PDF FILES AVAILABLE IN MY WEBSITE - www.ravitestpapers.com

TEST ANSWERS AVAILABLE IN MY BLOG- www.ravitestpapers.in

MY YOUTUBE CHANNEL NAME- RAVI TEST PAPERS

JOIN MY PAID WHATSAPP GROUP 8056206308 FOR DPPS WITH ANSWERS

Q1. In	the Arrhenius	equation who	en log k is nl	otted against 1/ ⁻	T a straight line i	is obtained whose:

1 Mark

1

1

1

1

A slope is $\frac{A}{R}$ and intercept is E_{a} .

- \boldsymbol{B} slope is A and intercept is $\frac{-E_{a}}{R}$
- \boldsymbol{C} slope is $\frac{-E_a}{RT}$ and intercept is log A.
- $\textbf{D} \ \mbox{slope}$ is $\frac{-E_a}{2:303 \ R}$ and intercept is log A.
- Q2. For Questions two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below.

Assertion (A): Ammonolysis of alkyl halides is not a suitable method for the preparation of pure primary amines.

Reason (R): Ammonolysis of alkyl halides yields mainly secondary amines.

- A Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- **C** Assertion (A) is true, but Reason (R) is false.
- **B** Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
- **D** Assertion (A) is false, but Reason (R) is true.
- $\triangle G$ and E°_{cell} for a spontaneous reaction will be: Q3.
 - **A** Positive, negative
- B Negative, negative
- **C** Negative, positive
- **D** Positive, positive
- Q4. Which of the following compounds would be hydrolysed by aqueous KOH most easily?
 - A $CH_2 = CH Br$

 $B CH_3 - CH_2 - Br$

 $C CH_3 - CH - CH_3$

 $D CH_2 = CH - CH_2 - Br$

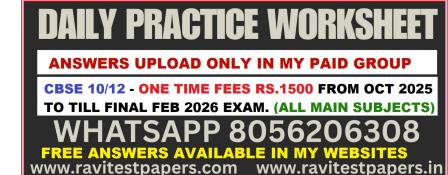
- Q5. An electrochemical cell behaves like an electrolytic cell when:
 - **A** $E_{cell} = E_{external}$.
- **B** $E_{cell} = 0$.
- **C** $E_{\text{external}} > E_{\text{cell}}$.
- **D** $E_{\text{external}} < E_{\text{cell}}$.

- **Q6**. Which of the following is the softest metal?
 - **A** Zn

B Sc

C Cu

- **D** Fe
- Q7. Two statements are given- one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below:


Assertion (A): Non-ideal solutions form azeotropic mixture.

Reason (R): Maximum boiling azeotropes are formed by a solution showing negative deviation.

- A Both Assertion (A) and Reason (R) are correct statements, and Reason (R) is the correct explanation of the Assertion (A).
- **C** Assertion (A) is correct, but Reason (R) is incorrect statement.
- **B** Both Assertion (A) and Reason (R) are correct statements, but Reason (R) is not the correct explanation of the Assertion (A).
- **D** Assertion (A) is correct, but Reason (R) is incorrect statement.
- Q8. Which of the following complexes shows geometrical isomerism?
 - **A** $[Co(NH_3)_6]^{3+}$
- **B** $[Co(NH)_3CI]^{2+}$
- $\mathbf{C} \left[\text{Co(NH)}_3 \text{Cl}_2 \right]^+$
- **D** $[Co(NH)_3(ONO)]^{2+}$

- Q9. In a lead storage battery:
 - A PbO₂ is reduced to PbSO₄ at the cathode.
- **B** Pb is oxidised to PbSO₄ at the anode.
- **C** Both electrodes are immersed in the same aqueous **D** All the above are true. solution of H₂SO₄.
- Q10. **Assertion (A):** Transition metals have high melting point.

Reason (R): Transition metals have completely filled d-orbitals.

A Both Assertion (A) and Reason (R) are correct **B** Both Assertion (A) and Reason (R) are correct statements, and Reason (R) is the correct statements, but Reason (R) is not the correct explanation of the Assertion (A). explanation of the Assertion (A). **C** Assertion (A) is correct, but Reason (R) is wrong **D** Assertion (A) is wrong, but Reason (R) is correct statement. statement. Q11. A galvanic cell can behave like an electrolytic cell when: 1 Mark **D** $E_{cell} = 0$ **C** $E_{cell} > E_{ext}$ $A E_{cell} = E_{ext}$ $\mathbf{B} \; \mathbf{E}_{\text{ext}} = \mathbf{E}_{\text{cell}}$ Which of the following is correct for spontaneity of a cell? B $\Delta G = + ve \ E^0 = 0$ A $\Delta G = -ve E^0 = +ve$ D $\Delta G = + \mathrm{ve} \ \mathrm{E}^0 = - \mathrm{ve}$ $\mathsf{C} \ \Delta \mathrm{G} = -\mathrm{ve} \ \mathrm{E}^0 = 0$ **Assertion (A):** F₂ has lower bond dissociation enthalpy than Cl₂. **Reason (R):** Fluorine is more electronegative than chlorine. A Both Assertion (A) and Reason (R) are correct **B** Both Assertion (A) and Reason (R) are correct statements, and Reason (R) is the correct statements, but Reason (R) is not the correct explanation of the Assertion (A). explanation of the Assertion (A). **D** Assertion (A) is wrong, but Reason (R) is correct **C** Assertion (A) is correct, but Reason (R) is wrong statement. statement. Which one of the following first row transition elements is expected to have the highest third ionization enthalpy? A Iron (Z = 26)**B** Manganese (Z = 25)**C** Chromium (Z = 24)**D** Vanadium (Z = 23) $\alpha - \mathrm{D}(+)$ glucose and $\beta - \mathrm{D}(+)$ glucose are: **A** Geometrical isomers. **B** Enantiomers. **C** Anomers. **D** Optical isomers. Two among the three components of DNA are -D-2-deoxyribose and a heterocyclic base. The third component 1 is: **A** Adenine **B** Phosphoric acid **C** Sulphuric acid **D** Uracil For Questions two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below. **Assertion (A):** $(C_2H_5)_2NH$ is more basic than $(C_2H_5)_3N$ in aqueous solution. **Reason (R):** In $(C_2H_5)_2NH$, there is more steric hindrance and +I effect than $(C_2H_5)_3N$. A Both Assertion (A) and Reason (R) are true and **B** Both Assertion (A) and Reason (R) are true, but Reason (R) is the correct explanation of the Reason (R) is not the correct explanation of the Assertion (A). Assertion (A). **C** Assertion (A) is true, but Reason (R) is false. **D** Assertion (A) is false, but Reason (R) is true. Q18. **Assertion (A):** Conductivity of an electrolyte increases with decrease in concentration. **Reason (R):** Number of ions per unit volume decreases on dilution. A Both Assertion (A) and Reason (R) are correct **B** Both Assertion (A) and Reason (R) are correct statements, and Reason (R) is the correct statements, but Reason (R) is not the correct explanation of the Assertion (A). explanation of the Assertion (A). **C** Assertion (A) is correct, but Reason (R) is wrong **D** Assertion (A) is wrong, but Reason (R) is correct statement. statement. The crystal field splitting energy for octahedral (Δ_0) and tetrahedral (Δ_t) complexes is related as: 1 Mark B $\Delta_{
m t}=rac{5}{9}\Delta_0$ A $\Delta_{
m t}=rac{2}{9}\Delta_0$ C $\Delta_{
m t}=rac{4}{9}\Delta_0$ D $\Delta_{
m t}=2\Delta_0$ Which of the following is a non-reducing sugar? 1 Mark **B** Maltose. **C** Glucose. **A** Sucrose. **D** Lactose.

