3 = \{(a, x), (b, x), (c, z), (d, z)\}; A = \{a, b, c, d,\}, B = \{x, y, z\}$
- Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or Q60. surjective: {(a, b): a is a person, b is an ancestor of a}
- Write the domain of the real function  $f(x) = \sqrt{x [x]}$ . Q61.
- Q62. Find gof and fog when  $f : R \rightarrow R$  and  $g : R \rightarrow R$  are defined by:  $f(x) = x^2 + 8$  and  $g(x) = 3x^3 + 1$
- Find fog and gof if: Q63.

$$f(x) = x^2$$
,  $g(x) = cosx$ 

- Q64. State with reasons whether the following functions have inverse:
  - $g: \{5, 6, 7, 8\} \rightarrow \{1, 2, 3, 4\} \text{ with } g = \{(5, 4), (6, 3), (7, 4), (8, 2)\}$
- If  $f: A \rightarrow B$  and  $g: B \rightarrow C$  are one-one functions, show that gof is a one-one function. Q65.
- Find fog and gof if: Q66.

$$f(x) = x^2 + 2$$
,  $g(x) = 1 - \frac{1}{1-x}$ 

Let A = [-1, 1]. Then, discuss whether the following functions from A to itself are one-one, onto or Q67. bijective:

$$f(x) = \frac{x}{2}$$

Q68. Classify the following functions as injection, surjection or bijection:

$$f: R \rightarrow R$$
, defined by  $f(x) = \sin x$ 

Show that the logarithmic function  $f: R0^+ \to R$  given by  $f(x) = \log_a x$ , a > 0 is a bijection. Q69.

3 Marks

Q70. Classify the following functions as injection, surjection or bijection:

$$f: R \rightarrow R$$
, defined by  $f(x) = |x|$ 

3 Marks

Q71. Find gof and fog when  $f : R \rightarrow R$  and  $g : R \rightarrow R$  are defined by:  $f(x) = x^2 + 2x - 3$  and g(x) = 3x - 4

3 Marks

Q72.

Let A = [-1, 1]. Then, discuss whether the following functions from A to itself are one-one, onto or

Let f be a function from R to R, such that f(x) = cos(x + 2). Is f invertible? Justify your answer.

3 Marks

Find fog and gof if: Q73.  $f(x) = e^x$ ,  $g(x) = log_e x$ 

Q74.

3 Marks

If  $f: A \rightarrow B$  and  $g: B \rightarrow C$  are onto functions, show that gof is a onto function. Q75.

3 Marks

- Q76. Classify the following functions as injection, surjection or bijection:
  - $f: Z \rightarrow Z$  given by  $f(x) = x^2$
- State with reasons whether the following functions have inverse: Q77.

$$h: \{2, 3, 4, 5\} \rightarrow \{7, 9, 11, 13\}$$
 with  $h = \{(2, 7), (3, 9), (4, 11), (5, 13)\}$ 

Q78. Find fog and gof if:

$$f(x) = x + 1, g(x) = 2x + 3$$

Classify the following functions as injection, surjection or bijection: Q79.

 $f: R \rightarrow R$ , defined by  $f(x) = \sin^2 x + \cos^2 x$ 

Find fog and gof if: Q80.

$$f(x) = x + 1, g(x) = \sin x$$

- Q81. Show that  $f : R \rightarrow R$ , given by f(x) = x - [x], is neither one-one nor onto.
- Let A = R {3} and B = R {1}. Consider the function f : A  $\rightarrow$  B defined by  $f(x) = \frac{x-2}{x-3}$ . Show that f is one-Q82. one and onto and hence find f<sup>-1</sup>.
- Q83. Find fog and gof if:

$$f(x) = |x|, g(x) = \sin x$$

Q84. Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective:

 $\{(x, y): x \text{ is a person, } y \text{ is the mother of } x\}$ 

- If a function g = {(1, 1), (2, 3), (3, 5), (4, 7)} is described by  $g(x) = \alpha x + \beta \alpha x + \beta$ , then find the values of Q85. lpha and eta.
- Q86. If f(x) = |x|, prove that fof = f.
- Let  $f: R \to R$  be defined as  $f(x) = \frac{2x-3}{4}$ . Write fof-1(1). Q87.
- Q88. Classify the following functions as injection, surjection or bijection:

 $f: R \rightarrow R$ , defined by  $f(x) = 1 + x^2$ 

Let f, g, h be real functions given by  $f(x) = \sin x$ , g(x) = 2x and  $h(x) = \cos x$ . Prove that  $\cos x = \cos x$ . Q89.

3 Marks

Let  $f(x) = x^2 + x + 1$  and  $g(x) = \sin x$ . Show that fog  $\neq$  gof. Q90.

3 Marks

- Consider f: N  $\rightarrow$  N, g: N  $\rightarrow$  N and h: N  $\rightarrow$  R defined as f(x) = 2x, g(y) = 3y + 4 and h(z) =  $\sin z$  for all Q91.  $x, y, z \in N$ . Show that ho(gof) = (hog)of.
- 3 Marks
- Q92. If  $f(x) = \sin x$  and g(x) = 2x be two real functions, then describe gof and fog. Are these equal functions?

