RAVI TEST PAPERS & NOTES, WHATSAPP 8056206308

Differential Equations previously asked

12th Standard

Maths

Multiple Choice Question

da

- 1) The general solution of the differential equation $\frac{dy}{dx} = e^{x+y}$ is
 - (a) $e^x + e^{-y} = C$ (b) $e^x + e^y = C$ (c) $e^{-x} + e^y = C$ (d) $e^{-x} + e^{-y} = C$
- 2) The order of the differential equation $rac{d^4y}{dx^4}-\sin\Bigl(rac{d^2y}{dx^2}\Bigr)=5$ is
 - (a) 4 (b) 3 (c) 2 (d) not defined
- 3) The number of solutions of $\frac{dy}{dx}=\frac{y+1}{x-1}$, when y(1) = 2 is
 - (a) none (b) one (c) two (d) infinite
- 4) The order of the following, differential equation $rac{d^3y}{dx^3}+x\Big(rac{dy}{dx}\Big)^5=4\log\Big(rac{d^4y}{dx^4}\Big)$ is
 - (a) not defined (b) 3 (c) 4 (d) 5
- 5) The order and degree (if defined) of the differential equation, $\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^3 = x\sin\left(\frac{dy}{dx}\right)$ respectively are
 - (a) 2, 2 (b) 1, 3 (c) 2, 3 (d) 2, degree not defined
- 6) The order and degree of the differential equation $\left(1+3rac{dy}{dx}
 ight)^2=4rac{d^3y}{dx^3}$ respectively are
 - (a) 1, $\frac{2}{3}$ (b) 3, 1 (c) 3, 3 (d) 1, 2
- 7) What is the product of the order and degree of the differential equation $\frac{d^2y}{dx^2}\sin y + \left(\frac{dy}{dx}\right)^3\cos y = \sqrt{y}$?
 - (a) 3 (b) 2 (c) 6 (d) not defined
- Degree of the differential equation $\sin x + \cos\left(rac{dy}{dx}
 ight) = y^2$ is
 - (a) 2 (b) 1 (c) not defined (d) 0
- 9) If m and n respectively, are the order and the degree of the differential equation $\frac{d}{dx}\left[\left(\frac{dy}{dx}\right)\right]^4=0$, then m + n is equal to
 - (a) 1 (b) 2 (c) 3 (d) 4
- 10) The degree of the differential equation $\left[1+\left(rac{dy}{dx}
 ight)^2
 ight]^{rac{3}{2}}=rac{d^2y}{dx^2}$ is
 - (a) 4 (b) $\frac{3}{2}$ (c) 2 (d) Not defined
- 11) The integrating factor of the differential equation. $\left(1-y^2
 ight)rac{dx}{dy}+yx=ay$
 - (a) $\frac{1}{y^2-1}$ (b) $\frac{1}{\sqrt{y^2-1}}$ (c) $\frac{1}{1-y^2}$ (d) $\frac{1}{\sqrt{1-y^2}}$
- 12) The solution of the differential equation $\frac{dx}{x} + \frac{dy}{y} = 0$ is
 - (a) $\frac{1}{x}+\frac{1}{y}=C$ (b) $\log {\rm x} - \log {\rm y} = {\rm C}$ (c) ${\rm xy} = {\rm C}$ (d) ${\rm x} + {\rm y} = {\rm C}$
- The general solution of the differential equation ydx xdy = 0 is
 - (a) xy = C (b) $x = Cy^2$ (c) y = Cx (d) $y = Cx^2$