Q12.

Q13.

Q14.

Q15.

Q16.

Q17.

Q19.

Q20.

Q21.

Which among the following is a false statement?

1 Mark

	A Rate of zero order reconcentration of reacC Molecularity of a reac		B Half-life of a zero ord proportional to the rD For a first order reac	ate constant.			
Q22.	The conversion of an al	kyl halide into an alcohol by aqı	ueous NaOH is classified a	as:	1 Mark		
	A A dehydrohalogenationC An addition reaction		B A substitution reaction D A dehydration reaction				
Q23.	The glycosidic linkage involved in linking the glucose units in amylase part of starch is:						
	A C_1 - C_6 α linkage C C_1 - C_4 α linkage		B C_1 - C_6 β linkage D C_1 - C_4 β linkage				
Q24.	answer to these question (A): The com	en- one labelled Assertion (A) a ons from the codes (a), (b), (c) a plex $[Cr(H_2O)_3Cl_3]$ does not give ex $[Cr(H_2O)_3Cl_3]$ is non-ionizable	and (d) as given below: e precipitate with AgNO ₃		1		
	 A Both Assertion (A) and Reason (R) are correct statements, and Reason (R) is the correct explanation of the Assertion (A). C Assertion (A) is correct, but Reason (R) is incorrect statement. 		 B Both Assertion (A) and Reason (R) are correct statements, but Reason (R) is not the correct explanation of the Assertion (A). D Assertion (A) is correct, but Reason (R) is incorrect statement. 		U		
Q25.	Which of the following	solutions will have the highest I	boiling point in water?		1		
·	A 1% KCl	B 1% glucose	C 1% urea	D 1% CaCl ₂			
Q26.	Which of the following	is a disaccharide?			1		
·	A Glucose.	B Starch.	C Cellulose.	D Lactose.			
Q27.	The slope in the plot of	In [R] Vs. time gives.			₁		
•	A $+\mathrm{k}$. ,	B $rac{+\mathrm{k}}{2.303}$				
	\mathbf{c} $-\mathbf{k}$		${\sf D} \; rac{-{ m k}}{2.303}$		O		
Q28.	Which of the following haloalkanes react with aqueous KOH most rapidly by S _N 1 reaction?						
	A 2-Chlorobutane C 2-Bromo-2-Methylpr	opane	B 1-BromobutaneD 2,2-Dimethyl-1-Chlor	ropropane	U		
Q29.	Racemisation occurs in	:			1		
	A $S_N 2$ reaction. C Neither $S_N 2$ nor $S_N 1$	reactions.	B S_N1 reaction.D SN2 reaction as well	as S _N 1 reaction.			
Q30.	An $lpha-$ helix is a structu	ral feature of:			1		
	A Sucrose.	B Polypeptides.	C Nucleotides.	D Starch.	Y		
Q31.	A first order reaction ta	kes 30 minutes for 50% comple	tion. The value of rate co	nstant k would be:	1		
	A $2.5 \times 10^{-3} \text{ min}^{-1}$	B $2.75 \times 10^{-4} \text{ min}^{-1}$	C $1.25 \times 10^{-3} \text{ min}^{-1}$	D $2.31 \times 10^{-3} \text{ min}^{-1}$			
Q32.	The reagent that can be	e used to convert benzenediazo	nium chloride to benzene	e is:	1		
	A Cu/ HCl	B H ₂ O	C CH ₃ CH ₂ OH	D CuCN			
Q33.	temperature.	ution of KCI has greater osmotion.		ution of glucose at same	1 Mark		
	 A Both Assertion (A) and Reason (R) are correct statements, and Reason (R) is the correct explanation of the Assertion (A). C Assertion (A) is correct, but Reason (R) is wrong statement. 		statements, but Reas explanation of the As	nd Reason (R) are correct son (R) is not the correct ssertion (A). ng, but Reason (R) is correct			

ANSWERS AVAILABLE IN MY YOUTUBE CHANNEL (NAME) - RAVI TEST PAPERS

	A Sc $(Z = 21)$						
		B Cr (Z = 24)	C Mn (Z = 25)	D Fe (Z = 26)			
35.		n to prevent rusting of iron bed			1 Mar		
	A $E^{\circ}_{Zn^{2+}/Zn} = E^{\circ}_{Fe^{2+}/Fe}$ C $E^{\circ}_{Zn^{2+}/Zn} > E^{\circ}_{Fe^{2+}/Fe}$		B E° _{Zn²+/Zn} < E° _{Fe²+/Fe} D None of these.				
36.	Which of the following KOH?	g amines does not give foul sm	ell of isocyanide on heati	ng with chloroform and ethanolic	1 Mai		
	A CH ₃ - CH ₂ - NH ₂	JAILY PKACTICE WUKKSHEE ANSWERS UPLOAD ONLY IN MY PAID GROUP CBSE 10/12 - ONE TIME FEES RS.1500 FROM OCT 2029 TO TILL FINAL FEB 2026 EXAM. (ALL MAIN SUBJECTS WHATSAPP 8056206308		$_2-\mathrm{NH}_2$			
	C (CH ₃ — CH ₂) ₃ N	REE ANSWERS AVAILABLE IN MY WEBSITES ww.ravitestpapers.com www.ravitestpapers.					
37.	Which of the following	g complexes show linkage isom	erism?		1		
	A $[Co(NH_3)_5CI]^{2+}$	$\mathbf{B} \ [Co(NH_3)_4Cl_2]Br_2$	C $[Co(H_2O)_6]^{3+}$	D $[Co(NH_3)_5(ONO)]^{2+}$			
38.	Which of the following	g transition metals has the high	nest melting point?		1		
	A Sc	B Cr	C Mn	D Zn			
3 9.	In a Leclanche dry cell	, the cathode is:			1		
	A Zn container	B MnO ₂	C Graphite rod	D NH ₄ Cl			
10.	Which of the following	g is least basic?			1		
	A (CH ₃) ₂ NH	B NH ₃	C NH ₂	\mathbf{D} (CH ₃) ₃ N			
41.	'Which by-product is obtained in the manufacture of phenol from cumene?						
	A Acetaldehyde	B Acetone	C Anisole	D o-Cresol			
42.	Directions: In question number 13 and 16, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option. Assertion (A): The bond angle C - O - C in ethers is slightly greater than tetrahedral angle. Reason (R): This is because of the repulsive interaction between the two bulky alkyl groups.						
	 A Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A). B Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A). C Assertion (A) is true, but Reason (R) is false. D Assertion (A) is false, but Reason (R) is true. 						
43.	The species that attac	ks benzene in following is:			1		
	A CI^-	$\mathbf{B} \ \mathrm{AICI}_{4}^{-}$	$c\ \mathrm{AICI}_3$	D CI^+			
14.	With increase in atom	ic number, the melting point o	f transition metals:		1		
	A first increases and t C first decreases and		B increases continuoD remains constant	ously	•		

statement.

