PDF FILES AVAILABLE IN MY WEBSITE - www.ravitestpapers.com

TEST ANSWERS AVAILABLE IN MY BLOG- www.ravitestpapers.in

MY YOUTUBE CHANNEL NAME- RAVI TEST PAPERS

JOIN MY PAID WHATSAPP GROUP 8056206308 FOR DPPS WITH ANSWERS

Questions: 60 | Time: 01:00 hh:mm | Marks: 60

From the set {1, 2, 3, 4, 5}, two numbers a and b (a \neq b) are chosen at random. The probability that $\frac{a}{b}$ Q1. 1 Mark is an integer is:

$$\mathbf{A} \ \frac{1}{3}$$

$$\mathbf{B} \frac{1}{4}$$

$$\mathbf{C} \frac{1}{2}$$

D
$$\frac{3}{5}$$

The distance of the point (2, 3, 4) from the plane $\vec{
m r}$. $(3\hat{
m i}-6\hat{
m j}+2\hat{
m k})=-11$ Q2.

1 Mark

A 0 units

B 1 units

C 2 units

 $D = \frac{15}{7}$ units

The domain of the function $f(x) = \sin^{-1}(2x)$ is **Q3**.

1 Mark

A
$$[0,1]$$
 C $\left[-\frac{1}{2},\frac{1}{2}\right]$

$$B \begin{bmatrix} -1, 1 \end{bmatrix}$$

Q4. The principal value of $an^{-1} \left(an rac{3\pi}{5} \right)$ is:

1 Mark

A
$$\frac{2\pi}{5}$$

B
$$\frac{-2\pi}{5}$$

$$\mathbf{C} = \frac{3\pi}{5}$$

D
$$\frac{-3}{5}$$

Q5. The value of k so that f defined by f(x) =

1 Mark

 $\mathbf{A} 0$

C 1

D2

The two lines x = ay + b, z = cy + d; and x = a'y + b', z = c'y + d' are perpendicular to each other, if: Q6.

1 Mark

A
$$rac{\mathrm{a}}{\mathrm{a}'}+rac{\mathrm{c}}{\mathrm{c}'}=1$$

$$egin{aligned} \mathbf{B} & rac{\mathrm{a}}{\mathrm{a}'} + rac{\mathrm{c}}{\mathrm{c}'} = -1 \ \mathbf{D} & \mathrm{aa'} + \mathrm{cc'} = -1 \end{aligned}$$

$$\mathbf{C} \ \mathbf{a}\mathbf{a}' + \mathbf{c}\mathbf{c}' = 1$$

D
$$aa' + cc' = -1$$

If $|ec{\mathbf{a}}|=4$ and $-3\leq\lambda\leq2,$ then, $|ec{\lambda}\mathbf{a}|$ lies in: Q7.

1 Mark

 $\int rac{\mathrm{e}^{\mathrm{x}}(1+\mathrm{x})}{\cos^2(\mathrm{x}\mathrm{e}^{\mathrm{x}})}d\mathrm{x}$ is equal to **Q8**.

1 Mark

A
$$tan(xe^x) + c$$

$$B \cos(xe^x) + c$$

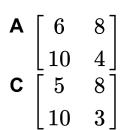
$$\mathbf{C} \cot(\mathbf{e}^{\mathbf{x}}) + \mathbf{c}$$

D
$$\tan[e^{x}(1+x)] + c$$

The general solution of the differential equation $x \, dy - (1 + x^2) \, dx = dx$ is: Q9.

1 Mark

$$\mathbf{A} \ \mathbf{y} = 2\mathbf{x} + \frac{\mathbf{x}^3}{3} + \mathbf{C}$$


$$\mathsf{B} \; \mathrm{y} = 2\log \mathrm{x} + \tfrac{\mathrm{x}^3}{3} + \mathrm{C}$$

$$\mathbf{C} \ \mathbf{y} = \frac{\mathbf{x}^2}{2} + \mathbf{C}$$

D
$$y = 2 \log x + \frac{x^2}{2} + C$$

Q10. If $\begin{bmatrix} 3 & 4 \\ 5 & 2 \end{bmatrix}$ and 2A + B is a null matrix, then B is equal to:

1 Mark

$$\begin{array}{c|c} \mathbf{B} & -6 & -8 \\ -10 & -4 \end{array}$$

$$\mathbf{D} \begin{bmatrix} -5 & -8 \\ -10 & -3 \end{bmatrix}$$

Q11.
$$an^1 3 + an^{-1} \lambda = an^{-1} \left(rac{3+\lambda}{1-3\lambda}
ight)$$
 is valid for what values of λ ?