3 Marks

w.ravitestpapers.com / www.ravitestpape

Q94. State with reasons whether the following functions have inverse:

3 Marks

 $f: \{1, 2, 3, 4\} \rightarrow \{10\} \text{ with } f = \{(1, 10), (2, 10), (3, 10), (4, 10)\}$ 

3 Marks

3), (5, 1), (1, 3)}, then write fog. Let A = [-1, 1]. Then, discuss whether the following functions from A to itself are one-one, onto or Q96.

If the mapping  $f: \{1, 3, 4\} \rightarrow \{1, 2, 5\}$  and  $g: \{1, 2, 5\} \rightarrow \{1, 3\}$ , given by  $f = \{(1, 2), (3, 5), (4, 1)\}$  and  $g = \{(2, 2), (3, 5), (4, 1)\}$ 

3 Marks

bijective:  $h(x) = x^2$ 

Q95.

- Find  $f^{-1}$  if it exists:  $f: A \rightarrow B$ , where,  $A = \{1, 3, 5, 7, 9\}$ ;  $B = \{0, 1, 9, 25, 49, 81\}$  and  $f(x) = x^2$ . Q97.
- Q98. If A =  $\{1, 2, 3\}$ , show that a onto function f : A  $\rightarrow$  A must be one-one.
- Q99. Classify the following functions as injection, surjection or bijection:  $f: R \rightarrow R$ , defined by  $f(x) = x^3 + 1$
- **Q100.** Find fog and gof if:  $f(x) = c, c \in R, g(x) = \sin x^2$
- **Q101.** Let f be any real function and let g be a function given by g(x) = 2x. Prove that gof = f + f.
- **Q102.** Let  $A = \{1, 2, 3\}$ . Write all one-one from A to itself.
- **Q103.** Let f be an invertible real function. Write  $(f^{-1} \circ f)(1) + (f^{-1} \circ f)(2) + \dots + (f^{-1} \circ f)(100)$ .
- **Q104.** Let  $f: R \to R$  be the function defined by f(x) = 4x 3 for all  $x \in R$ . Then write  $f^{-1}$ .
- **Q105.** Give examples of two one-one functions  $f_1$  and  $f_2$  from R to R, such that  $f_1 + f_2 : R \rightarrow R$ . defined by  $(f_1 + f_2)$  $(x) = f_1(x) + f_2(x)$  is not one-one.
- **Q106.** If  $A = \{1, 2, 3\}$ , show that a one-one function  $f : A \rightarrow A$  must be onto.
- **Q107.** Find  $f^{-1}$  if it exists:  $f: A \rightarrow B$ , where,  $A = \{0, -1, -3, 2\}$ ;  $B = \{-9, -3, 0, 6\}$  and f(x) = 3x.
- **Q108.** If f: R  $\rightarrow$  (0, 2) defined by  $f(x) = \frac{e^x e^{-x}}{e^x + e^{-x}} + 1$  is invertible, find f<sup>-1</sup>.
- **Q109.** Find fog and gof if:  $f(x) = x + 1, g(x) = e^{x}$
- **Q110.** If  $f: \{5, 6\} \rightarrow \{2, 3\}$  and  $g: \{2, 3\} \rightarrow \{5, 6\}$  are given by  $f = \{(5, 2), (6, 3)\}$  and  $g = \{(2, 5), (3, 6)\}$ , then find fog.
- **Q111.** If  $f(x) = \sqrt{x+3}$  and  $g(x) = x^2 + 1$  be two real functions, then find fog and gof.
- **Q112.** Classify the following functions as injection, surjection or bijection:

 $f: Z \rightarrow Z$ , defined by f(x) = x - 5

**Q113.** Give examples of two functions  $f: N \to N$  and  $g: N \to N$ , such that gof is onto but f is not onto.

3 Marks

**Q114.** Find gof and fog when  $f: R \rightarrow R$  and  $g: R \rightarrow R$  are defined by: f(x) = x and g(x) = |x|

3 Marks

**Q115.** Find gof and fog when  $f: R \rightarrow R$  and  $g: R \rightarrow R$  are defined by:

3 Marks

 $f(x) = 8x^3 \text{ and } g(x) = x^{\frac{1}{3}}$ 

- **Q116.** Let R<sup>+</sup> be the set of all non-negative real numbers. If  $f: R^+ \to R^+$  and  $g: R^+ \to R^+$  are defined as  $f(x) = x^2$  and  $g(x) = +\sqrt{x}$ , find fog and gof. Are they equal functions?
- 3 Marks

**Q117.** Let A =  $\{-1, 0, 1\}$  and f =  $\{(x, x^2): x \in A\}$ . Show that f : A  $\rightarrow$  A is neither one-one nor onto.