B Both Assertion (A) and Reason (R) are correct statements, but Reason (R) is not the correct

D Assertion (A) is wrong, but Reason (R) is correct

explanation of the Assertion (A).

A Both Assertion (A) and Reason (R) are correct

C Assertion (A) is correct, but Reason (R) is wrong

statements, and Reason (R) is the correct

explanation of the Assertion (A).

statement.


Q46.	Assertion (A): For measu	by a statement of Reason (R) Iring resistance of an ionic so on of ionic solution will chang	lution an AC source is us		1 Mark		
	A Both Assertion (A) and Reason (R) is the correct Assertion (A). C Assertion (A) is true, b	·	Reason (R) is not the Assertion (A).	and Reason (R) are true, but ne correct explanation of the se, but Reason (R) is true.			
Q47.	The correct order of the	ease of dehydration of the fo	llowing alcohols by the a	action of conc. $ m H_2SO_4$ is:	1 *****		
	A $(\mathrm{CH_3})_3\mathrm{C}-\mathrm{OH}>(0)$	$\mathrm{CH_3})_2\mathrm{CH}-\mathrm{OH}>\mathrm{CH_3CH}$	I ₂ - В (XH 3) ₂ CH — ОН	$ m C > CH_{3}CH_{2} - OH > (CH_{3})_{3}C - OH > CH_{3}CH_{2} - O$			
Q48.	The freezing point of one water = 1.86 K kg mol ⁻¹).	e molal KCl solution, assuming	g KCl to be completely di	issociated in water, is : (K _f for	1		
	A -3.72°C	B +3.72°C	C -1.86°C	D +2.72°C			
Q49.	On the basis of crystal fie	eld theory, electronic configu	ration of d ⁴ complex who	en $\Delta_0 > \mathrm{P}$ is:	1		
	A t _{2g} 3e _g 1	$\mathbf{B} \ t_{2g} 2 e_g 2$	$\mathbf{C} t_{2g} 1 e_g 3$	D $t_{2g}4e_g0$			
Q50.	Amino acids are:				1		
·	A Acidic.	B Basic.	C Amphoteric.	D Neutral.			
Q51.	Two statements are given- one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below: Assertion (A): Linkage isomerism arises in coordination compounds because of ambidentate ligand. Reason (R): Ambidentate ligand like NO_2 has two different donor atoms i.e., N and O.						
	 A Both Assertion (A) and statements, and Reason explanation of the Ass C Assertion (A) is correct statement. 	on (R) is the correct	statements, but Re explanation of the	and Reason (R) are correct ason (R) is not the correct Assertion (A). orrect, but Reason (R) is correct	Q		
Q52.	$2Ag^+$ (aq) + Mg (s) \rightarrow $2Ag^+$ E° _{cell} = 2.96V	II, the following reaction take g(s) + Mg ²⁺ (aq) es, what will happen to the o		?			
	A Voltage will remain coC It will decrease as [Ag⁺		B It will decrease as [D It will decrease as		Ň		
Q53.	'Which reagents are required for one step conversion of Chlorobenzene to Diphenyl?						
	A Chlorobenzene, Na, Di C Chlorobenzene/ Fe, Da		B Benzene, Anhydrou D NaNO ₂ + HCl	us AICI ₃ DAILY PRACTICE WORKSHEET	5		
Q54.	The reaction OH+NaOH (aq) O-Na++ 1/2 suggests that phenol are		L	CBSE 10/12 - ONE TIME FEES RS.1500 FROM OCT 2025 TO TILL FINAL FEB 2026 EXAM. (ALL MAIN SUBJECTS) WHATSAPP 8056206308 REE ANSWERS AVAILABLE IN MY WEBSITES WW.ravitestpapers.com www.ravitestpapers.in			
	A Basic	B Neutral	C Acidic	D Amphoteric			
Q55.	Which one is the comple	mentary base of cytosine in o	one strand to that in oth	er strand of DNA?	1 Mark		
	A Adenine.	B Guanine.	C Thymine.	D Uracil.			
Q56.	In the given reaction seq $\frac{\text{NaNO}_2}{\text{HCl}} \times \frac{\text{C}_2\text{H}_5\text{O}}{\text{O}-5^{\circ}\text{C}}$	uence, the structure of Y wou	uld be:		1 Mark		
	A OH	В	C O	$D \ igotimes^{\mathrm{N}_{\mathrm{g}}^{\star}\mathrm{Cl}^{-}}$			

Q57.	The colligative property	used for the determination of	molar mass of polymers an	d proteins is:	1 Mark	
	A Osmotic pressureC Relative lowering in value	apour pressure	B Depression in freezingD Elevation is boiling poin	•		
Q58.	•	m chloride in water at room te ons does salt dissolve faster?	mperature, the solution fee	ls cool to touch. Under which	1 Mark	
	A Powdered salt in cold C Salt crystals in cold wa		B Powdered salt in hot wD Salt crystals in hot water			
Q59.	If the standard electrod	e potential of an electrode is gi	reater than zero, then we ca	an infer that its:	1	
	A Reduced form is more hydrogen gas. C Reduced and oxidised	e stable compared to I forms are equally stable.	B Oxidised form is more shydrogen gas. D Reduced form is less st	stable compared to able than the hydrogen gas.		
		, ,		able than the hydrogen gas.		
Q60.	_	with NaOH and Br ₂ in alcoholic	_	P. CH. COON	1	
	A CH ₃ CH ₂ NH ₂	B CH ₃ CH ₂ Br	C CH ₃ NH ₂	D CH ₃ COONa		
Q61.	The rate constant for a f the reactant is:	irst order reaction is equal to t	he initial rate of reaction w	hen the initial concentration of	1	
	A 1×10^{-2} M	B 1M	C 10M	D 0.1M		
Q62.	Out of Ti ³⁺ , Cr ³⁺ , Mn ²⁺ a	nd Ni ²⁺ ions, the one which ha	s the highest magnetic mor	ment is:	1	
	A Ti ³⁺	B Cr ³⁺	C Mn ²⁺	D Ni ²⁺		
Q63.	Two statements are given- one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below: Assertion (A): Sucrose is a non-reducing sugar. Reason (R): Sucrose has glycosidic linkage. B Both Assertion (A) and Reason (R) are correct B Both Assertion (A) and Reason (R) are correct					
	statements, and Reas explanation of the As	on (R) is the correct	orrect statements, but Reason (R) is not the correct explanation of the Assertion (A).			
Q64.	The unit of rate and rate	e constant are same for a:			1	
	A First order reaction	B Second order reaction	C Zero order reaction	D Third order reaction	O	
Q65.	Assertion (A): Henry's la	I by a statement of Reason (R). aw constant (Kp) decreases wit perature increases, solubility of	h increase in temperature.		1 N	
	 A Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A). C Assertion (A) is true, but Reason (R) is false. 		 B Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A). D Assertion (A) is false, but Reason (R) is true. 		00	
Q66.	Furanose ring of fructos	e is formed due to reaction be	tween:			
•	A C ₁ and C ₅	B C ₂ and C ₅	\mathbf{C} C ₁ and C ₄	D C ₁ and C ₂	0	
Q67.	The amount of electricit	y required to produce one mo	e of 7n from 7nSO, solution	a will he:	1 Mark	
Qo7.	A 3F	B 2F	C 1F	D 4F	I WILLIA	
Q68.		compound reacts with excess			1 Mark	
		B [Cr(H ₂ O) ₃ Cl ₃].3H ₂ O	C [Cr(H ₂ O) ₄ Cl ₂]Cl.2H ₂ O	D [Cr(H ₂ O) ₆]Cl ₃		
060		complex ion is not optically acti	- ,		1 Mark	
Q69.	A $[Co(ox)_3]^{3-}$	B cis-[Co(en) $_2$ Cl $_2$] ⁺	C trans-[Co(en) ₂ Cl ₂] ⁺	D [Co(en) ₃] ³⁺	I IVIAI K	

