PDF FILES AVAILABLE IN MY WEBSITE - www.ravitestpapers.com

TEST ANSWERS AVAILABLE IN MY BLOG- www.ravitestpapers.in

MY YOUTUBE CHANNEL NAME- RAVI TEST PAPERS

JOIN MY PAID WHATSAPP GROUP 8056206308 FOR DPPS WITH ANSWERS

Q1. Find the angle between the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ if $\vec{a} = 2\hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + \hat{j} - 2\hat{k}$.

3 Marks

3 Marks

3 Marks

- Express the matrix $\begin{bmatrix} 0 & \frac{9}{2} & \frac{9}{2} \\ -\frac{9}{2} & 0 & -\frac{3}{2} \\ -\frac{9}{2} & \frac{3}{2} & 0 \end{bmatrix}$ as the sum of a symmetric and skew symmetric matrix.
- Q3. Find the projection of $\overset{\longrightarrow}{b} + \overset{\longrightarrow}{c}$ on $\overset{\longrightarrow}{a}$ where $\overset{\longrightarrow}{a} = 2\hat{i} 2\hat{j} + \hat{k}, \overset{\longrightarrow}{b} = \hat{i} + 2\hat{j} 2\hat{k}$ and $\overset{\longrightarrow}{c} = 2\hat{i} \hat{j} + 4\hat{k}$.
- Q4. If $\vec{a}=2\hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}-2\hat{k}$ and $\vec{c}=\hat{i}+3\hat{j}-\hat{k}$ and the projection of vector $\vec{c}+\lambda\vec{b}$ on vector \vec{a} is $2\sqrt{6}$, then find the value of λ .
- Q5. Find the equation of the plane passing through the line of intersection of the planes $\vec{r}\cdot\left(\hat{i}+\hat{j}+\hat{k}\right)=10$ and $\vec{r}\cdot\left(\hat{i}+\hat{j}+\hat{k}\right)=10$ and passing through the point (-2,3,1).
- Q6. If \vec{a} and \vec{b} are two vectors such that $\vec{a}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=2\hat{i}-\hat{j}-3\hat{k}$, then find the vector \vec{c} , given that $\vec{a}\times\vec{c}=\vec{b}$ and $\vec{a}\cdot\vec{c}=4$.
- Q7. Find the image of the point (1, 2, 3) in the plane x + 2y + 4z = 38.
- Q8. $\overrightarrow{a} = \hat{i} + 2\hat{j} 3\hat{k}, \overrightarrow{b} = 3\hat{i} \hat{j} + 2\hat{k}, \text{ show that } \left(\overrightarrow{a} + \overrightarrow{b}\right) \text{ and } \left(\overrightarrow{a} \overrightarrow{b}\right) \text{ are perpendicular to each other.}$
- Q9. If $A=\begin{bmatrix}3&1\\-1&2\end{bmatrix}$, show the $A^2-5A+7I=0$. Hence find A $^{-1}$.
- Q10. Find the shortest distance between the following lines: $\vec{r}=3\hat{i}+5\hat{j}+7\hat{k}+\lambda(\hat{i}-2\hat{j}+\hat{k})$ and $\vec{r}=(-\hat{i}-\hat{j}-\hat{k})+\mu(7\hat{i}-6\hat{j}+\hat{k}).$
- Q11. Check whether the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-4}{5} = \frac{y-1}{2} = z$ are skew or not.
- Q12. A relation R on set A = $\{1, 2, 3, 4, 5\}$ is defined as R = $\{(x, y) : |x^2 y^2| < 8\}$. Check whether the relation R is reflexive, symmetric and transitive.
- Q13. Find the value of λ , so that the lines $\frac{1-x}{3} = \frac{7y-14}{\lambda} = \frac{z-3}{2}$ and $= \frac{7-7x}{3\lambda} = \frac{y-5}{1} = \frac{6-z}{5}$ are at right angles. Also, 4 Marks find whether the lines are intersecting or not.
- Q14. Find the value of λ for which the following lines are perpendicular to each other: 4 Marks $\frac{x-5}{5\lambda+2} = \frac{2-y}{5} = \frac{1-z}{-1}; \ \frac{x}{1} = \frac{y+\frac{1}{2}}{2\lambda} = \frac{z-1}{3}$
 - Hence, find whether the lines intersect or not.
- **Q15.** Find the value of $\sin\left(\cos^{-1}\frac{4}{5} + \tan^{-1}\frac{2}{3}\right)$.
- **Q16.** If $\tan^{-1} \frac{x-3}{x-4} + \tan^{-1} \frac{x+3}{x+4} = \frac{\pi}{4}$, then find the value of x.

www.ravitestpapers.in
RAVI MATHS TUITION CENTER

4 Marks

4 Marks

- Q17. Show that the lines $\frac{X+1}{3} = \frac{y+3}{5} = \frac{z+5}{7}$ and $\frac{x-2}{1} = \frac{y-4}{3} = \frac{z-6}{5}$ intersect. Also find their point of intersection.
 - 4 Marks
- Q18. If vector \vec{a} , \vec{b} and \vec{c} are such that $\vec{a} + \vec{b} + \vec{c} = 0$ and $|\vec{a}| = 3$, $|\vec{b}| = 5$ and $|\vec{c}| = 7$ find the angle between \vec{a} 4 Marks and \vec{b} .
- Q19. Let $A = \{1, 2, 3,, 9\}$ and R be the relation in A x A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A x 4 Marks A. Prove that R is an equivalence relation. Also obtain the equivalence class [(2,5)]
- Q20. Solve the following equation for x: $\cos(\tan^{-1}x) = \sin(\cot^{-1}\frac{3}{4})$

4 Marks

12TH CBSE 76 CHAPTERWISE SAMPLE PAPERS (PHY CHEM MAT)

PDF COST RS.750.

RAVI TEST PAPERS & NOTES

WHATSAPP - 8056206308