es of λ ?

$$oldsymbol{\lambda} \lambda \in \left(-rac{1}{3},rac{1}{3}
ight)$$

B
$$\lambda>rac{1}{3}$$

C
$$\lambda < rac{1}{3}$$

D All real values of λ

Q12.
$$\int \frac{1}{7+5\cos x} dx =$$

1 Mark

1 Mark

1 Mark

$$oldsymbol{\mathsf{A}} \; frac{1}{\sqrt{6}} an^{-1} \left(frac{1}{\sqrt{6}} an frac{\mathtt{x}}{2}
ight) + \mathrm{C}$$

$$\mathsf{B} \, \, frac{1}{\sqrt{3}} \mathrm{tan}^{-1} \left(frac{1}{\sqrt{3}} \mathrm{tan} \, frac{\mathrm{x}}{2}
ight) + \mathrm{C}$$

$$\mathbf{C} \, \, frac{1}{4} an^{-1} \left(\, an \, frac{\mathrm{x}}{2}
ight) + \mathrm{C}$$

$$\mathbf{D} \, \, \frac{1}{7} \tan^{-1} \left(\, \tan \frac{\mathbf{x}}{2} \right) + \mathbf{C}$$

Q13. Choose the correct answer from the given four options.

Total number of possible matrices of order 3 × 3 with each entry 2 or 0 is:

A 9

B 27

C 81

D 512

Q14. The normal to the curve $x^2 = 4y$ passing through (1, 2) is:

A
$$x + y = 3$$

B
$$x - y = 3$$

$$C x + y = 1$$

D
$$x - y = 1$$

Q15. The function $f(x) = 2x^3 - 15x^2 + 36x + 4$ is maximum at $x = 15x^2 + 36x + 4$

1 Mark

A 3

B 0

C 4

D 2

Q16. If $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, then B equals:

1 Mark

A $I\cos\theta + J\sin\theta$

 $oldsymbol{\mathsf{B}}\ \mathrm{I}\sin heta+\mathrm{J}\cos heta$

C $I\cos\theta - J\sin\theta$

 $\mathbf{D} - \mathbf{I}\cos\theta + \mathbf{J}\sin\theta$

Q17. A and B draw two cards each, one after another, from a pack of well-shuffled pack of 52 cards. The probability that all the four cards drawn are of the same suit is

A $\frac{44}{85}$

B
$$\frac{11}{85 \times 49}$$

C $\frac{13\times24}{17\times25\times49}$

D None of these.

Q18. if x lies in the interval [0, 1], then the least value of $x^2 + x + 1$ is :

1 Mark

A 3

 $\mathbf{B} \stackrel{3}{\stackrel{1}{\circ}}$

C 1

D none of these.

Q19. The area bounded by the curve $y = 4x - x^2$ and the x-axis is:

1 Mark

A $\frac{30}{7}$ sq. units

B $\frac{31}{7}$ sq. units

C $\frac{32}{3}$ sq. units

 $\mathbf{D} \stackrel{\dot{34}}{=} \mathrm{sq.}$ units

Q20. Choose the correct answer from the given four options.

1 Mark

The solution of
$$\frac{dy}{dx} + y = e^{-x}$$
, y(0) = 0 is:

$$\textbf{A} \ y = e^{-x}(x-1)$$

$$\textbf{B} \ y = xe^x$$

C
$$y = xe^{-x} + 1$$

$$\mathbf{D} \ \mathbf{y} = \mathbf{x} \mathbf{e}^{-\mathbf{x}}$$

Q21. Choose the correct answer in each of the following:

1 Mark

Suppose that two cards are drawn at random from a deck of cards. Let X be the number of aces obtained. Then the value of E(X) is:

A $\frac{37}{221}$

JOIN 10TH/12TH CBSE PAID WHATS PP GROUP TODAY WITH PDF ANSWERS. ONE TIME FEES RS.1000 TILL FINAL BOARD EXAM

	A 45°	B 30°	C 60°	D 90°	
Q23.	By graphical method, the Maximize $Z = 3x_1 + 5x_2$ Subject to $3x_1 + 2x_2 \le 18$ $x_1 \le 4$ $x_2 \le 6$ $x_1 \ge 0$, $x_2 \ge 0$, is:	e solution of linear progran	nming problem		1 Mark
	A $x_1 = 2$, $x_2 = 0$, $Z = 6$ C $x_1 = 4$, $x_2 = 3$, $Z = 27$		B $x_1 = 2$, $x_2 = 6$, $Z = 36$ D $x_1 = 4$, $x_2 = 6$, $Z = 42$		
Q24.		ver from the given four opt $ec{\mathbf{a}}$ such that $ec{\mathbf{a}} + ec{\mathbf{b}} + ec{\mathbf{c}} = 0$		$-ec{\mathbf{b}}\cdotec{\mathbf{c}}+ec{\mathbf{c}}\cdotec{\mathbf{a}}$ is: \mathbf{D} None of these.	1 Mark
Q25.	A function f from the set	of natural numbers to inte	gers defined by $\mathrm{f(n)} = \left\{ ight.$	$\frac{n-1}{2}$, when n is odd $-\frac{n}{2}$, when n is even	1 Mark
	A Neither one-one nor onto. C Onto but not one-one. B One-one but not onto. D One-one and onto both.				
Q26.	If the binary operation \odot is defined on the set Q † of all positive rational numbers by $a\odot b=rac{ab}{4}$.				1 Mark
	Then, $3\odot\left(rac{1}{5}\odotrac{1}{2} ight)$ is equal to:				
	A $\frac{3}{160}$	B $\frac{5}{160}$	$c_{\frac{3}{10}}$	D $\frac{3}{40}$	
Q27.	The lines $\frac{\mathrm{x}}{1}=\frac{\mathrm{y}}{2}=\frac{\mathrm{z}}{3}$ a	and $rac{\mathrm{x-1}}{-2}=rac{\mathrm{y-2}}{-4}=rac{\mathrm{z-3}}{-6}$ ar	re: S		1 Mark
	A Coinicident.	B Skew.	c Intersecting.	D Parallel.	
Q28.					1 Mark
	The position vector of the point which divides the join of points $2\vec{a}-3\vec{b}$ and $\vec{a}+\vec{b}$ in the ratio 3 : 1 is:				
	A $\frac{3\vec{a}-2\vec{b}}{2}$ C $\frac{3\vec{a}}{4}$	5.1	$\begin{array}{c} \mathbf{B} \frac{7\vec{\mathbf{a}} - 8\vec{\mathbf{b}}}{4} \\ \mathbf{D} \frac{5\vec{\mathbf{a}}}{4} \end{array}$		
Q29.	$\begin{bmatrix} 2 & -1 \end{bmatrix}$	449	4		1 Mark
	If $A = egin{bmatrix} 2 & -1 \ 3 & -2 \end{bmatrix}$, then A^n =				
	$oldsymbol{A}{A}=egin{bmatrix}1&0\0&1\end{bmatrix},$ if n is an even natural number $oldsymbol{B}{A}=egin{bmatrix}1&0\0&1\end{bmatrix},$ if n is an odd natural number				
	$oldsymbol{C} \mathbf{A} = egin{bmatrix} 0 & 1 \ -1 & 0 \ 0 & 1 \end{bmatrix}, ext{if n}$		D None of these.		
Q30.	If the function $f(x)=rac{2x-\sin^{-1}x}{2x+ an^{-1}x}$ is continuous at each point of its domain, then the value of f(0) is:				1 Mark
	A 2	B $\frac{1}{3}$	$C = \frac{1}{3}$	$D \ \frac{2}{3}$	
Q31.	Let * be a binary operation N is:	on on N defined by a * b =	a + b + 10 for all a, b ∈ N	. The identity element for *	1 Mark
	A -10	B 0	C 10	D Non-existent.	
Q32.	Choose the correct answer from the given four options. The corner points of the feasible region determined by the system of linear constraints are (0, 0), (0, 40), (20, 40), (60, 20), (60, 0). The objective function is $Z = 4x + 3y$. JOIN 10TH/12TH CBSE PAID WHATSAPP GROUP TODAY WITH PDF ANSWERS. ONE TIME FEES RS.1000 TILL FINAL BOARD EXAM				1 Mark

The angle between the straight lines $\frac{x+1}{2} = \frac{y-2}{5} = \frac{z+3}{4}$ and $\frac{x-1}{1} = \frac{y+2}{2} = \frac{z-3}{-3}$ is:

1 Mark

Q22.