ANSWERS AVAILABLE IN MY YOUTUBE CHANNEL (NAME) - RAVI TEST PAPERS

Q70.	In the Hinsberg's method	for separation of primary, sec	condary and tertiary amines,	, the reagent used is:	1 Mark		
	A Nitrous acid	B CHCl ₃ + aq. NaOH	C So ₂ Cl	D HCI/ ZnCl ₂			
Q71.	Assertion (A): Cuprous sal Reason (R): Cuprous ion h	ts are diamagnetic. nas completely filled 3d-orbit	als.		1 Mark		
	 A Both Assertion (A) and Reason (R) is the correct Assertion (A). C Assertion (A) is true, but 	t explanation of the	B Both Assertion (A) and R Reason (R) is not the cor Assertion (A).D Assertion (A) is false, but	rect explanation of the			
Q72.	$\wedge = \wedge_0 - \mathrm{A}\sqrt{\mathrm{C}}$	Kohlrausch given the following relation for strong electrolytes: $\Delta = \Delta_0 - A\sqrt{C}$ Which of the following equality holds?					
	$\begin{array}{l} \textbf{A} \ \wedge = \wedge_0 \ as \ C \rightarrow \sqrt{A} \\ \textbf{C} \ \wedge = \wedge_0 \ as \ C \rightarrow 0 \end{array}$		$\begin{array}{l} \textbf{B} \ \wedge = \wedge_0 \ as \ C \rightarrow \infty \\ \textbf{D} \ \wedge = \wedge_0 \ as \ C \rightarrow 1 \end{array}$				
Q73.	At low temperature, phen	ol reacts with Br ₂ in CS ₂ to fo	orm:		1		
	A 2,4,6-tribromophenol	B p-bromophenol	C o-and p-bromophenol	D 2,4-dibromophenol	4		
Q74.	The best reagent for conve	erting propanamide into prop	panamine is		1		
	A excess H ₂		B Br ₂ in aqueous NaOH				
	C iodine in the presence of	of red phosphorus	D LiAIH ₄ in ether				
Q75.	Which of the following tra	nsition metal ion is not colou	ıred?		1		
	A cu ⁺	B Ni ²⁺	C Co ²⁺	$D v^{3+}$			
Q76.	Ag ⁺ (aq) + e ⁻ \rightarrow Ag (s) E° = Fe2+ (aq) + 26 ⁻ \rightarrow Fe (s) E° Find the E°cell for: Fe (s) + 2Ag ⁺ (aq) \rightarrow Fe ²⁺ (ANSWER: CBSE 10/12 TO TILL FII WHA	PRACTICE WORKSHEET S UPLOAD ONLY IN MY PAID GROUP 2 - ONE TIME FEES RS.1500 FROM OCT 2025 NAL FEB 2026 EXAM. (ALL MAIN SUBJECTS) TSAPP 8056206308 WERS AVAILABLE IN MY WEBSITES estpapers.com www.ravitestpapers.in		1		
	A 1.6V	B -1.16 V	C 2.04 V	D 1.24 V	9		
Q77.	The oxidation state of Ni ii	n [Ni(CO)₄] is:			₁ C		
	A 0	B 2	c 3	D 4	6		
Q78.	What amount of electric of	harge is required for the red	uction of 1 mole of MnO-4 in	to Mn ²⁺ ?	1		
	A 1F	B 5F	C 4F	D 6F			
Q79.	An unripe mango placed i	n a concentrated salt solution	n to prepare pickle, shrivels k	pecause.			
-	A it gains water due to os		B it loses water due to rev				
	C it gains water due to rev		D it loses water due to osr	nosis	6		
Q80.	Two statements are given- one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below: Assertion (A): The molecularity of the reaction H2 + Br ₂ \rightarrow 2HBr appears to be 2. Reason (R): Two molecules of the reactants are involved in the given elementary reaction.						
	 A Both Assertion (A) and I statements, and Reason explanation of the Asse C Assertion (A) is correct, statement. 	(R) is the correct	 B Both Assertion (A) and R statements, but Reason explanation of the Asser D Assertion (A) is incorrect statement. 	(R) is not the correct tion (A).	C		
Q81.	The primary and secondar	ry valences of Co in [Co(en) ₃]	Cl ₃ respectively are :		1 Mark		
	A 3, 3	B 0, 3	C 6, 3	D 3, 6			
Q82.		of an ester follows first order of water remains nearly cor		ne reaction.	1 Mark		