13 x 1 = 13

$$5x\left(rac{dy}{dx}
ight)^2-rac{d^2y}{dx^2}-6y=logx$$

- 15) Write the degree of the differential equation: $5x\left(rac{dy}{dx}
 ight)^2-rac{d^2y}{dx^2}=0.$
- 16) Write the degree of the differential equation $\left(rac{d^2s}{dt^2}
 ight)^2+\left(rac{ds}{dt}
 ight)^3+4=0$
- Write the degree of the differential equation $x^3 \Big(rac{d^2y}{dx^2}\Big)^2 + x\Big(rac{dy}{dx}\Big)^4 = 0$
- 18) Write the degree of the differential equation : $x\Big(rac{d^2y}{dx^2}\Big)^3+y\Big(rac{dy}{dx}\Big)^4+x^3=0$
- Write the differential equation obtained by eliminating the arbitrary constant C in the equation representing the family of curves xy = C cos x.
- If m and n are the order and degree, respectively of the differential equation $y\Big(\frac{dy}{dx}\Big)^3+x^3\Big(\frac{d^2y}{dx^2}\Big)^2-xy=\sin x \text{, then write value of m+n.}$
- Obtain the differential equation of the family of circles passing through the points (a,0) and (- a, 0).
- 22) Find the solution of the differential equation $rac{dy}{dx}=x^3e^{-2y}$
- 23) Solve the differential equation $\frac{dy}{dx} = e^{x-y} + xe^{-y}$.
- Find the integrating factor of the differential equation $\left(rac{e^{-2\sqrt{x}}}{\sqrt{x}}-rac{y}{\sqrt{x}}
 ight)rac{dx}{dy}=1$.
- 25) Find the general solution of differential equation $rac{dy}{dx}+y=e^{-x}$
- 26) Find the order and degree of the differential equation $\left[1+\left(rac{dy}{dx}
 ight)^2
 ight]^{3/2}=rac{d^2y}{dx^2}$
- Find the particular solution of the differential equation $e^x\tan ydx+(2-e^x)\sec^2ydy=0 \text{ given that } y=\frac{\pi}{4} \text{ when } x=0$
- Write the integrating factor of the following differential equation. $(1+y^2) + (2xy \cot y) \frac{dy}{dx} = 0$.
- 29) Find the value of m and n, where m and n are order and degree of differential equation:

$$rac{4\left(rac{d^{2}y}{dx^{2}}
ight)^{3}}{rac{d^{3}y}{dx^{3}}}+rac{d^{3}y}{dx^{3}}=x^{2}-1$$

- 30) Find the degree of the differential equation $1+\left(rac{dy}{dx}
 ight)^2=x$
- 31) Write the order and degree of the differential equation $x^3 \left(rac{d^2y}{dx^2}
 ight)^2 + x \left(rac{dy}{dx}
 ight)^4 = 0$
- Find the order and degree (if defined) of the differential equation $\frac{d^2y}{dx^2} + x \left(\frac{dy}{dx}\right)^2 = 2x^2 \log\left(\frac{d^2y}{dx^2}\right)$
- Write the sum of the order and the degree of the following differential equation $\frac{d}{dx}\left(\frac{dy}{dx}\right)=5$
- How many arbitrary constants are there in the particular solution of the differential equation $\frac{dy}{dx}=-4xy^2$; y(0) = 1?
- For what value of n is the following a homogeneous differential equation $\frac{dy}{dx} = \frac{x^3 y^n}{x^2 y + xy^2}$?
- 36) Find the integrating factor of the differential equation $x rac{dy}{dx} + 2y = x^2$
- 37) Write the general solution of differential equation $rac{dy}{dx}=e^{x+y}$
- 38) Write the solution of the differential equation $rac{dy}{dx}=2^{-y}$

- Solve the following differential equation $\frac{dy}{dx}=x^3$ cosec y, given that y(0) = 0
- Find the general solution of the differential equation $rac{dy}{dx}=e^{x+y}.$
- Solve the differential equation $\cos\left(rac{dy}{dx}
 ight)=a, (a\in R).$
- 42) Verify that ax 2 + by 2 = 1 is a solution of the differential equation $x\left(yy_2+y_1^2\right)=yy_1$