- 4 Marks
- Q118. Suppose  $f_1$  and  $f_2$  are non-zero one-one functions from R to R. Is  $\frac{f_1}{f_2}$  necessarily one-one? Justify your answer. Here,  $\frac{f_1}{f_2}:R\to R$  is given by  $\Big(\frac{f_1}{f_2}\Big)(x)=\frac{f_1(x)}{f_2(x)}$  for all  $x\in R$ .
- 4 Marks

**Q119.** Classify the following functions as injection, surjection or bijection:  $f: Q - \{3\} \rightarrow Q$ , defined by  $f(x) = \frac{2x+3}{x-3}$ 

4 Marks

DF QUESTIONS / ANSWERS DOWNLOAD FROM MY WE

www.ravitestpapers.com / www.ravitestpapers

- **Q120.** Prove that the function  $f: N \rightarrow N$ , defined by  $f(x) = x^2 + x + 1$ , is one-one but not onto.
- **Q121.** Classify the following functions as injection, surjection or bijection:  $f: Z \rightarrow Z$ , defined by  $f(x) = x^2 + x$
- **Q122.** Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} and f : A  $\rightarrow$  B, g : B  $\rightarrow$  C be defined as f(x) = 2x + 1 and g(x) =  $x^2$  2. Express (gof)<sup>-1</sup> and f<sup>-1</sup>og<sup>-1</sup> as the sets of ordered pairs and verify that (gof)<sup>-1</sup> = f<sup>-1</sup> og<sup>-1</sup>.
- **Q123.** Classify the following functions as injection, surjection or bijection:  $f: Q \rightarrow Q$ , defined by  $f(x) = x^3 + 1$
- **Q124.** Find fog and gof if:  $f(x) = \sin^{-1}x$ ,  $g(x) = x^2$
- **Q125.** If  $f : R \rightarrow R$  be the function defined by  $f(x) = 4x^3 + 7$ , show that f is a bijection.
- **Q126.** Let  $A = \{x \in R \mid -1 \le x \le 1\}$  and let  $f : A \to A$ ,  $g : A \to A$  be two functions defined by  $f(x) = x^2$  and  $g(x) = \sin\left(\frac{\pi x}{2}\right)$ . Show that  $g^{-1}$  exists but  $f^{-1}$  does not exist. Also, find  $g^{-1}$ .
- **Q127.** If  $f(x) = \frac{4x+3}{6x-4}$ ,  $x \neq \frac{2}{3}$ , show that fof(x) = x for all  $x \neq \frac{2}{3}$ . What is the inverse of f?
- **Q128.** Let  $f: R-\left\{-\frac{4}{3}\right\} \to R$  be a function defined as  $f(x)=\frac{4x}{3x+4}$ . Show that  $f: R-\left\{-\frac{4}{3}\right\} \to Range\ (f)$  is one-one and onto. Hence find f<sup>-1</sup>.
- **Q129.** Given  $A = \{2, 3, 4\}$ ,  $B = \{2, 5, 6, 7\}$ . Construct an example of each of the following:
  - 1. An injective map from A to B.
  - 2. A mapping from A to B which is not injective.
  - 3. A mapping from A to B.
- **Q130.** Let f be a real function given by  $f(x) = \sqrt{x-2}$ . Find the following: fof Also, show that fof  $\neq$  f<sup>2</sup>.
- **Q131.** Show that if  $f_1$  and  $f_2$  are one-one maps from R to R, then the product  $f_1 \times f_2 : R \to R$  defined by  $(f_1 \times f_2)(x) = f_1(x)f_2(x)$  need not be one-one.
- 4 Marks
- **Q132.** Verify associativity for the following three mappings :  $f: N \to Z_0$  (the set of non-zero integers),  $g: Z_0 \to Q$  and  $h: Q \to R$  given by f(x) = 2x,  $g(x) = \frac{1}{x}$  and  $h(x) = e^x$ .
- 4 Marks

**Q133.** Classify the following functions as injection, surjection or bijection:  $f: Z \rightarrow Z$  given by  $f(x) = x^3$ 

4 Marks

**Q134.** Let f be a real function given by  $f(x) = \sqrt{x-2}$ . Find the following: fofof Also, show that fof  $\neq$  f<sup>2</sup>.

4 Marks

**Q135.** Classify the following functions as injection, surjection or bijection:  $f: N \rightarrow N$  given by  $f(x) = x^3$ 

4 Marks

**Q136.** Classify the following functions as injection, surjection or bijection:  $f: R \rightarrow R$ , defined by  $f(x) = 5x^3 + 4$ 

4 Marks

**Q137.** Classify the following functions as injection, surjection or bijection:

4 Marks

DF QUESTIONS / ANSWERS DOWNLOAD FROM MY WE

www.ravitestpapers.com / www.ravitestpaper

- $f: R \rightarrow R$ , defined by f(x) = 3 4x
- **Q138.** If  $f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to R$  and  $g:[-1,1]\to R$  be defined as  $f(x)=\tan x$  and  $g(x)=\sqrt{1-x^2}$  respectively, describe fog and gof.
- **Q139.** Give examples of two functions  $f: N \rightarrow Z$  and  $g: Z \rightarrow Z$ , such that gof is injective but g is not injective.
- **Q140.** Find gof and fog when  $f : R \rightarrow R$  and  $g : R \rightarrow R$  are defined by: f(x) = 2x + 3 and  $g(x) = x^2 + 5$
- **Q141.** If  $f: R \to R$  be defined by  $f(x) = x^3 3$ , then prove that  $f^{-1}$  exists and find a formula for  $f^{-1}$ . Hence, find  $f^{-1}(24)$  and  $f^{-1}(5)$ .
- **Q142.** Consider  $f: R \to R_+ \to [4, \infty)$  given by  $f(x) = x^2 + 4$ . Show that f is invertible with inverse of f given by  $f^{-1}(x) = \sqrt{x-4}$ , where R<sup>+</sup> is the set of all non-negative real numbers.
- **Q143.** Give an example of a function:

Which is neither one-one nor onto.

