

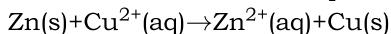
Electrochemistry T3

12th Standard

Chemistry

25 x 2 = 50

- 1) The electrical resistance of a column of 0.05 mol L^{-1} NaOH solution of diameter 1 cm and length 50 cm is $5.55 \times 10^3 \text{ ohm}$. Calculate its resistivity, conductivity and molar conductivity.
- 2) The conductivity of $0.001028 \text{ mol L}^{-1}$ acetic acid is $4.95 \times 10^{-5} \text{ S cm}^{-1}$ Calculate its dissociation constant if Λ_m^0 for acetic acid is $390.5 \text{ S cm}^2 \text{ mol}^{-1}$.
- 3) How much charge is required for the following reduction?
 - (i) 1 mol of Al^{3+} to Al .
 - (ii) 1 mol of Cu^{2+} to Cu .
 - (iii) 1 mol of MnO_4^- to Mn^{2+}
- 4) Λ_m^0 for NaCl, HCl and NaAc are 126.4, 425.9, and $91.0 \text{ S cm}^2 \text{ mol}^{-1}$ respectively. Calculate Λ^0 for HAc.
- 5) Represent the cell in which the following reaction takes place:
 $\text{Mg(s)} + 2\text{Ag}^+(0.0001 \text{ M}) \rightarrow \text{Mg}^{2+}(0.130 \text{ M}) + 2\text{Ag(s)}$
Calculate its $E_{(\text{cell})}^\ominus$ if $E_{(\text{cell})}^\ominus = 3.17 \text{ V}$.
- 6) Calculate the potential of hydrogen electrode in contact with a solution whose pH is 10.
- 7) Calculate the emf of the cell in which the following reaction takes place :
 $\text{Ni(s)} + 2\text{Ag}^+(0.002 \text{ M}) \rightarrow \text{Ni}^{2+}(0.160 \text{ M}) + 2\text{Ag(s)}$
Given that $E_{(\text{cell})}^\ominus = 1.05 \text{ V}$
- 8) Suggest a list of metals that are extracted electrolytically.
- 9) Consider the reaction :
 $\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6e^- \rightarrow 2\text{Cr}^{3+} + 7\text{H}_2\text{O}$
What is the quantity of electricity in coulombs needed to reduce 1 mol of $\text{Cr}_2\text{O}_7^{2-}$?
- 10) Arrange the following metals in the order in which they displace each other from the solution of their salts : Al, Cu, Fe, Mg and Zn
- 11) Given the standard electrode potentials
 $\text{K}^+/\text{K} = -2.93 \text{ V}$, $\text{Ag}^+/\text{Ag} = 0.80 \text{ V}$,
 $\text{Hg}^{2+}/\text{Hg} = 0.79 \text{ V}$,
 $\text{Mg}^{2+}/\text{Mg} = -2.37 \text{ V}$, $\text{Cr}^{2+}/\text{Cr} = -0.74 \text{ V}$
Arrange these metals in their increasing order of reducing power.
- 12) The conductivity of 0.20 M solution of KCl at 298 K is 0.0248 S cm^{-1} Calculate its molar conductivity.
- 13) The resistance of a conductivity cell containing 0.001 M KCl solution at 298 K is 1500Ω . What is the cell constant if conductivity of 0.001 M KCl solution at 298 K is $0.146 \times 10^{-3} \text{ S cm}^{-1}$?
- 14) Conductivity of 0.00241 M acetic acid is $7.896 \times 10^{-5} \text{ S cm}^{-1}$ Calculate its molar conductivity and if Λ^0 for acetic acid is $390.5 \text{ S cm}^2 \text{ mol}^{-1}$, what is its dissociation constant ?
- 15) Why does the conductivity of a solution decrease with dilution?
- 16) Calculate the equilibrium constant of the reaction: $\text{Cu(s)} + 2\text{Ag}^+(\text{aq}) \rightarrow \text{Cu}^{2+}(\text{aq}) + 2\text{Ag(s)}$ $E_{(\text{cell})}^\ominus = 0.46 \text{ V}$
- 17) The standard electrode potential of daniel is 1.1 V . Calculate the standard Gibbs energy for the reaction:
 $\text{Zn(s)} + \text{Cu}^{2+}(\text{aq}) \rightarrow \text{Zn}^{2+}(\text{aq}) + \text{Cu(s)}$
- 18) What is primary cell? Give an example.
- 19) Express the relation among cell constant, resistance of the solution in the cell and conductivity of the solution. How is molar conductivity of solution related to its conductivity.
- 20) The molar conductivity of 1.5 M solution of an electrolyte is found to be $138.9 \text{ S cm}^2 \text{ mol}^{-1}$. Calculate the conductivity of this solution.
- 21) Define limiting molar conductivity. Why conductivity of an electrolyte solution decreases with decrease in concentration ?


22) Give reasons for the following :

(i) Copper displaces silver from silver nitrate solution.

(ii) Iron pipes are usually, coated with zinc.

23) Give the relationship between equivalent and molar conductance of a given solution?

24) The standard electrode potential (E°) for Daniell cell is +1.1 V. Calculate the ΔG° for the reaction.

25) The chemistry of corrosion of iron is essentially an electrochemical phenomenon. Explain the reactions occurring during the corrosion of iron in the atmosphere.

JAN 2026 – MARCH 2027 TEST SERIES

JOIN MY PAID WHATSAPP GROUP - PDF FORMAT TEST WITH ANSWERS

ONE TIME FEES

JAN 2026 – MARCH 2027	FEES	JUNE 2026 – MARCH 2027	FEES
CBSE 12TH	RS.4000	CBSE 12TH	RS.3000
CBSE 10TH	RS.4000	CBSE 10TH	RS.3000
NEET - TILL FINAL EXAM	RS.4500	NEET - TILL FINAL EXAM	RS.3500
JEE - TILL FINAL EXAM	RS.4500	JEE - TILL FINAL EXAM	RS.3500
TN 12TH	RS.3000	TN 12TH	RS.2000
TN 10TH	RS.3000	TN 10TH	RS.2000

CHAPTER WISE STUDY MATERIALS AVAILABLE FOR ALL CLASSES

CHECK FREE TEST PAPERS www.ravitestpapers.com & www.ravitestpapers.in

RAVI TEST PAPERS & NOTES, WHATSAPP – 8056206308