Compare the quantity in Column A and Column B.

Column A

Column B

325

Maximum of Z

A The quantity in column A is greater.

C The two quantities are equal.

B The quantity in column B is greater.

D The relationship can not be determined on the basis of the information supplied.

Q33. $\frac{\sin x}{\sin x + \cos x} \ dx$ equals to:

 $\mathbf{A} \pi$

 $\mathbf{C} \frac{\pi}{3}$

 $D \frac{\pi}{4}$

Q34. A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement, then the probability that exactly two of the three balls were red, the first ball being red, is:

A $\frac{1}{3}$

D $\frac{5}{28}$

Q35. The radius of a sphere is increasing at the rate of 0.2cm/sec. The rate at which the volume of the sphere increase when radius is 15cm, is:

A $12\pi \text{ cm}^3/\text{sec.}$

B $180\pi \,\mathrm{cm}^3/\mathrm{sec}$.

C $225\pi \text{ cm}^3/\text{sec.}$

D $3\pi \text{ cm}^3/\text{sec.}$

The function $f: R \rightarrow R$, $f(x) = x^2$ is: Q36.

A Injective but not surjective.

B Surjective but not injective.

C Injective as well as surjective.

D Neither injective nor surjective.

Q37. $\int_{0}^{x} \frac{1}{1+\cot^{3}x} dx$ is equal to:

 $\mathbf{A} 0$

B 1

 $D \frac{\pi}{4}$

The function f : A \rightarrow B defined by f(x) = -x² + 6x-8 is a bijection if, Q38.

A $A=(-\infty,3]$ and $B=(-\infty,1]$

B $\mathrm{A}=[-3,\infty)$ and $\mathrm{B}=(-\infty,1]$

C $A=(-\infty,3]$ and $B=[1,\infty)$

D $A = [3, \infty)$ and $B = [1, \infty)$

The minimum value of $x \log_e x$ is equal to: Q39.

A e

 $\mathbf{C} \frac{-1}{\mathbf{e}}$

D 2e

If a matrix A is such that $3A^3 + 2A^2 + 5A + I = 0$, then A^{-1} equal to: Q40.

1 Mark

A $-(3A^2 + 2A + 5)$ **B** $3A^2 + 2A + 5$

D None of these.

Q41.

 $\mathbf{A} \frac{1}{3} \tan^{-1} \left(\frac{1}{\sqrt{3}} \right)$

B $\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{1}{\sqrt{3}}\right)$

 $\mathsf{c} \sqrt{3} \tan^{-1} \left(\sqrt{3} \right)$

D $2\sqrt{3} \tan^{-1} \sqrt{3}$

The area included between the parabolas $y^2 = 4x$ and $x^2 = 4y$ is (in square units): Q42.

1 Mark

A $\frac{4}{3}$

If A is an invertible matrix of order 3, then which of the following is not true: Q43.

1 Mark

 $\mathbf{A} |\operatorname{adj} A| = |A|^2$

 $B (A^{-1})^{-1} = A$

C If BA = CA, than $B \neq C$, where B and C are square matrices of order 3

 ${f D} \; ({
m AB})^{-1} = {
m B}^{-1} {
m A}^{-1}, {
m where}$ $B \neq \left\lceil b_{ij} \right\rceil_{3 \times 3}$ and $|B| \neq 0$

Q44.