- **Q144.** Give examples of two surjective functions  $f_1$  and  $f_2$  from Z to Z such that  $f_1 + f_2$  is not surjective.
- Q145. Let  $f: N \to N$  be defined by  $f(n) = \begin{cases} n+1, & \text{if } n \text{ is odd} \\ n-1, & \text{if } n \text{ is even} \end{cases}$  Show that f is a bijection.
- **Q146.** Show that the function  $f: Q \rightarrow Q$ , defined by f(x) = 3x + 5, is invertible. Also, find  $f^{-1}$ .
- **Q147.** Classify the following functions as injection, surjection or bijection:  $f: R \rightarrow R$ , defined by  $f(x) = x^3 x$
- **Q148.** Let  $f = \{(1, -1), (4, -2), (9, -3), (16, 4)\}$  and  $g = \{(-1, -2), (-2, -4), (-3, -6), (4, 8)\}$ . Show that gof is defined while fog is not defined. Also, find gof.
- **Q149.** Consider  $f: R \rightarrow R$  given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
- **Q150.** Let f be a real function given by  $f(x)=\sqrt{x-2}$ . Find the following: (fofof)(38) Also, show that fof  $\neq$  f<sup>2</sup>.
- **Q151.** Let  $f = \{(3, 1), (9, 3), (12, 4)\}$  and  $g = \{(1, 3), (3, 3), (4, 9), (5, 9)\}$ . Show that gof and fog are both defined. Also, find fog and gof.

5 Marks

**Q152.** Give an example of a function:

Which is one-one but not onto.

5 Marks

**Q153.** Give an example of a function:

Which is not one-one but onto.

5 Marks

## *WHATSAPP – 8056206308*

- **Q154.** A function  $f: R \to R$  is defined as  $f(x) = x^3 + 4$ . Is it a bijection or not? In case it is a bijection, find  $f^{-1}(3)$ .
- 5 Marks
- **Q155.** If  $f: Q \to Q$ ,  $g: Q \to Q$  are two functions defined by f(x) = 2x and g(x) = x + 2, show that f and g are bijective maps. Verify that  $(gof)^{-1} = f^{-1}og^{-1}$ .
- 6 Marks
- Q156. Let A = {a, b, c}, B = {u, v, w} and let f and g be two functions from A to B and from B to A, respectively, defined as:
- 6 Marks

- $f = \{(a, v), (b, u), (c, w)\}, g = \{(u, b), (v, a), (w, c)\}.$
- Show that f and g both are bijections and find fog and gof.
- **Q157.** Let  $f: [-1, \infty) \to [-1, \infty)$  be given by  $f(x) = (x + 1)^2 1$ ,  $x \ge -1$ . Show that f is invertible. Also, find the set  $S = \{x : f(x) = f^{-1}(x)\}$ .
- **Q158.** Show that the exponential function  $f: R \to R$ , given by  $f(x) = e^x$ , is one-one but not onto. What happens if the co-domain is replaced by  $R0^+$  (set of all positive real numbers)?
- **Q159.** If f: R  $\rightarrow$  (-1, 1) defined by  $f(x) = \frac{10^x 10^{-x}}{10^x + 10^{-x}}$  is invertible, find f<sup>-1</sup>.
- **Q160.** Consider  $f: R_+ \to [-5, \infty)$  given by f(x) =  $9x^2 + 6x 5$ . Show that f is invertible with  $f^{-1}(x) = \frac{\sqrt{x+6}-1}{3}$ .
- **Q161.** Classify the following functions as injection, surjection or bijection:  $f:R \to R$ , defined by  $f(x)=\frac{x}{x^2+1}$
- **Q162.** Consider  $f : \{1, 2, 3\} \rightarrow \{a, b, c\}$  and  $g : \{a, b, c\} \rightarrow \{apple, ball, cat\}$  defined as f(1) = a, f(2) = b, f(3) = c, g(a) = apple, g(b) = ball and g(c) = cat. Show that f(a) = a and f(a) = a
- **Q163.** Let  $f: N \to N$  be a function as  $f(x) = 9x^2 + 6x 5$ . Show that  $f: N \to S$ , where S is the range of f, is invertible. Find the inverse of f and hence find  $f^{-1}(43)$  and  $f^{-1}(163)$ .
- **Q164.** If  $f(x) = \sqrt{1-x}$  and  $g(x) = \log_e x$  are two real functions, then describe, functions fog and gof.
- **Q165.** Consider the function  $f: R^+ \to [-9, \infty]$  given by f(x) = 5x2 + 6x 9. Prove that f is invertible with  $f^{-1}(y) = \frac{\sqrt{54+5y}-3}{5}$ .
- **Q166.** Let f: R {n}  $\rightarrow$  R be a function defined by  $f(x) = \frac{x-m}{x-n}$ , where  $m \neq n$ . Then,
  - **A** f is one-one onto.
- **B** f is one-one into.
- **C** f is many one onto.
- **D** f is many one into.
- **Q167.** The function  $f: A \rightarrow B$  defined by  $f(x) = -x^2 + 6x 8$  is a bijection if,
  - **A**  $A=(-\infty,3]$  and  $B=(-\infty,1]$
- **B**  $A=[-3,\infty)$  and  $B=(-\infty,1]$
- **C**  $A=(-\infty,3]$  and  $B=[1,\infty)$
- **D**  $A=[3,\infty)$  and  $B=[1,\infty)$
- **Q168.** If  $f : R \to R$  is given by f(x) = 3x 5, then  $f^{-1}(x)$ 
  - **A** is given by  $\frac{1}{3x-5}$

- **B** is given by  $\frac{x+5}{3}$
- **C** does not exist because f is not one-one.
- **D** does not exist because f is not onto.
- **Q169.** Let  $f: R \to R$  be given by  $f(x) = [x^2] + [x+1] 3$  where [x] denotes the greatest integer less than or equal to x. Then, f(x) is:
- 1 Mark

www.ravitestpapers.com / www.ravitestpape

- A Many-one and onto. B Many-one and into.
- **C** One-one and into.
- **D** One-one and onto.