3 Marks 73 x 3 = 219

- Solve the differential equation : $(x^3 + x^2 + x + 1) \frac{dy}{dx} = 2x^2 + x$: y = 1 when x = 0
- Solve the differential equation : $\frac{dy}{dx}$ + 2y tan x = sin x , given that y =0, when x = $\frac{\pi}{3}$
- Find the particular solution of the differential equation: $\left\{xsin^2\left(rac{y}{x}
 ight)-y
 ight\}dx+xdy=0$ given that $y=rac{\pi}{4}$, when x = 1
- Show that the differential equation $(x^2 y^2) dx + 2xydy = 0$ is homogeneous and solve it.
- verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation : $y \cos y = x : (y \sin y + \cos y + x)y' = y$
- Show that the given differential equation is homogeneous and solve it. $x \frac{dy}{dx} y + x \sin(\frac{y}{x}) = 0$
- Find the general solution of the differential equation $\frac{dy}{dx} = \frac{x+1}{2-y}, (y \neq 2)$
- 50) Solve: $\cos x \frac{dy}{dx} + y = \sin x$, given that y = 2 when x = 0.
- Solve the differential equation : $\left(x^2-1
 ight)rac{dy}{dx}+2xy=rac{2}{x_2-1}$
- 52) $xy\frac{dy}{dx}+y\cot x=4x\csc x, (x+2)(y+2)$, find the solution curve passing through the point (1,-1).
- Solve the differential equation: $(1 + e^{2x}) dy + (1+y^2) e^x sx = 0$, given that when x = 0, y = 1.
- Solve the differential equation : $e^x \tan y dx + (1 e^x) \sec^2 y dy = 0$.
- Solve the differential equation : x dy y dx = $\sqrt{x^2 + y^2}$ dx
- Solve the differential equation : $(x + 1) \frac{dy}{dx} = 2e^{-y}-1$; y = 0 when x = 0.
- Solve the differential equation : $(1 + x^2)$ dy + 2xy dx = cot x dx; $\neq 0$
- Solve the differential equation : $e^x\sqrt{1-y^2}\,dx+rac{y}{x}dy=0, x=0, y=1.$
- From the differential equation represending the family of parabolas having vertes at orgin and axis along positive direction of the x-axis.
- Show that the differential equation $(xe^{x/y} + y)dx = xdy$ is homogeneous. Find the particular solution of this differential equation, given that x = 1 when y = 1.
- 61) Form the differential equation of the family of hyperbolas having foci on the x-axis and centre at orgin.
- Find the particular solution of the differential equation: $log\left(rac{dy}{dx}
 ight)=3x+4y,$ given that y=0 when x=0.
- Find the general solution of the differential equations: $ydx-\left(x+2y^2
 ight)dy=0$.
- Find the differential equation of the family of circles $(x-a)^2+(y-b)^2=r^2$, where a' and b' are arbitrary constants.
- Form the differential equation of the family of curves: $v=rac{A}{r}+B$ where A and B are arbitrary constants.
- 66) Solve the differential equation: $\begin{pmatrix} 1+y^2 \end{pmatrix} \begin{pmatrix} 1+log & x \end{pmatrix} dx + x \quad dy = 0$, given that when x=1,y=1.
- 67) Solve $e^x \sqrt{1-y^2} dx + rac{y}{x} = 0$, given that x=0 when y=1
- 68) Solve the differential equation: $x dy + (y x^3) dx = 0$.
- Find the particular solution of the following equation: $rac{dy}{dx}=1+x^2+y^2+x^2y^2$, given that y=1 when x=0