	A Both Assertion (A) and statements, and Reaso explanation of the Assection (A) is correct.	n (R) is the correct ertion (A).		statements, but Reason explanation (A) is wrong	(R) is not the correct	
	statement.	, suc neason (n) is wrong	_	statement.	ac neason (n) is correct	
Q83.	Which of the following pr	operties of transition metal	ls ena	ables them to behave as	catalysts?	1 Mark
	A High melting pointC Alloy formation			High ionisation enthalpVariable oxidation state		
Q84.	Select the correct answer	nents are given — one labell to these questions from the ed to determine hardness of entate ligand.	e cod	des (a), (b), (c) and (d) as	, ,	1
	 A Both Assertion (A) and Reason (R) is the correct Assertion (A). C Assertion (A) is true, but 	ct explanation of the		Reason (R) is not the co Assertion (A). Assertion (A) is false, bu	rrect explanation of the	
Q85.	Directions: In question no Choose the correct option Assertion (A): Moleculari	umber 13 and 16, a stateme	ent of	Assertion (A) is followed erimentally.	by a statement of Reason (R).	1
	Reason (R) is the correct Assertion (A).	on (A) and Reason (R) are true and s the correct explanation of the).) is true, but Reason (R) is false.		 B Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A). D Assertion (A) is false, but Reason (R) is true. 		
Q86.	The most common and st	able oxidation state of a Lar	nthar	noid is:		1
	A +2	B +3	C	: +4	D +6	_
Q87.	Alkenes are formed by he	eating alcohols with conc. H ₂	₂ SO ₄ .	The first step in the reac	ction is:	1
	A formation of carbocation of alcohol			formation of ester elimination of water		
Q88.	The pair [Co(NH ₃) ₄ Cl ₂]Br ₂	and [Co(NH ₃) ₄ Br ₂]Cl ₂ will sl	how:			1
	A Linkage isomerism.	B Hydrate isomerism.	C	Ionization isomerism.	D Coordinate isomerism.	Ç
Q89.	Which of the following is	the slope of the first order r	react	ion in the plot of In [R] v	s. time?	1
	A + k		В	$3 \frac{+k}{2.303}$		
	C - k		D	$\frac{-k}{2.303}$		
Q90.		0 – $\mathrm{CH_3}$ gives $(\mathrm{CH_3})_3$ C–I and C occurs by $\mathrm{S_N1}$ mechanism.	CH ₃ OI	H on treatment with HI.		1 6
	 A Both Assertion (A) and Reason (R) are correct statements, and Reason (R) is the correct explanation of the Assertion (A). C Assertion (A) is correct, but Reason (R) is wrong statement. 		 B Both Assertion (A) and Reason (R) are correct statements, but Reason (R) is not the correct explanation of the Assertion (A). D Assertion (A) is wrong, but Reason (R) is correct statement. 		(R) is not the correct rtion (A).	
Q91.	Coordination number of I	Fe in [Fe(C ₂ O ₄) ₃] ³⁻ is:				1 Mark
	A 6	B 3	C	. 4	D 5	
Q92.	answer to these question Assertion (A): Sucrose is	n- one labelled Assertion (A) s from the codes (a), (b), (c) a non-reducing sugar. ups of glucose and fructose) and	(d) as given below:		1 Mark

Q104.	Two statements are given- one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below: Assertion (A): The C-O-H bond angle in alcohols is slightly less than the tetrahedral angle. Reason (R): This is due to the repulsive interaction between the two lone electron pairs on oxygen.					
	 A Both Assertion (A) and statements, and Rease explanation of the Ass C Assertion (A) is correct statement. 	on (R) is the correct	 B Both Assertion (A) and I statements, but Reason explanation of the Asse D Assertion (A) is correct, statement. 	(R) is not the correct		
Q105.	Which reagents are requ	ired for one step conversion o	f chlorobenzene to toluene?	?	1	
	A NaNO ₂ + HCl C CH ₃ Cl/ Fe, Dark		B CH₃Cl/ Anhydrous AlCl₃D CH₃Cl, Na, Dry ether			
Q106.	Pyranose ring of glucose	is formed due to the reaction	between:		1	
	A C ₁ and C ₃	B C ₁ and C ₅	\mathbf{C} C ₁ and C ₄	D C ₁ and C2		
Q107.	The half-life period for a A $\frac{0.693}{k}$ C $\frac{2.303}{k}$	zero order reaction is equal to	$egin{aligned} \mathbf{B} & rac{2\mathbf{k}}{[\mathbf{R}]_0} \ \mathbf{D} & rac{[\mathbf{R}]_0}{2\mathbf{k}} \end{aligned}$		1	
Q108.	Choose the correct option Assertion(A): Boiling points	number 13 and 16, a statement on. int of $(CH_3)_3N$ is higher than thought on a much more extensive	at of CH ₃ CH ₂ CH ₂ NH ₂ .		1	
	 A Both Assertion (A) and Reason (R) is the corresponding to the	·	 B Both Assertion (A) and I Reason (R) is not the co Assertion (A). D Assertion (A) is false, but 	rrect explanation of the	I	
Q109.	50mL of an aqueous solution concentration of the solution	ution of glucose $C_6H_{12}O_6$ (Molaution will be:	ar mass: 180g/ mol) contains	s 6.02×10^{22} molecules. The	1	
	A 0.1M	B 0.2M	C 1.0M	D 2.0M		
Q110.	The element having [Ar]	3d ¹⁰ 4s ¹ electronic configuratio	on is:			
4	A Cu	B Zn	C Cr	D Mn	6	
0111	Hoffmann Bromamida d	ogradation reaction is given by				
Q111.	A ArNO ₂	egradation reaction is given by B ArNH ₂	C ArCONH ₂	D ArCH ₂ NH ₂		
Q112.	In a chemical reaction X	→ Y, it is found that the rate of e order of the reaction with re	f reaction doubles when the		1 0	
	A 1	B 0	C 2	$\mathbf{D} \frac{1}{2}$	6	
Q113.	on heating with CHCl $_3$ a A $^{\bigcirc$ -CH $_2$ OH	$ m H_2$ nd alcoholic KOH gives foul sm $_{ m m B} \stackrel{ riangle - { m CH_2NC}}{}$	ell of: C — CH ₂ CN	D CH ₂ Cl	1 0	
Q114.		going association in a solvent,	the v factor:		1 Mark	
Q114.	A is always greater than	_	B has negative value		1 IVIAI K	
	C has zero value	one	D is always less than one			
Q115.	Which of the following is	s affected by catalyst?			1 Mark	
	A △H	B △G	C E _a	D △S		
Q116.	Assertion (A) $[\mathrm{Cr}(\mathrm{H}_20)_6$	$]\mathrm{CI}_2$ and $[\mathrm{Fe}(\mathrm{H}_20)_6]\mathrm{CI}_2$ are ϵ	examples of homoleptic com	nplexes.	1 Mark	

Reason (R) All the ligands attached to the metal are the same.

- A Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- **C** Assertion (A) is true, but Reason (R) is false.
- **B** Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
- **D** Assertion (A) is false, but Reason (R) is true.
- Q117. For Questions number 15 to 18, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below.

Assertion (A): -NH₂ group is o- and p-directing in electrophilic substitution reactions.

Reason (R): Aniline cannot undergo Friedel-Crafts reaction.

- A Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- **C** Assertion (A) is true, but Reason (R) is false.
- **B** Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
- **D** Assertion (A) is false, but Reason (R) is true.
- Q118. Two statements are given- one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below:

Assertion (A): Acetic acid is stronger than formic acid.

Reason (R): In acetic acid, the electron releasing methyl group makes it difficult to break the O – H bond.