**Q170.** f:R  $\Rightarrow$  R is defined by  $f(x)=\frac{e^{x^2}-e^{-x^2}}{e^{x^2}+e^{-x^2}}$  is:

1 Mark

**A** One-one but not onto.

**B** Many-one but onto.

**C** One-one and onto.

**D** Neither one-one nor onto.

**A** R

**B** [0, 1]

**C** [0, 1)

**D** [0, 1)

**Q172.** Let f: R  $\rightarrow$  R be a function defined by  $f(x) = \frac{x^2 - 8}{x^2 + 2}$ . Then, f is:

**B** One-one and onto.

A One-one but not onto. **C** Onto but not one-one.

**D** Neither one-one nor onto.

**Q173.** Let  $f: R \to R$  be given by  $f(x) = x^2 - 3$ . Then,  $f^{-1}$  is given by:

A 
$$\sqrt{x+3}$$

 $\mathbf{B} \sqrt{\mathbf{x}} + 3$ 

$$\mathbf{C} \mathbf{x} + \sqrt{3}$$

**D** None of these

**Q174.** Which of the following functions form Z to itself are bijections?

**A** 
$$f(x) = x^3$$

**B** 
$$f(x) = x + 2$$

**C** 
$$f(x) = 2x + 1$$

**D** 
$$f(x) = x^2 + x$$

A function f from the set of natural numbers to integers defined by  $f(n) = \begin{cases} \frac{n-1}{2}, & \text{when } n \text{ is odd} \\ -\frac{n}{2}, & \text{when } n \text{ is even} \end{cases}$ Q175.

A Neither one-one nor onto.

**B** One-one but not onto.

**C** Onto but not one-one.

**D** One-one and onto both.

**Q176.** If  $g(f(x)) = |\sin x|$  and  $f(g(x)) = (\sin \sqrt{x})^2$ , then

A 
$$f(x) = \sin^2 x$$
,  $g(x) = \sqrt{x}$ 

**B** 
$$f(x) = \sin x, \ g(x) = |x|$$

$$\mathbf{c} \ \mathrm{f}(\mathrm{x}) = \mathrm{x}^2, \ \mathrm{g}(\mathrm{x}) = \sin \sqrt{\mathrm{x}}$$

**D** f and g cannot be determined.

**Q177.** Let  $f:R-\left\{rac{3}{5}
ight\}
ightarrow R$  be defined by  $f(x)=rac{3x+2}{5x-3}.$  Then,

**A** 
$$f^{-1}(x) = f(x)$$

**B** 
$$f^{-1}(x) = -f(x)$$

**B** 
$$f^{-1}(x) = -f(x)$$
  
**D**  $f^{-1}(x) = \frac{1}{19}f(x)$ 

Let f : Z  $\Rightarrow$  Z be given by  $f(x) = \left\{ egin{array}{ll} \frac{x}{2}, & \mbox{if } x \mbox{ is even} \\ 0, & \mbox{if } x \mbox{ is odd} \end{array} \right.$  . Then, f is: Q178.

A Onto but not one-one.

**B** One-one but not onto.

**C** One-one and onto.

**D** Neither one-one nor onto.

**Q179.** The function  $f: R \rightarrow R$  defined by f(x) = (x - 1)(x - 2)(x - 3) is:

A One-one but not onto.

**B** Onto but not one-one.

**C** Both one and onto.

**D** Neither one-one nor onto.

**Q180.** Let f be an injective map with domain  $\{x, y, z\}$  and range  $\{1, 2, 3\}$ , such that exactly one of the following statements is correct and the remaining are false.

$$f(x)=1,\ f(y)\neq 1,\ f(z)\neq 2.$$

The value of f<sup>-1</sup>(1)is:

 $\mathbf{A} \mathbf{x}$ 

Ву

 $\mathbf{C}$  z

**D** None of these.

**Q181.** The function  $f: R \rightarrow R$  defined by  $f(x) = 2^x + 2^{|x|}$  is:

**A** One-one and onto.

**B** Many-one and onto.

**C** One-one and into.

**D** Many-one and into.

**Q182.** Let  $A = \{1, 2, \dots, n\}$  and  $B = \{a, b\}$ . Then the number of subjections from A into B is:

A 
$$^{\mathrm{n}}\mathrm{P}_{2}$$

**B** 
$$2^{n} - 2$$

 ${f C} \ 2^n-1$ 

 $D ^{\rm n} C_2$ 

**Q183.** If the function  $f: R \rightarrow R$  be such that f(x) = x - [x], where [x] denotes the greatest integer less than or equal to x, then  $f^{-1}(x)$  is:

1 Mark

1 Mark

1 Mark

1 Mark

A 
$$\frac{1}{x-[x]}$$

**B** [x] - x

C Not defined.