- Find the particular solution of the differential equation: $rac{dy}{dx}=rac{xy}{x^2+u^2},$ given that y=1, and x=0
- 71) Solve $\left(y+3x^2\right)rac{dx}{dy}=x.$
- 72) Find the particular solution of the differential equation: $\frac{dy}{dx}+x \quad cot \quad y=2y+y^2cot \quad y\,(y\neq 0)\,, \text{ given that } x=0 \text{ when } y=\frac{\pi}{2}.$
- 73) Solve the following differential equation: $xy log\left(\frac{y}{x}\right)dx + \left(y^2 x^2log\left(\frac{y}{x}\right)\right)dy = 0$
- Find the particular solution of the following differential equation: $x \frac{dy}{dx} y + x$ $sin\left(\frac{y}{x}\right) = 0$, given that when $x = 2, y = \pi$.
- Suppose the growth of a population is proportional to the number present. If the population of a colony doubles in 50 months, in how many months will the population becomes triple?
- 76) Find the general solution of the following differential equation : $y-x\frac{dy}{dx}=a\left(y^2+\frac{dy}{dx}\right)$
- If y(x) is a solution of the differential equation $\left(\frac{2+\sin x}{1+y}\right)\frac{dy}{dx}=-\cos x$ and y(0) = 1, then find the value of $y\left(\frac{\pi}{2}\right)$.
- Find the particular solution of the differential equation $\sqrt[e^x]{1-y^2}dx+\left(\frac{y}{x}\right)dx=0$ given that y = 1 when x = 0.
- 79) Solve the following differential equation : $cosecx \log y \frac{dy}{dx} + x^2 y^2 = 0$
- Find the particular solution of the differential equation $x (1 + y^2) dx y (1 + x^2) dy = 0$, given that y = 1, when x = 0.
- Find the particular solution of the differential equation $\frac{dy}{dx} = 1 + x + y + xy$ given that y = 0 when x = 1.
- Find the particular solution of the following differential equation : $\frac{dy}{dx} = 1 + x^2 + y^2 + x^2y^2$, given that y = 1 when x = 0.
- Find the particular solution of the following differential equation : $(x+1)\,\frac{dy}{dx}=2e^{-y}-1; {\rm y}={\rm 0~when~x=0}.$
- Find the particular solution of the following differential equation : $xy\frac{dy}{dx}=(x+2)\,(y+2)\,; \text{y = -1, when x = 1.}$
- Find the particular solution of the following differential equation : $x\left(x^2-1\right)\frac{dy}{dx}=1; \, {\rm y=0} \ {\rm and} \ {\rm x=2}.$
- 86) Solve the differential equation :3e^x tan y dx + (2 e^x)sec² y dy = 0, given that when x = 0, $y = \frac{\pi}{4}$.
- Solve the following differential equation: $(1 + y^2)(1 + \log x) dx + x dy = 0.$
- 88) Solve the differential equation $xrac{dy}{dx}+y=x\cos x+\sin x$, given $y\left(rac{\pi}{2}
 ight)=1$
- Solve the following differential equation : $\left(x^2-1
 ight)rac{dy}{dx}+2xy=rac{2}{x^2-1}, x
 eq 1$
- Solve the differential equation : $\left(1+y^2\right) rac{dy}{dx} + y = e^{ an^{-1}x}$
- Find the particular solution of the following differential equation : $\frac{dy}{dx}-y=\cos x \text{ for x = 0, y = 1}$
- Find the particular solution of the following differential equation given that at x = 2, y = 1 $x \frac{dy}{dx} + 2y = x^2$, $(x \neq 0)$
- 93) Solve $\left(1+x^2
 ight)rac{dy}{dx}+2xy-4x^2=0$ subject to the initial condition y(0) = 0.
- 94) Find the general solution of the differential equation $(1 + \tan y)(dx dy) + 2xdy = 0$
- Check whether the following differential equation is homogeneous or not : $x^2 \frac{dx}{dy} xy = 1 + \cos\left(\frac{y}{x}\right), x \neq 0.$ Find the general solution of the differential equation using substitution y = vx.

