RAVI MATHS TUITION & TEST PAPERS, WHATSAPP 8056206308

Applications of the Integrals previously asked

12th Standard

Maths

Multiple Choice Question

 $3 \times 1 = 3$

- Area of the region bounded by the curve $y^2 = 4x$ and the X-axis between x = 0 and x = 1 is
 - (a) $\frac{2}{3}$ (b) $\frac{8}{3}$ (c) 3 (d) $\frac{4}{3}$
- The area of the region bounded by the curve $y^2 = 4x$ and x = 1 is
 - (a) $\frac{4}{3}$ (b) $\frac{8}{3}$ (c) $\frac{64}{3}$ (d) $\frac{32}{3}$
- The area bounded by the curve $y = \sqrt{x}$, Y-axis and between the lines y = 0 and y = 3 is
 - (a) $2\sqrt{3}$ (b) 27 (c) 9 (d) 3

2 Marks

 $1 \times 2 = 2$

Find the area of the ellipse $x^2 + 9y^2 = 36$ using integration.

3 Marks

 $21 \times 3 = 63$

- Using integration find the area of the circle $x^2 + y^2 = 16$ which is exterior to the parabola $y^2 = 6x$.
- Find the area of the region lying between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$, where a > 0.
- Using integration find the area of the region bounded by the parabola $y = x^2$ and the line y = x
- Using integration find the area of the region bounded by the parabola $y^2 = 4x$ and the circle $4x^2 + 4y^2 = 9$.
- Find the area of the region included between the parabola $y = \frac{3}{4}x^2$ and the line 3x 2y + 12 = 0.
- Find the area bounded by the lines x + 2y = 2, y x = 1 and 2x + y = 7.
- Find the area of the region included between the parabola $y^2 = x$ and the line x + y = 2.
- Using integration find the area of the region: $\{(x, y): 9x^2 + y^2 \le 36 \text{ and } 3x + y \ge 6 \}$.
- Using integration find the area of the following region:

$$\left\{(x,\quad y): rac{x^2}{9}+rac{y^2}{4}\leq rac{x}{3}+rac{y}{2}
ight\}$$

- Using integration find the area of the following region: $\{(x, y): |x+2| \leq y \leq \sqrt{20-x^2}\}$
- Sketch the graph of y = |x + 3| and evaluate the area under the curve y = |x + 3| above x-axis and between x = -6 to x = 0.
- USing the method of integration find the area of the region bounded by the lines 3x 2y + 1 = 0, 2x + 3y 21 = 0 and x 5y + 9 = 0.
- 17) Find the area of the region $\{(x, y): x^2+y^2 \leq 4, x+y \geq 2\}$
- Find the area of the region bounded by the curve $x^2 = 4y$ and the line x = 4y 2.
- Using integration, find the area of the region enclosed between the two circles $x^2 + y^2 = 4$ and $(x-2)^2 + y^2 = 4$.
- Using integration, find the area of the region enclosed by the curves $y^2 = 4x$ and y = x.
- Using integration, find the area of the triangular region whose sides have the equations: y = 2x + 1, y = 3x + 1 and x = 4.
- Using the method of integration, find the area of the region bounded by the lines: 3x 2y + 1 = 0, 2x + 3y 21 = 0 and x 5y + 9 = 0
- Find the area included between the curves $y^2 = 4ax$ and $x^2 = 4ay$, a > 0.

- Find the area of the region bounded by the y-axis, $y = \cos x$ and $y = \sin x$, $0 \le x \le \frac{\pi}{2}$.
- Using integration, find the area of the region bounded by y=mx (m > 0), x = 1, x = 2 and the X-axis.

5 Marks

- Draw the graph of y = |x+1| and using integration find the area below y = |x+1| above x-axis and between x = -4 to x = 2.
- The figure shows the part of the curve $y = \frac{10}{x^2}$. Find the area of region A. Also, find the value of p, for which region B and region Care equal in area.

- Using integration, fmd the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle $x^2 + y^2 = 32$
- Draw the graphs of y = sin x and y = cos x. Find the area of the region bounded by the X-axis $y = \cos x$ and $y = \sin x$, where $0 \le x \le \frac{\pi}{2}$
- Find the area of the region bounded by the curve $4x^2 + y^2 = 36$ using integration.