**D** None of these.

**Q184.** Let  $A=\{x\in R: -1\leq x\leq 1\}=B$  and  $C=\{x\in R: x\geq 0\}$  and let  $S=\{(x,y)\in A imes B: x^2+y^2=1\}$  and  $S_0=\{(x,y)\in A imes C: x^2+y^2=1\}.$  Then, 1 Mark

ANSWERS UPLOAD ONLY IN MY PAID WHATSAPP GROUP

**C** S<sub>0</sub> defines a function from A to B.

**D** S defines a function from A to C.

**Q185.** The distinct linear functions that map [-1, 1] onto [0, 2] are:

**A** 
$$f(x) = x + 1$$
,  $g(x) = -x + 1$ 

**B** f(x) = x - 1, g(x) = x + 1

**C** 
$$f(x) = -x - 1$$
,  $g(x) = x - 1$ 

**D** None of these.

**Q186.** Let the function  $f: R - \{-b\} \rightarrow R - \{1\}$  be defined by  $f(x) = \frac{x+a}{x+b}, \ a \neq b$ . Then,

1 Mark

ww.ravitestpapers.com / www.ravitestpapers

1 Mark

A f is one-one but not onto.

**B** f is onto but not one-one.

**C** f is both one-one and onto.

**D** None of these.

**Q187.** If  $F:[1,\infty)\to [2,\infty)$  is given by  $f(x)=x+\frac{1}{x}$ , then f<sup>-1</sup>(x) equals:

A 
$$\frac{x+\sqrt{x^2-4}}{2}$$
 C  $\frac{x-\sqrt{x^2-4}}{2}$ 

 $\mathbf{B} \ \frac{\mathbf{x}}{1+\mathbf{x}^2}$ 

C 
$$\frac{x-\sqrt{x^2-4}}{2}$$

D  $1+\sqrt{\mathrm{x}^2-4}$ 

**Q188.** Let  $A = \{x \in R : x \le 1\}$  and  $f : A \rightarrow A$  be defined as f(x) = x(2 - x). Then  $f^{-1}(x)$  is:

A 
$$1+\sqrt{1-x}$$
 C  $\sqrt{1-x}$ 

$$\mathbf{C} \sqrt{1-\mathbf{x}}$$

 $\begin{array}{l} \textbf{B} \ 1-\sqrt{1-x} \\ \textbf{D} \ 1\pm\sqrt{1-x} \end{array}$ 

**Q189.** The range of the function  $f(x) = ^{7-x} P_{x-3}$  is:

**D** {1, 2, 3}

**Q190.** Let  $f(x) = x^3$  be a function with domain  $\{0, 1, 2, 3\}$ . Then domain of  $f^{-1}$  is:

**D** {0, -1, -8, -27}

**Q191.** Which of the following functions from  $A = \{x \in R : -1 \le x \le 1\}$  to itself are bijections?

$$\mathbf{A} \ \mathbf{f}(\mathbf{x}) = |\mathbf{x}|$$

**B** 
$$f(x) = \sin \frac{\pi x}{2}$$

**C** 
$$f(x) = \sin \frac{\pi x}{4}$$

**D** None of these.

Q192. If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is:

**A** 720

**B** 120

**C** 0

**D** None of these.

**Q193.** Which of the following functions from  $A = \{x : -1 \le x \le 1\}$  to itself are bijections?

A 
$$f(x) = \frac{x}{2}$$

**B** 
$$g(x) = \sin\left(\frac{\pi x}{2}\right)$$

$$c h(x) = |x|$$

$$\mathbf{D} \mathbf{k}(\mathbf{x}) = \mathbf{x}^2$$

**Q194.** If  $f: R \rightarrow R$  is given by  $f(x) = x^3 + 3$ , then  $f^{-1}(x)$  is equal to:

A 
$$x^{\frac{1}{3}}-3$$

**B** 
$$x^{\frac{1}{3}} + 3$$

**C** 
$$(x-3)^{\frac{1}{3}}$$

D 
$$_{
m X}+3^{rac{1}{3}}$$

**Q195.** Let  $f(x) = x^2$  and  $g(x) = 2^x$ . Then, the solution set of the equation fog(x) = gof(x) is:

**B** {0}

**C** {0, 2}

**D** None of these.

**Q196.** Let  $f: R \to R$  be given by  $f(x) = \tan x$ . Then,  $f^{-1}(1)$  is:

A 
$$\frac{\pi}{4}$$

B 
$$\left\{ \mathrm{n}\pi + rac{\pi}{4} : \mathrm{n} \in \mathrm{Z} 
ight\}$$

**C** Does not exist.

**D** None of these.

Q197. A function f from the set of natural numbers to the set of integers defined by

f(n)  $\begin{cases} \frac{n-1}{2}, & \text{when n is odd} \\ -\frac{n}{2}, & \text{when n is even} \end{cases}$  is:

A Neither one-one nor onto.

