RAVI MATHS TUITION & TEST PAPERS, WHATSAPP 8056206308

Relations and Functions previously asked

12th Standard

Maths

Multiple Choice Question $7 \times 1 = 7$

- 1) A function $f: R \to R$ defined as $f(x) = x^2 4x + 5$ is
 - (a) injective but not surjective (b) surjective but not injective. (c) both injective and surjective.
 - (d) neither injective nor surjective.
- 2) Select the correct option out of the four given options

Let R be a relation in the set N given by

 $R = \{(a, b): ab - 2, b > 6\}$

Then,

- (a) $(8, 7) \in R$ (b) $(6,8) \in R$ (c) $(3,8) \in R$ (d) $(2,4) \in R$
- 3) Let A (3,5). Then, number of reflexive relations on A is
 - (a) 2 (b) 4 (c) 0 (d) 8
- A relation R in set $A = \{1,2,3\}$ is defined as $R = \{(1,1), (1, 2), (2, 2), (3, 3)\}$. Which of the following ordered pair in R shall be removed to make it an equivalence relation in A?
 - (a) (1, 1) (b) (1, 2) (c) (2, 2) (d) (3, 3)
- Let the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}$, given by $R = \{(a, b): ab \text{ is a multiple of 4}\}$. Then [1], the equivalence class containing 1, is
 - (a) $\{1, 5, 9\}$ (b) $\{0,1,2,5\}$ (c) ϕ (d) A
- The function $f: R \rightarrow R$ defined as $f(x) = x^3$ is
 - (a) one-one but not onto (b) not one-one but onto (c) neither one-one nor onto (d) both one-one and onto
- Let $A = \{1,2,3\}$, $B = \{4,5,6,7\}$ and let $f = \{(1,4), (2,5), (3,6)\}$ be a function from A to B. Based on the given information f is best defined as
- (a) surjective function (b) injective function (c) bijective function (d) None of the above

Assertion and reason $1 \times 1 = 1$

- Assertion (A): The relation f: $\{1, 2, 3, 4\} \rightarrow \{x, y, z, p\}$ defined by
 - $f = \{(1, x), (2, y), (3, 2)\}$ is a bijective function.

Reason (R): The function $f: \{1, 2, 3\} \rightarrow \{x, y, z, p\}$ such that $f = \{(1, x), (2, y), (3, z)\}$ is one-one.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true, but R is not the correct explanation of A.
- (c) A is true and R is false.
- (d) A is false, but R is true.

2 Marks

- If the binary operation * on the set of integers Z is defined by $a*b=a+3b^2$ then find the value of 2*4.
- If the binary operation * defined on Q is defined as a*b=2a+b-ab, for all $a, b \in Q$, find the value of 3*4.
- The binary operation *: R x $R \rightarrow R$ is defined as a * b = 2a+b. Find (2 * 3)*4.
- For the set A = {1, 2, 3} define a relation R in the set A is follows:

 R = {(1,1), (2, 2), (3, 3), (1, 3)}. Write the ordered pairs to be added to R to make it the smallest equivalence relation.
- State the reason why the Relation R = [(a, b) : $a \le b^2$ on the set R of the real numbers is not reflexive
- 14) Define Reflexive. Give one example.

- Define symmetric Relation. Give one example
- Define Transitive Relation. Give one example.
- Let $f: X \to Y$ be a function Define a relation R on X given be R=[(a,b); (f(b))] Show that R is an equivalence relation?
- 18) If the binary operation * on the set of integers Z is defined by $a*b = a + 3b^2$ then find the value of 8*3
- 19) If $R = \{(x, y) : x + 2y = 8\}$ is a relation on N, write the range of R.
- Let $R = \{(a, a^3) : a \text{ is a prime number less than 5}\}$ be a relation. Find the range of R.
- How many reflexive relations are possible in a set A whose n(A)=3?
- Check whether the function f:R \rightarrow R defined as f(x) = x^3 is one-one or not.
- A relation R is $S = \{1,2,3\}$ is defined as $R = \{(1, 1), (1, 2), (2, 2), (3,3)\}$. Which element(s) of relation R be removed to make R an equivalence relation?
- A relation R in the set of real numbers R defined as $R = \{(a, b): \forall a = b\}$ is a function or not. Justify.
- If $R = \{(x, y): x + 2y = 8\}$ is a relation on N, then write the range of R
- 26) If A $\{1, 2, 3\}$, B = $\{4, 5, 6, 7\}$ and f = $\{(1, 4), (2, 5), (3, 6)\}$ is a function from A to B. State whether fis one-one or not.
- A function f: A \rightarrow B defined as f (x) = 2x is both one-one and onto. If A = {1, 2, 3, 4}, then find the set B.
- Prove that the function f is surjective, where f: N \rightarrow N such that $\int_{f(n)}^{n+1} \frac{n+1}{2}$, if n is odd

 $f(n) = \left\{ egin{array}{ll} rac{n+1}{2}, & ext{ if } n ext{ is odd} \ rac{n}{2}, & ext{ if } n ext{ is even} \end{array}
ight.$

Is the function injective? Justify your answer.