- A Both Assertion (A) and Reason (R) are correct statements, and Reason (R) is the correct explanation of the Assertion (A).
- **C** Assertion (A) is correct, but Reason (R) is incorrect statement.
- **B** Both Assertion (A) and Reason (R) are correct statements, but Reason (R) is not the correct explanation of the Assertion (A).
- **D** Assertion (A) is correct, but Reason (R) is incorrect statement.
- Two statements are given- one labelled Assertion (A) and the other labelled Reason (R). Select the correct Q119. answer to these questions from the codes (a), (b), (c) and (d) as given below:

Assertion (A): Phenol is more acidic than p-methylphenol.

Reason (R): The presence of an electron releasing group in p-methylphenol makes it less acidic.

- A Both Assertion (A) and Reason (R) are correct statements, and Reason (R) is the correct explanation of the Assertion (A).
- **C** Assertion (A) is correct, but Reason (R) is incorrect statement.
- **B** Both Assertion (A) and Reason (R) are correct statements, but Reason (R) is not the correct explanation of the Assertion (A).
- **D** Assertion (A) is correct, but Reason (R) is incorrect statement.
- **Q120.** For the reaction $X + 2Y \rightarrow P$, the differential form equation of the rate law is:

$$\begin{array}{l} \textbf{A} \ \frac{2d[P]}{dt} = \frac{d[Y]}{dt} \\ \textbf{C} \ \frac{+d[X]}{dt} = \frac{-d[P]}{dt} \end{array}$$

$$\begin{array}{l} \textbf{B} \ \frac{-d[P]}{dt} = \frac{-d[X]}{dt} \\ \textbf{D} \ \frac{+2d[Y]}{dt} = \frac{+d[P]}{dt} \end{array}$$

Q121. Assertion (A): n - Butyl chloride has higher boiling point than n - Butyl bromide.

Reason (R): C - Cl bond is more polar than C - Br bond.

- A Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- **C** Assertion (A) is true, but Reason (R) is false.
- **B** Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
- **D** Assertion (A) is false, but Reason (R) is true.
- **Q122.** Which functional groups of glucose interact to form cyclic hemiacetal leading to pyranose structure?

A Aldehyde group and hydroxyl group at C - 4

- **B** Aldehyde group and hydroxyl group at C 5
- C Ketone group and hydroxyl group at C 4
- **D** Ketone group and hydroxyl group at C 5
- **Q123.** Which parts of amino acids molecules are linked through hydrogen bonds in the secondary structure of proteins?

A NH₂ group.

B COOH group.

1 Mark

1 Mark

$\mathbf{C} - \mathbf{C} - \mathbf{a}$	${ m and-NH-groups}$
O	

D None of the above.

Q124. The reaction of an alkyl halide with sodium alkoxide forming ether is known as:

1 Mark

- A Wurtz reaction
- **B** Reimer-Tiemann
- **C** Williamson synthesis
- **D** Kolbe reaction

reaction

Q125. Which one of the following amines gives an alcohol on reaction with HNO₂?

1 Mark

- **A** $(C_2H_5)_2NH$
- **B** $(C_2H_5)_3N$
- $\mathbf{C} \ C_2 H_5 N H_2$
- $D C_6H_5NH_2$

Q126. Directions: In question number 13 and 16, a statement of Assertion (A) is followed by a statement of Reason (R). 1 Choose the correct option.

Assertion (A): Hydrolysis of an ester follows first order kinetics.

Reason (R): The concentration of water does not get altered much during the reaction.

- A Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- **C** Assertion (A) is true, but Reason (R) is false.
- **B** Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
- **D** Assertion (A) is false, but Reason (R) is true.

Q127. Which of the following compounds will give a ketone on oxidation with chromic anhydride (CrO_3)?

- A $(CH_3)_2CH CH_2OH$
- $\mathsf{c}\ (\mathrm{CH_3})_3\mathrm{C}-\mathrm{OH}$

- B $CH_3CH_2CH_2OH$
- $D CH_3 CH_2 CH OH_3$

ОН

Q128. Assertion (A): For complex reactions molecularity and order are not same.

Reason (R): Order of reaction may be zero.

- A Both Assertion (A) and Reason (R) are correct statements, and Reason (R) is the correct explanation of the Assertion (A).
- **C** Assertion (A) is correct, but Reason (R) is wrong statement.
- **B** Both Assertion (A) and Reason (R) are correct statements, but Reason (R) is not the correct explanation of the Assertion (A).
- **D** Assertion (A) is wrong, but Reason (R) is correct statement.

Q129. The unit of rate constant depends upon the:

- **A** Molecularity of the reaction.
- **C** Order of the reaction.

- **B** Activation energy of the reaction.
- **D** Temperature of the reaction.

Q130. Acetic acid reacts with PCl₅ to give:

- A CI CH₂ COCI
- **B** Cl CH₂ COOH
- C CH₃ COCl
- D CCl₃ COOH

Q131. Assertion (A): F₂ has low reactivity.

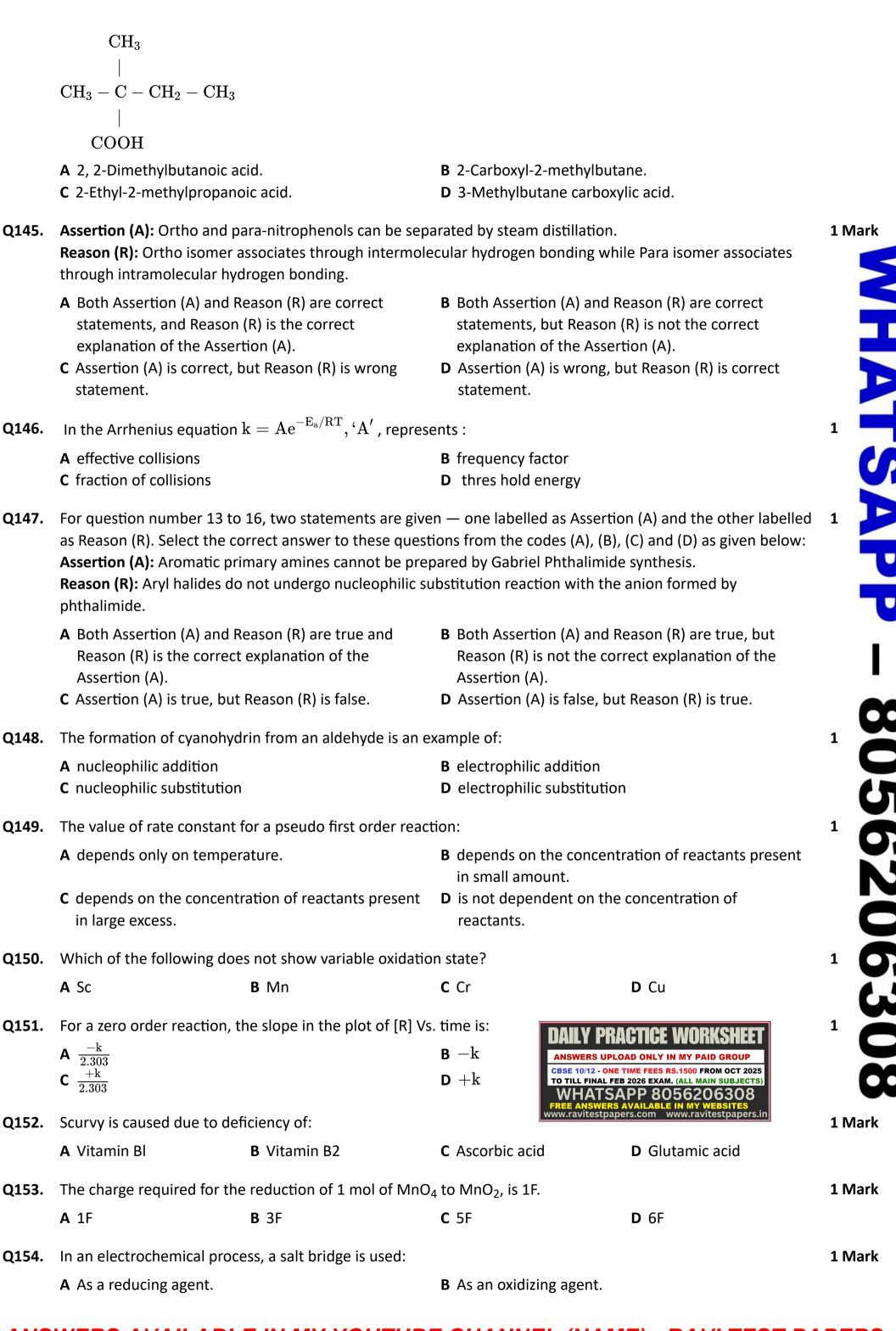
Reason (R): F-F bond has low $\Delta_{\rm bond}$ H°.