**B** One-one but not onto.

**C** Onto but not one-one.

**D** One-one and onto.

**Q198.** If f: R  $\rightarrow$  (-1, 1) is defined by  $f(x) = \frac{-x|x|}{1+x^2}$ , then f<sup>-1</sup>(x) equals,

1 Mark

1 Mark

**Q199.** Let f: R  $\rightarrow$  R be a function defined by  $f(x) = \frac{e^{|x|} - e^{-x}}{e^x + e^{-x}}$ . Then,

1 Mark

A f is a bijection.

**B** f is an injection only.

**C** f is surjection on only.

- **D** f is neither an injection nor a surjection.
- **Q200.** The function  $f:[0,\infty)\to R$  given by  $f(x)=\frac{x}{x+1}$  is:

1 Mark

- A One-one and onto.
- P. One one but not onto. C Onto but
  - **B** One-one but not onto. **C** Onto but not one-one. **D** Onto but not one-one.
- Q201. Let g(x) = 1 + x [x] and  $f(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0 \\ 1, & x > 0 \end{cases}$  where [x] denotes the greatest integer less than or equal

to x. Then for all x, f(g(x)) is equal to:

**A** x

**B** 1

 $\mathbf{C} f(\mathbf{x})$ 

D g(x)

- **Q202.** If f : A  $\rightarrow$  B given by  $3^{f(x)} + 2^{-x} = 4$  is a bijection, then
  - **A**  $A = \{x \in R : -1 < x < \infty\},$ 
    - $B = \{x \in R : 2 < x < 4\}$

- $egin{aligned} \mathbf{B} \ \mathrm{A} &= \{ \mathrm{x} \in \mathrm{R} : -3 < \mathrm{x} < \infty \}, \ \mathrm{B} &= \{ \mathrm{x} \in \mathrm{R} : 2 < \mathrm{x} < 4 \} \end{aligned}$
- **c**  $A = \{x \in R : -2 < x < \infty\},\$ 
  - $\mathbf{x} \in \mathbf{R} : \mathbf{Z} < \mathbf{x} < \infty_{\mathbf{J}}$
- **D** None of these.

- $\mathrm{B} = \{\mathrm{x} \in \mathrm{R} : 2 < \mathrm{x} < 4\}$
- **Q203.** Let  $A = \{x : -1 \le x \le 1\}$  and  $f : A \rightarrow A$  such that f(x) = x|x|, then f is:
  - **A** A bijection.

**B** Injective but not surjective.

**C** Surjective but not injective.

- **D** Neither injective nor surjective.
- **Q204.** Let  $A=\{x\in R: x\geq 1\}.$  The inverse of the function  $f: A \Rightarrow$  A given by  $f(x)=2^{x(x-1)},$  is:
  - **A**  $(\frac{1}{2})^{x(x-1)}$

**B**  $\frac{1}{2} \{ 1 + \sqrt{1 + 4 \log_2 x} \}$ 

 $c \frac{1}{2} \{ 1 - \sqrt{1 + 4 \log_2 x} \}$ 

- **D** Not defined.
- **Q205.** If a function  $f:[2,\infty)\to B$  defined by  $f(x)=x^2$  4x + 5 is a bijection, then B =
  - $\mathbf{A} R$

- B  $[1,\infty)$
- $\mathbf{C} [4,\infty)$
- $extsf{D} [5,\infty)$
- **Q206.** Let [x] denote the greatest integer less than or equal to x. If f(x) =  $\sin^{-1}x$ , g(x) = [x²] and  $h(x) = 2x, \frac{1}{2} \le x \le \frac{1}{\sqrt{2}}$ , then
  - A  $fogoh(x) = \frac{\pi}{2}$

**B** fogoh(x) =  $\pi$ 

 $\mathsf{C}\ \mathrm{hofog} = \mathrm{hogof}$ 

- **D**  $hofog \neq hogof$
- **Q207.** The function  $f : R \rightarrow R$ ,  $f(x) = x^2$  is:
  - **A** Injective but not surjective.

**B** Surjective but not injective.

**C** Injective as well as surjective.

- **D** Neither injective nor surjective.
- **Q208.**  $f: R \rightarrow R$  given by  $f(x) = x + \sqrt{x^2}$  is:
  - **A** Injective.
- **B** Surjective.
- **C** Bijective.
- **D** None of these.
- **Q209.** The function  $f:\left[\frac{-1}{2},\frac{1}{2},\frac{1}{2}\right] \to \left[\frac{-\pi}{2},\frac{\pi}{2}\right]$ , defined by  $f(x)=\sin^{-1}(3x-4x^3)$ , is:

1 Mark

A Bijection.

- **B** Injection but not a surjection.
- **C** Surjection but not an injection.
- **D** Neither an injection nor a surjection.
- **Q210.** If  $g(x) = x^2 + x 2$  and  $\frac{1}{2}gof(x) = 2x^2 5x + 2$ , then f(x) is equal to:

1 Mark

- **A** 2x 3
- **B** 2x + 3
- **C**  $2x^2 + 3x + 1$
- **D**  $2x^2 3x 1$
- **Q211.** Let  $f:[2,\infty)\to X$  be defined by  $f(x)=4x-x^2$ . Then, f is invertible if X=

1 Mark

- A  $[2,\infty)$
- B  $(-\infty,2]$
- C  $(-\infty,4]$
- $\mathsf{D}\ [4,\infty)$

- **Q212.** Let  $f(x) = \frac{\alpha x}{x+1}, \ x \neq -1$ . Then, for what value of  $\alpha$  is f(f(x)) = x?
  - A  $\sqrt{2}$
- $\mathsf{B} \sqrt{2}$
- **C** 1

- **D** -1
- **Q213.** The inverse of the function  $f:R \to \{x \in R: x < 1\}$  given by  $f(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$  is:

1 Mark

**A**  $\frac{1}{2} \log \frac{1+x}{1-x}$  **C**  $\frac{1}{2} \log \frac{1-x}{1+x}$ 

- **B**  $\frac{1}{2} \log \frac{2+x}{2-x}$
- **D** None of these.