- Can $y=ax+\frac{b}{a}$ be a solution of the following differential equation $y=x\frac{dy}{dx}+\frac{b}{\frac{dy}{dx}}$ If no, find the solution of the D.E.
- 97) Solve the following differential equation :

$$\frac{dy}{dx} = \frac{y}{x} + \frac{\sqrt{x^2+y^2}}{x}, x > 0$$

- 98) Find the order and degree if defined : $rac{dy}{dx}-secx=0$
- Verify that the function $x^2=2y^2\log y$ is a solution of the differential equation. $\left(x^2+y^2\right)\frac{dy}{dx}-xy=0$
- 100) Form the differential equation of the family of parabolas having vertex at origin and axis along positive Y-axis.
- Find the particular solution of the differential equation $e^x\sqrt{1-y^2}dx+rac{y}{x}dy=0$ given that y = 1 when x = 0.
- Solve the following differential equation $xy\log\left(\frac{y}{x}\right)dx+\left[y^2-x^2\log\left(\frac{y}{x}\right)\right]dy=0$
- Solve the differential equation $x^2dy + (xy + y^2) dx = 0$ given y = 1, when x = 1
- Show that the differential equation $\frac{dy}{dx}=\frac{y^2}{xy-x^2}$ is homogeneous and also solve it.
- 105) Solve the following differential equation $x^2 dy + y(x + y) dx = 0$
- Solve the differential equation given by $xdy ydx \sqrt{x^2 + y^2}dx = 0$
- 107) Find the general solution of the differential equation $(xy x^2)dy = y^2dx$
- 108) Find the general solution of the differential equation $\left(x^2+1\right) rac{dy}{dx} + 2xy = \sqrt{x^2+4}$
- 109) Solve the differential equation $xdy ydx = \sqrt{x^2 + y^2} dx$
- Solve the differential equation $ydx + (x y^2)dy = 0$
- 111) Find the particular solution of the differential equation $x rac{dy}{dx} y = x^2 e^x$. [given, y(1) = 0].
- Find the general solution of the differential equation $x rac{dy}{dx} = y(\log y \log x + 1)$
- Find the general solution of the following differential equation $x rac{dy}{dx} = y x \sin(rac{y}{x})$
- Find the particular solution of the following differential equation, given that y = 0 when x = $\frac{\pi}{4} \frac{dy}{dx} + y \cot x = \frac{2}{1+\sin x}$
- 115) Find the general solution of the following differential equation $xdy (y + 2x^2)dx = 0$

5 Marks 40 x 5 = 200

- Show that the following differential equation is homogeneous and then solve it. $ydx+x\log |\frac{y}{x}|dy-2xdy=0$
- Solve the following differential equation $(1 + x^2)dy + 2xy dx = \cot x dx$, where $x \neq 0$.
- 118) Obtain the differential equation of all the circles of radius r.
- Find the particular solution of the differential equation $(\tan^{-1} y x) dy = (1 + y^2) dx$, given that when x = 0, y = 0.
- Find the particular solution of the differential equation $\frac{dy}{dx} = \frac{xy}{x^2 + y^2}$ given that y = 1, when x = 0.
- Find the particular solution of the differential equation : $xe^{\frac{y}{x}} y\sin\left(\frac{y}{x}\right) + x\frac{dy}{dx}\sin\left(\frac{y}{x}\right) = 0$ for x = 1, y = 0.
- Find the particular solution of the differential equation : x^2 dy = y(x + y)dx = 0, when x = 1, y = 1.
- Find the particular solution of the differential equation : $x^2 rac{dy}{dx} xy = 1 + \cos\left(rac{y}{x}
 ight), x
 eq 0$, when x = 1, $y = rac{\pi}{2}$