- A Both Assertion (A) and Reason (R) are correct statements, and Reason (R) is the correct explanation of the Assertion (A).
- **C** Assertion (A) is correct, but Reason (R) is wrong statement.
- **B** Both Assertion (A) and Reason (R) are correct statements, but Reason (R) is not the correct explanation of the Assertion (A).
- **D** Assertion (A) is wrong, but Reason (R) is correct statement.

Q132. Which of the following will give a white precipitate upon reacting with AgNO3?

1 Mark

- $\mathbf{A} \ \mathrm{K}_{2}[\mathrm{Pt}(\mathrm{en})_{2}\mathrm{Cl}_{2}]$
- $\mathbf{B} \left[\mathsf{Co}(\mathsf{NH}_3)_3 \mathsf{Cl}_3 \right]$
- \mathbf{C} [Cr(H₂O)₆]Cl₃
- **D** [Fe(H_2O)₃Cl₃]

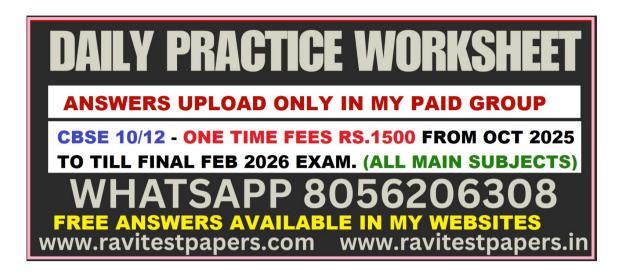

Q133. Directions: In question number 13 and 16, a statement of Assertion (A) is followed by a statement of Reason (R). 1 Mark

Choose the correct option.

Assertion (A): Order of the reaction can be zero or fractional.

Reason (R): We cannot determine order from balanced chemical equation.

	Reason (R) is the corre Assertion (A).	` '	` '	correct explanation of the		
	C Assertion (A) is true, b	ut Reason (R) is false.	D Assertion (A) is false,	but Reason (R) is true.		
Q134.	$lpha- ext{D-glucose}$ and $eta-$	$-\mathrm{D ext{-}glucose}$ differ from each	other with respect to the:		1 Mark	
	A size of the hemiacetal C number of — OH grou		B configuration at the OD configuration at the O	_		
Q135.	'Which of the following r	nolecules is chiral in nature?			1	
	A 1-chloropropane	B 2-chloropropane	C 1-chlorobutane	D 2-chlorobutane		
Q136.	A conductivity cell usuall	y consists of two:			1	
	A Copper electrodes	B Platinum electrodes	C Zinc electrodes	D Iron electrodes		
Q137.	The role of a catalyst is to	o change:			1	
	A equilibrium constantC Gibbs energy of reaction	on	B enthalpy of reaction D activation energy of r	reaction		
Q138.	For questions number 13 to 16, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below: Assertion (A): $[Cr(H,0)4]Cl$, and $[Fe(H,0)c]Cl$, are examples of homoleptic complexes. Reason (R): All the ligands attached to the metal are the same.					
	 A Both Assertion (A) and Reason (R) is the correlation (A). C Assertion (A) is true, b 	ect explanation of the	 B Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A). D Assertion (A) is false, but Reason (R) is true. 			
Q139.	Two statements are given- one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below: Assertion (A): F - F bond in F ₂ molecule is weak. Reason (R): F atom is small in size.					
	 A Both Assertion (A) and Reason (R) are correct statements, and Reason (R) is the correct explanation of the Assertion (A). C Assertion (A) is correct, but Reason (R) is incorrect statement. 		 B Both Assertion (A) and Reason (R) are correct statements, but Reason (R) is not the correct explanation of the Assertion (A). D Assertion (A) is incorrect, but Reason (R) is correct statement. 			
Q140.	Williamson synthesis of p	preparing unsymmetrical ethe	er is:		1	
	A SN ¹ reaction C Electrophilic addition r		B SN² reactionD Elimination reaction			
Q141.	'We cannot measure the	resistance of an ionic solutio	n using DC because:		1	
	A it changes the compose C it does not affect the c	sition of the solution. omposition of the solution.	B it can cause sparks ar D it converts electrolytic			
Q142.	The formula of the comp	lex triamminetri (nitrito-O) C	obalt (III) is:		1	
	$\mathbf{A} \ [Co(ONO)_3(NH_3)_3]$	B $[Co(NO_2)3(NH_3)_3]$	C $[Co(ONO_2)3(NH_3)_3]$	$\mathbf{D} [Co(NO_2)(NH_3)_3]$	C	
Q143.	On mixing 30mL of aceto	ne with 20mL of chloroform,	the total volume of solution	on is:	1 Mark	
	A equal to 10mL	B less than 50mL	C greater than 50mL	D equal to 50mL		
Q144.	What is the correct IUPA	C name of the given compour	DAILY PRACTIC ANSWERS UPLOAD ONLY CBSE 10/12 - ONE TIME FEES TO TILL FINAL FEB 2026 EX WHATSAPP 8 FREE ANSWERS AVAILABE WWW.ravitestpapers.com	Y IN MY PAID GROUP S RS.1500 FROM OCT 2025 AM. (ALL MAIN SUBJECTS) 3056206308	1 Mark	