1 Mark

If $f(x) = \frac{1}{1-x}$, then the set of points discontinuity of the function f(f(f(x))) is: **A** {1} **C** {-1, 1} **B** {0,1} **D** None of these Q45. The circumference of a circle is measured as 28cm with an error of 0.01cm. The percentage error in 1 Mark the area is: **B** 0.01**D** None of these Q46. 1 Mark $\sin |\mathbf{x}| \mathrm{d}\mathbf{x}$ is equal to: **A** 1 **B** 2 **C** -1 **D** -2 If $A=\begin{bmatrix}1&2&x\\0&1&0\\0&0&1\end{bmatrix}$ and $B=\begin{bmatrix}1&-2&y\\0&1&0\\0&0&1\end{bmatrix}$ and $AB=I_3$, then x + y equals: Q47. 1 Mark **C** 2 **A** 0 **D** None of these. **B** -1 The value of $an\left\{\cos^{-1}\frac{1}{5\sqrt{2}}-\sin^{-1}\frac{4}{\sqrt{17}}\right\}$ is: Q48. 1 Mark $\mathbf{A} \quad \frac{\sqrt{29}}{2}$ The solution of the differential equation $xdy + ydy = x^2y dy - y^2x dx$, is: Q49. 1 Mark **A** $x^2 - 1 = C(1 + y^2)$ **B** $x^2 + 1 = C(1 + y^2)$ **C** $x^3 - 1 = C(1 + y^3)$ **D** $x^3 + 1 = C(1 - v^3)$ If the constraints in a linear programming problem are changed: Q50. 1 Mark A The problem is to be re-evaluated. **B** Solution is not defined. **C** The objective function has to be modified. **D** The change in constraints is ignored. The differention equation $\frac{\mathrm{d}y}{\mathrm{d}x} + Py = Qy^n, n > 2$ can be reduced to linear from by substituting: Q51. 1 Mark $\begin{array}{l} \textbf{A} \ z = y^{n-1} \\ \textbf{C} \ z = y^{n+1} \end{array}$ $\begin{array}{l} \textbf{B} \ z = y^n \\ \textbf{D} \ z = y^{1-n} \end{array}$ If $\sin(x + y) = \log(x + y)$, then $\frac{dy}{dx}$ Q52. 1 Mark **A** 2 **C** 1 If $x=f(t)\cos t-f(t)\sin t$ and $y=f(t)\sin t+f(t)\cos t$, then $\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2+\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2=0$ Q53. 1 Mark A f(t) - f(t)**B** $\{f(t) - f(t)\}^2$ $c \{f(t) + f(t)\}^2$ **D** None of these Choose the correct answer from the given four options: 1 Mark The maximum value of $\sin x \cdot \cos x$ is: D $2\sqrt{2}$ $\mathbf{C} \sqrt{2}$ Q55. The corner points of the feasible region determined by the following system of linear inequalities: 1 Mark $2x + y \le 10$, $x + 3y \le 15$, $x, y \ge 0$ are (0, 0), (5, 0), (3, 4) and (0, 5). Let Z = px + qy, where p.q > 0. Condition on p and q so that the maximum of Z occurs at both (3, 4) and (0, 5) is:

C 2

C p = 3q

 $\mathbf{D} \mathbf{q} = 3\mathbf{q}$

D 4

1 Mark

B p = 2q

B -1

Let $f(x) = 2x^3 - 3x^2 - 12x + 5$ on [-2, 4]. The relative maximum occurs at x =

AP=q

A -2

Q56.

Q57. The least and greatest value of $f(x) = x^3 - 6x^2 + 9x$ in [0, 6], are.

A 3 .4

B 0.4

C 0, 3

D 3, 6

1 Mark

Q58. The value of k which makes $f(x)=\begin{cases} \sin\frac{1}{x}, & x\neq 0\\ k, & x=0 \end{cases}$ continuous at x = 0, is:

1 Mark

A 8

B 1

C -1

D None of these

Q59. The general solution of the dofferential equation $\frac{\mathrm{d}y}{\mathrm{d}x} = e^{x+y}$ is:

1 Mark

A $e^{x} + e^{-y} = C$

 $\mathbf{B} \, \mathbf{e}^{\mathbf{x}} + \mathbf{e}^{\mathbf{y}} = \mathbf{C}$

 $\mathbf{C} \, \mathrm{e}^{-\mathrm{x}} + \mathrm{e}^{\mathrm{y}} = \mathrm{C}$

 ${f D} \ {f e}^{-{f x}} + {f e}^{-{f y}} = {f C}$

Q60. If $V=rac{4}{3}\pi r^3,$ at What rate in cubic units is V increasing when $r=10rac{dr}{dt}=0.01?$

1 Mark

A π

B 4π

C 40π

D $4=rac{\pi}{3}$

JOIN 10TH & 12TH PAID WHATSAPP GROUP

1ST DEC 2025 TO FEB 2026

UPLOAD DAILY ONE SUBJECT FULL TEST PAPER

TEST GROUP FEES RS. 1000 ONLY

ALL TEST PAPERS WITH ANSWERS UPLOAD IN YOUR WHATSAPP

FREE USERS CHECK ALL SAME PAPERS UPLOAD IN MY WEBSITES. YOU CAN DOWNLOAD AND PRACTICE

RAVI TEST PAPERS & NOTES VHATSAPP – 8056206308

CHECK FREE TEST PAPERS www.ravitestpapers.com & www.ravitestpapers.ir