- 1 Mark
- **Q214.** If the set A contains 7 elements and the set B contains 10 elements, then the number one-one functions from A to B is:
  - A  $^{10}\mathrm{C}_7$

B  $^{10}\mathrm{C}_7 \times 7!$  D  $10^7$ 

 $\mathbf{C} \ 7^{10}$ 

- Let f : R ightarrow R be defined as f(x)=  $\begin{cases} 2x, & \text{if } x>3\\ x^2, & \text{if } 1< x\leq 3\\ 3x, & \text{if } x\leq 1 \end{cases}.$  Then, find f(-1) + f(2) + f(4): Q215.
  - **A** 9

**B** 14

**C** 5

- **D** None of these.
- **Q216.** Let  $A = \{x \in R : -1 \le x \le 1\} = B$ . Then, the mapping  $f : A \to B$  given by f(x) = x|x| is:
  - **A** Injective but not surjective.

**B** Surjective but not injective.

**C** Bijective.

- **D** None of these.
- **Q217.** If  $f(x) = \sin^2 x$  and the composite function  $g(f(x)) = |\sin x|$ , then g(x) is equal to:
  - A  $\sqrt{x-1}$
- $\mathbf{B} \sqrt{\mathbf{x}}$
- $\mathbf{c} \sqrt{\mathbf{x}+1}$
- $D \sqrt{x}$

- **Q218.** Let  $f(x) = \frac{1}{1-x}$ . Then,  $\{fo(fof)\}(x)$ :
  - **A** x for all  $x \in R$

**B** x for all  $x \in R - \{1\}$ 

**C** x for all  $x \in R - \{0, 1\}$ 

- **D** None of these.
- **Q219.** Let M be the set of all  $2 \times 2$  matrices with entries from the set R of real numbers. Then, the function f :  $M \rightarrow R$  defined by f(A) = |A| for every  $A \in M$ , is:
  - A One-one and onto.

**B** Neither one-one nor onto.

**C** One-one but-not onto.

- **D** Onto but not one-one.
- **Q220.** The function  $f: R \rightarrow R$  defined by  $f(x) = 6^x + 6^{|x|}$  is:
  - **A** One-one and onto.
- B Many one and onto
- C One-one and into
- n Many one and into.

#### PDF MATERIALS SALES PRICE LIST 2025 -26

| 1 | MATHS MCQS 2 3 5 MARKS QUS ANS PDF                                                                                              | RS.400 |
|---|---------------------------------------------------------------------------------------------------------------------------------|--------|
| - | MATHS EXAMPLER WORD                                                                                                             | RS.200 |
|   | MATHS NOTES & MODEL PAPER WORD                                                                                                  | RS.200 |
|   | MATHS PREVIOUSLY ASKED QUS ANS PDF                                                                                              | RS.200 |
| 2 | PHYSICS MCQS 2 3 5 MARKS QUS ANS PDF                                                                                            | RS.400 |
|   | PHYSICS EXAMPLER                                                                                                                | RS.200 |
|   | PHYSICS NOTES & MODEL PAPER                                                                                                     | RS.200 |
|   | PHYSICS PREVIOUSLY ASKED QUS ANS PDF                                                                                            | RS.200 |
| 3 | CHEMISTRY MCQS 2 3 5 MARKS QUS ANS PDF                                                                                          | RS.400 |
|   | CHEMISTRY EXAMPLER WORD                                                                                                         | RS.200 |
|   | CHEMISTRY NOTES & MODEL PAPER WORD                                                                                              | RS.200 |
|   | CHEMISTRY PREVIOUSLY ASKED QUS ANS PDF                                                                                          | RS.200 |
| 4 | BIOLOGY MCQS 2 3 5 MARKS QUS ANS PDF                                                                                            | RS.400 |
|   | BIOLOGY EXAMPLER WORD                                                                                                           | RS.200 |
|   | BIOLOGY NOTES & MODEL PAPER WORD                                                                                                | RS.200 |
|   | BIOLOGY PREVIOUSLY ASKED QUS ANS PDF                                                                                            | RS.200 |
| 5 | COMP SCIENCE MCQS 2 3 5 MARKS QUS ANS PDF                                                                                       | RS.300 |
| 6 | ACCOUNTS MCQS 2 3 5 MARKS QUS ANS PDF                                                                                           | RS.300 |
| 7 | BUS STUDIES MCQS 2 3 5 MARKS QUS ANS PDF                                                                                        | RS.300 |
| J | OIN MY 12TH CBSE SCIENCE PAID WHAT DAILY SLIP TEST GROUP WITH ANSW ONE TIME FEES RS.3000 TILL 2026 FEXAM. WHATSAPP – 8056206308 | INAL   |

CHECK GOOGLE FOR FREE TEST PAPERS www.ravitestpapers.com & www.ravitestpapers.in