	C To complete the circuit	so that current can flow.	D None of these.			
Q155.	The activation energy (E _a) A $\ln k$ vs. T C $\ln k$ vs. $\frac{1}{T}$	of a reaction can be determ	nined from the slope of which $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	ch of the following plots?	1 Mark	
Q156.	Which of the following ce	II converts the energy of cor	mbustion of fuel into electric	cal energy?	1 Mark	
	A Mercury cell	B Fuel cell	C Dry cell	D Lead storage cell		
Q157.	Which of the following ha	loalkanes is most reactive to	owards Sy ₂ reaction?		1	
	A CH ₃ -CH ₂ - I	B CH ₃ -CH ₂ - Br	C CH ₃₋ CH ₂ - CI	D CH ₃ -CH ₂ - F		
Q158.	The treatment of ethyl bro	omide with alcoholic silver r	nitrite gives:		1	
	A ethyl nitrite	B nitroethane	C nitromethane	D ethene		
Q159.	CH₃CH₂CHO and CH₃CH,C	OOH can be distinguished b	y:		1	
·	A Sodium bicarbonate tes		C lodoform test	D Lucas test		
Q160.	• •	•	as solventsolvent interactio	ns are similar to solute-solvent	1	
	 A Both Assertion (A) and statements, and Reason explanation of the Asse C Assertion (A) is correct, statement. 	n (R) is the correct ertion (A).	explanation of the Ass	n (R) is not the correct		
Q161.	For Questions two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below. Assertion (A): The pKa of ethanoic acid is lower than that of CI - CH ₂ - COOH. Reason (R): Chlorine shows electron withdrawing (I) effect which increases the acidic character of CI - CH ₂ COOH.					
	A Both Assertion (A) and Reason (R) is the correct Assertion (A).C Assertion (A) is true, but	ct explanation of the	• •	Reason (R) are true, but orrect explanation of the out Reason (R) is true.		
Q162.	The reagent that can be u	sed to convert benzenediaz	zonium chloride to benzonitrile is:			
	A Cu/ HCl	B CH ₃ CN	$\mathbf{C} \ C_2H_5NH_2$	$D C_6H_5NH_2$	Ŋ	
Q163.	During electrolysis of dilu	te H ₂ SO ₄ using platinum ele	ctrodes, the gas evolved at t	the anode is:		
	A H ₂ gas	B O ₂ gas	C SO ₂ gas	D SO ₃ gas	6	
Q164.	Among the following oute oxidation state?	ermost electronic configurat	ions of transition metals, wh	nich one shows the highest	1	
	$\mathbf{A} \ 3d^64s^2$	B 3d ⁵ 4s ¹	C 3d ⁵ 4s ²	D $3d6^3s^2$		
Q165.	During dehydration of alco	ohol to alkene by heating wi	ith conc. H ₂ SO ₄ , the initiatio	n step is:	1	
	A Formation of an esterC Protonation of alcohol		B Formation of carbocatD Elimination of water	ion		
Q166.	lodoform test is given by:				1 Mark	
	A Pentan-2-one.	B Ethanoic acid.	C Pentan-3-one.	D Methoxymethane.		
Q167.	Assertion (A): Acetanilide Reason (R): Acetylation of	is less basic than aniline. f aniline results in decrease	of electron density on nitro	gen.	1 Mark	

	 A Both Assertion (A) and Reason (R) is the correct Assertion (A). C Assertion (A) is true, but 	t explanation of the	B Both Assertion (A) and F Reason (R) is not the con Assertion (A).D Assertion (A) is false, but	rrect explanation of the			
Q168.	as Reason (R). Select the of Assertion (A): Vitamin D of	o 16, two statements are give correct answer to these quest cannot be stored in our body. at soluble vitamin and is not o	tions from the codes (A), (B),		1 Mark		
	A Both Assertion (A) and Reason (R) is the correct Assertion (A).	t explanation of the	B Both Assertion (A) and F Reason (R) is not the con Assertion (A).	rrect explanation of the	1		
	C Assertion (A) is true, bu	t Reason (k) is false.	D Assertion (A) is false, bu	it Reason (R) is true.			
Q169.	_	lutions of KCl will have the hi	,		1		
	A 0.5M	B 0.01M	C 0.1M	D 1.0M			
Q170.	The unit of the rate of rea	ction is the same as that of tl	he rate constant for a:		1		
	A First order reaction.	B Zero order reaction.	C Second order reaction.	D Half-order reaction.	-		
Q171.	Peptide linkage is present	in:			1		
	A Carbohydrates.	B Vitamins.	C Proteins.	D Rubber.			
Q172.	Directions: In question number 13 and 16, a statement of Assertion (A) is followed by a statement of Reason (R). 1 Choose the correct option. Assertion (A): Actinoids show wide range of oxidation states. Reason (R): Actinoids are radioactive in nature.						
	 A Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A). C Assertion (A) is true, but Reason (R) is false. 		 B Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A). D Assertion (A) is false, but Reason (R) is true. 				
Q173.	a-helix structure refers to:				1		
	A primary structure of protein C tertiary structure of protein		B secondary structure of p D quaternary structure of		Ü		
Q174.	lodoform test is not given	by:			1 0		
	A Ethanol.	B Ethanal.	C Pentan-2-one.	D Pentan-3-one.	Ň		
Q175.	In fuel cell:				1		
	A Chemical energy is conv	verted to electrical energy.	B Energy of combustion of fuel is converted to chemical energy.				
	C Energy of combustion of electrical energy.	f fuel is converted to	D Electrical energy is conv	erted to chemical energy.	Ç		
Q176.	When alkyl iodide is treate	ed with large excess of ammo	onia, the major product obta	ined is: DAILY PRACTICE V	VOI C		
	A Tertiary amineC Secondary amine		B Quaternary ammoniumD Primary amine	Salt CBSE 10/12 - ONE TIME FEES RS. TO TILL FINAL FEB 2026 EXAM. (#WHATSAPP 805	1500 I ALL M		
Q177.	Which of the following is	the most stable complex?		FREE ANSWERS AVAILABLE IN www.ravitestpapers.com www	w.ravitestpape L IVIALK		
	A [Fe(CO) ₅]	B [Fe(H ₂ O) ₆] ³⁺	C $[Fe(C_2O_4)_3]^{3-}$	D [Fe(CN) ₆] ³⁻			
Q178.	Out of the following, the	strongest base in aqueous sol	ution is:		1 Mark		
	A Methylamine.	B Dimethylamine.	C Trimethylamine.	D Aniline.			
0170	·	·	·		1 Mark		
Q179.	A Primary valences are io	eory of coordination compou	B Secondary valences are	ionisable.	1 IVIdi K		

Q180. How many ions are produced from the complex $[Co(NH_3)_5Cl]Cl_2$ in solution?

A 4 **B** 2 **C** 3 **D** 5

12TH CBSE 76 CHAPTERWISE SAMPLE
PAPERS (PHY CHEM MAT)

PDF COST RS.750.

RAVI TEST PAPERS & NOTES

WHATSAPP - 8056206308