- Find the particular solution of the differential equation $(3xy+y^2)dx+(x^2+xy)dy = 0$ for x = 1, y = 1
- Solve the following differential equation $x\left(x^2-1\right)\frac{dy}{dx}=1, y=0, ext{ when } x=2$
- Find the particular solution of the differential equation $(x-y)\frac{dy}{dx}=(x+2y)$, given that when x = 1, y =0.
- Solve the differential equation $dy = \cos x (2 y \csc x) dx$ given that y = 2 when $x = \pi/2$.
- Solve the following differential equation $\frac{dy}{dx} + y \cot x = 4x \csc x$, given that y = 0 when $x = \pi/2$.
- Solve the differential equation $\left(x^2+1
 ight)rac{dy}{dx}+2xy=\sqrt{x^2+4}$
- Solve the initial value problem $ye^y dx = \left(y^3 + 2xe^y
 ight) dy, y(0) = 1$
- Solve the differential equation $x \sin\left(\frac{y}{x}\right) \frac{dy}{dx} + x y \sin\left(\frac{y}{x}\right) = 0$. Given that x = 1, when $y = \frac{\pi}{2}$.
- Find the general solution of the differential equation $\frac{dy}{dx} + \frac{1}{x} = \frac{e^y}{x}$.
- Solve the differential equation $\left(1+x^2\right) rac{dy}{dx} + 2xy 4x^2 = 0$, subject to the initial condition y(0) =0.
- Solve the differential equation $rac{dy}{dx} rac{2x}{1+x^2}y = x^2 + 2$
- Solve the differential equation $\frac{dy}{dx} = -\left[\frac{x+y\cos x}{1+\sin x}\right]$
- Find the particular solution of the differential equation $\left(1+x^2\right)\frac{dy}{dx}+2xy=\frac{1}{1+x^2}$, given that y = 0, when x = 1.
- Show that (x y)dy = (x + 2y)dx is a homogeneous differential equation. Also, find the general solution of the given differential equation.
- Show that the family of curves for which $\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$, is given by $x^2 y^2 = cx$.
- Solve the differential equation $x\frac{dy}{dx}$ + y = x . cos x + sin x, given that y = 1 when x = $\frac{\pi}{2}$.
- 140) Solve the differential equation $(\tan^{-1} x y) dx = (1 + x^2) dy$.
- Find the general solution of the differential equation $ydx (x + 2y^2)dy = 0$.
- Can y = ax + $\frac{b}{a}$ be a solution of the following differential equation ? $y = x \frac{dy}{dx} + \frac{b}{\frac{dy}{dx}} \dots (*)$ If no, then find the solution of the DE(*)
- Find the particular solution of the differential equation $(1 y^2)(1 + \log |x|) dx + 2xy dy = 0$ given that y = 0, when x = 1.
- Solve the following differential equation $y^2dx + (x^2 xy + y^2)dy = 0$
- Solve the following differential equation ($\cot^{-1} y + x$)dy = $(1 + y^2)$ dx
- Find the particular solution of the differential equation satisfying the given condition. x^2 dy + $(xy + y^2)$ dx = 0, when y(1) = 1
- Solve the differential equation $rac{dy}{dx}+y\cot x=2\cos x$, given that y=0, when $x=rac{\pi}{2}$.
- Solve the differential equation $\left(1+x^2\right) rac{dy}{dx} + y = e^{ an^{-1}x}$
- Solve the following differential equation. $x\cos\left(\frac{y}{x}\right)\frac{dy}{dx}=y\cos\left(\frac{y}{x}\right)+x; x
 eq 0$
- Solve the following differential equation $\frac{dy}{dx}-y=\cos x$, given that if x = 0, y = 1.
- Find the particular solution of the following differential equation, given that x = 2, y = 1 $x\frac{dy}{dx}+2y=x^2, (x\neq 0)$
- Solve the following differential equation $rac{dy}{dx}=1+x^2+y^2+x^2y^2$, given that y = 1, when x = 0.

- 153) Solve the following differential equation. $(1 + y^2) (1 + \log|x|) dx + x dy = 0$.
- 154) Solve the following differential equation. $\left[y-x\cos\left(\frac{y}{x}\right)\right]dy+\left[y\cos\left(\frac{y}{x}\right)-2x\sin\left(\frac{y}{x}\right)\right]dx=0$
- 155) Find the particular solution of the differential equation $(\tan^{-1} y-x) dy = (1+y^2)dx$, given that x = 0, when y = 0.