 $6 \times 3 = 18$

- Let N denote the set of all natural numbers and R be the relation on $N \times N$ defined by: (a, b)R(c, d) if ad(b+c)(a+d) = bc(a + d) Show that R is an equivalence relation.
- Show that the function $f: R \to R$ defined by: $f(x) = \frac{4x-3}{5}, x \in R$ is one-one and onto function.
- Check whether the relation R in the set Z of integers defined as R = {(a, b):a + b is "divisible by 2"} is reflexive, symmetric or transitive. Write the equivalence class containing 0 i.e. [0].
- Check if the relation R in the set R of real numbers defined as R = {(a, b): a < b} is (i) symmetric, (ii) transitive
- If f: R \rightarrow R is the function defined by f (x) = 4x³ +7, then show that f is a bijection.
- Show that the relation S defined on set N x N by (a, b) S (c, d) \Rightarrow a + d = b + c is an equivalence relation.

5 Marks $19 \times 5 = 95$

- Let Z be the set of all integers and R be the relation on Z defined as $R = \{(a,b) : a,b \in Z, and (a-b) \text{ is divisible by 5}\}$. Prove that R is an equivalence relation.
- Show that the relation S in the set R of real numbers, defined as $S = \{(a, b): a,b \in \mathbb{R} \text{ and } a \leq b^3\}$ is neither reflexive, nor symmetric nor transitive.
- Let $A = \{1, 2, 3, r, 9\}$ and R be the relation in A x A defined by (a, b) R (c, Ii) if a + d = b + c for (a, b), (e, Ii) in A x A. Prove that R is an equivalence relation. Also obtain the equivalence class [(2, 5)]
- Show that the relation R in the Set A = $\{1, 2, 3, 4, 5\}$ given by R = $\{(a, b) : Ia b I \text{ is divisible by } 2\}$ is an equivalence relation. Write all the equivalence classes of R.
- Check whether the relation R defined in set $A = \{1.2,3, ..., 13, 14\}$ as $R = \{(x, y) : 3x y = 0\}$ is reflexive, symmetric and transitive.

- Let $A = \{1, 2, 3, ..., 9\}$ and R be the relation in A x A defined by (a, b)R(c, d), if a + d = b + c for (a, b), (c, d) in A x A. Prove that R is an equivalence relation and also obtain the equivalence class [(2, 5)].
- Show that the relation R in the set $A = \{1, 2, 3, 4, 5\}$ given by $R = \{(a, b) : |a b| \text{ is divisible by } 2\}$ is an equivalence relation. Write all the equivalence classes of R.
- Let $A = \{x \in Z : 0 \le x \le 12\}$ Show that $R = \{(a, b) : a, be A, |a b| \text{ is divisible by 4}\}$ is an equivalence relation. Find the set of all elements related to 1. Also, write the equivalence class [2].
- Show that the relation R in the set A of real numbers defined as $R = \{(a, b) : a \le b\}$ is reflexive and transitive but not symmetric.
- Show that the relation S in the set R of real numbers defined as $S = \{(a, b) : a, b \in R \text{ and } a \le b^3\}$ is neither reflexive nor symmetric nor transitive.
- Let R be a relation defined on the set of natural numbers N as $R = \{(x,y): x \in \mathbb{N}, y \in \mathbb{N} \text{ and } 2x + Y = 24\}$. Then, find the domain and range of the relation R. Also, find whether R is an equivalence relation or not.
- Show that the relation R defined by (a, b) R $(e, d) \Rightarrow a + d = b + e$ on the set N x N is an equivalence relation.
- 47) If N denotes the set of all natural numbers and R is the relation on N x N defined by (a, b) R (c, d), if ad(b + c) = bc (a + d). Show that R is an equivalence relation.
- Show that the relation R in the set A of points in a plane given by $R = \{(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin<math>\}$, is an equivalence relation. Further, show that the set of all points related to a point $P \neq (0, 0)$ is the circle passing through P with origin as centre
- A relation R is defined on a set of real numbers \mathbf{R} as $R = \{(x, y) : x \cdot y \text{ is an irrational number }\}$. Check whether R is reflexive, symmetric and transitive or not.
- Show that a function $f:R \to R$ defined as $f(x) = \frac{5x-3}{4}$ is both one-one and onto.
- Let $f: R \left\{-\frac{4}{3}\right\} \to R$ be a function defined as $f(x) = \frac{4x}{3x+4}$. Show that f is a one-one function. Also, check whether f is an onto function or not.
- A function $f: [-4,4] \to [0,4]$ is given by $f(x) = \sqrt{16-x^2}$. Show that f is an onto function but not a one-one function. Further, find all possible values of a for which $f(a) = \sqrt{7}$.
- Show that the relation R on the set Z of all integers defined by $(x, y) \in R \Leftrightarrow (x y)$ is divisible by 3 is an equivalence relation.
