Q1. Evaluate:

$$\sin^{-1}\left(\sinrac{3\pi}{4}
ight)+\cos^{-1}\left(\cosrac{3\pi}{4}
ight)+ an^{-1}(1)$$

2 Marks

2 Marks

Q2. Prove that $\sin^{-1} \left(2x\sqrt{1-x^2} \right) = 2\cos^{-1} x, \frac{1}{\sqrt{2}} \le x \le 1.$

- Q3. Check if the relation R in the set of real numbers defined as R = {(a, b) : a < b} is (i) symmetric, (ii) 2 N transitive.
 - 2 Marks
- Q4. Check if the relation R on the set $A = \{1, 2, 3, 4, 5, 6\}$ defined as $R = \{(x, y) : y \text{ is divisible by } x\}$ is (i) symmetric (ii) transitive.
- 2 Marks

2 Marks

Q5. Prove that:

$$3\sin^{-1}\mathrm{x}=\sin^{-1}(3\mathrm{x}-4\mathrm{x}^3), \mathrm{x}\in\left[\,-rac{1}{2},rac{1}{2}\,
ight]$$

- **Q6.** A relation R on set A = $\{1, 2, 3, 4, 5\}$ is defined as R = $\{(x, y) : |x^2 y^2| < 8\}$. Check whether the relation **3 Marks** R is reflexive, symmetric and transitive.
- Q7. Show that the relation R in the set A = $\{1, 2, 3, 4, 5\}$ given by R = $\{(a, b) : |a b| \text{ is even}\}$, is an equivalence relation. Show that all the elements of $\{1, 3, 5\}$ are related to each other and all the elements of $\{2, 4\}$ are related to each other. But no element of $\{1, 3, 5\}$ is related to any element of $\{2, 4\}$.
- **Q8.** Three relation R_2 is defined in set $A = \{a, b, c\}$ as follows:

3 Marks

 $R_2 = \{(a, a)\}$

Find whether or not the relation R₂ on A is:

- 1. Reflexive.
- 2. Symmetric.
- 3. Transitive.
- **Q9.** Let A = $\{1, 2, 3\}$, and let R₃ = $\{(1, 3), (3, 3)\}$. Find whether or not the relations R₃ on A is:

3 Marks

- 1. Reflexive.
- 2. Symmetric.
- 3. Transitive.

2ND JAN 2026 TO 10TH FEB 2026

DAILY UPLOAD ONE FULL TEST PAPERS IN MY WHATSAPP GROUP & WEBSITE

www.ravitestpapers.in & www.ravitestpapers.com

JOIN NOW MY PAID WHATSAPP GROUP WITH ANSWERS. ONE TIME FEES RS.1500

WHATSAPP - 8056206308

Q10. Prove the following results

$$\sin\left(\cos^{-1}\frac{3}{5} + \sin^{-1}\frac{5}{13}\right) = \frac{63}{65}$$

- Q11. Three relation R_1 is defined in set $A = \{a, b, c\}$ as follows: $R_1 = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, b), (c, c)\}$ Find whether or not the relation R_1 on A is:
 - 1. Reflexive.
 - 2. Symmetric.
 - 3. Transitive.
- **Q12.** Three relation R_4 is defined in set $A = \{a, b, c\}$ as follows:

 $R_4 = \{(a, b), (b, c), (c, a)\}$

Find whether or not the relation R₄ on A is:

- 1. Reflexive.
- 2. Symmetric.

3 Marks

3. Transitive.

Q13. Test whether the following relations R_2 are:

3 Marks

- 1. Reflexive.
- 2. Symmetric.
- 3. Transitive.

 R_2 on Z defined by $(\mathrm{a},\mathrm{b}) \in \mathrm{R}_2 \Leftrightarrow \, |\mathrm{a}-\mathrm{b}| \leq 5$

Q14. Solve the following equation:

$$2\tan^{-1}(\cos x) = \tan^{-1}(2\csc x)$$

3 Marks

Q15. Write the following function in the simplest form:

$$an^{-1}\left(rac{3a^2x-x^3}{a^3-3ax^2}
ight), a>0; rac{-a}{\sqrt{3}}\leq x\leq rac{a}{\sqrt{3}}$$

5 Marks

3 Marks

Q16. A relation R is defined on a set of real numbers R as

 $R = \{(x, y) : x \cdot y \text{ is an irrational number}\}.$

Check whether R is reflexive, symmetric and transitive or not.

Q17. Prove that the relation R on Z defined by $(a,b) \in R \Leftrightarrow a-b$ is divisible by 5 is an equivalence relation on Z.

5 Marks

MY WHATSAPP GROUP "COMMUNITY" BASED GROUP

only ADMIN control. No one can TRACK others numbers & SEND MESSAGES

UNKNOWN RANDOM GROUPS ANYONE CAN SEE YOUR NUMBER AND SEND UNWANTED LINKS, MESSAGES & PICTURES

IF YOU KNOW GROUP ADMIN
PERSONALLY ONLY JOIN OTHERS GROUP

MY ONLY WHATSAPP NUMBER 8056206308

FREE PAPERS YOU CAN CHECK MY WEBSITES

<u>www.ravitestpapers.com</u>

www.ravitestpapers.in