## RAVI MATHS TUITION CENTER, CHENNAI – 82. PH - 8056206308

## 10TH MATHS MODEL PAPER 4

10th Standard

Date: 29-Nov-19

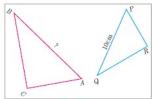
|                                                                                        | 10th Standard                                                                 | D M                                |                                           |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------|-------------------------------------------|
|                                                                                        | Maths                                                                         | Reg.No.:                           |                                           |
| Exam Time: 03:00:00 Hrs<br>ANSWER ALL                                                  |                                                                               | •                                  | Total Marks : $100$<br>$14 \times 1 = 14$ |
|                                                                                        | 1:f(D) -0 41(A) :                                                             | 14-                                | 14 X 1 = 14                               |
| <ol> <li>If f: A → B is a bijective function</li> <li>(a) 7</li> <li>(b) 49</li> </ol> | and if $n(B) = 8$ , then $n(A)$ is e  (c) 1                                   | quai to (d) 14                     |                                           |
| 2) If the HCF of 65 and 117 is expre                                                   | ssible in the form of 65m - 117                                               | 7, then the value of m is          |                                           |
| (a) 4 (b) 2                                                                            | (c) 1                                                                         | (d) 3                              |                                           |
| 3) An A.P. consists of 31 terms. If its                                                | s 16th term is m, then the sum                                                | of all the terms of this A.        | P. is                                     |
| (a) 16 m (b) 62                                                                        | 2 m (c) 31 n                                                                  | n (d) $\frac{3}{2}$                | <u>1</u>                                  |
| 4) If the roots of the equation $q^2x^2 +$                                             | $p^2x + r^2 = 0$ are the squares of                                           | the roots of the equation          | $qx^2 + px + r = 0,$                      |
| then q, p, r are in                                                                    |                                                                               |                                    |                                           |
| (a) A.P (b) G.P (c)                                                                    | Both A.P and G.P                                                              | (d) none of thes                   | se                                        |
| 5) In a given figure ST  QR,PS=2cm                                                     | and SQ=3 cm.                                                                  |                                    |                                           |
| Then the ratio of the area of $\triangle$ Po                                           | QR to the area $\triangle$ PST is                                             |                                    |                                           |
| P T R                                                                                  |                                                                               |                                    |                                           |
| (a) 25:4 (b) 25:                                                                       | 7 (c) 25:11                                                                   | (d) 25:13                          | 3                                         |
| 6) A tangent is perpendicular to the i                                                 | adius at the                                                                  |                                    |                                           |
| (a) centre (b) point of                                                                |                                                                               | e) infinity (d)                    | chord                                     |
| 7) If (5, 7), (3, p) and (6, 6) are colling                                            |                                                                               | , ,                                |                                           |
| (a) 3 (b) 6                                                                            | (c) 9                                                                         | (d) 12                             |                                           |
| 8) Consider four straight lines                                                        |                                                                               |                                    |                                           |
| (i) $l_1: 3y = 4x + 5$                                                                 |                                                                               |                                    |                                           |
| (ii) $l_2 : 4y = 3x - 1$                                                               |                                                                               |                                    |                                           |
| (iii) $l_3 : 4y + 3x = 7$                                                              |                                                                               |                                    |                                           |
| (iv) $l_4: 4x + 3y = 2$                                                                |                                                                               |                                    |                                           |
| Which of the following statement                                                       | is true?                                                                      |                                    |                                           |
|                                                                                        | $l_1$ and $l_4$ are (c) $l_2$ and                                             | $l_4$ are (d) $l_2$                | and l <sub>3</sub> are                    |
| perpendicular para                                                                     |                                                                               |                                    | -                                         |
| 9) if $\sin\theta = \cos\theta = a$ and $\sec\theta + \csc\theta$                      | $\theta$ =b, then the value of b (a <sup>2</sup> -1                           | ) is equal to                      |                                           |
| (a) 2a (b) 3a                                                                          | (c) 0                                                                         | (d) 2ab                            |                                           |
| 10) If $(\sin \alpha + \csc \alpha)^2 + (\cos \alpha + \sec \alpha)^2$                 | $(\alpha)^2 = k + \tan^2 \alpha + \cot^2 \alpha$ , then                       | the value of k is equal to         |                                           |
| (a) 9 (b) 7                                                                            | (c) 5                                                                         | (d) 3                              |                                           |
| 11) The value of the expression [cose                                                  | $ec(75^{\circ}+\theta)$ -sec $(15^{\circ}-\theta)$ -tan $(55^{\circ}+\theta)$ | $\theta$ )+cot(35°- $\theta$ ] is  |                                           |
| (a) -1 (b) 0                                                                           | (c) 1                                                                         | (d) $\frac{3}{2}$                  |                                           |
| 12) The total surface area of a cylinder                                               | er whose radius is $\frac{1}{3}$ of its height                                | ght is                             |                                           |
| (a) $\frac{9\pi h^2}{8}$ sq.units (b) 24 $\pi$                                         |                                                                               | sq.units (d) $\frac{56\pi h^2}{9}$ | sq.units                                  |
| 13) If the standard deviation of x, y, z                                               | is p then the standard deviation                                              | on of 3x+5, 3y+5, 3z +5 i          | S                                         |
| (a) 3p+5 (b) 3p                                                                        | (c) $p + 5$                                                                   | (d) $9p + 15$                      |                                           |

- 14) A number x is chosen at random from -4, -3, -2, -1, 0, 1, 2, 3, 4 find the probability that  $|x| \le 4$ 
  - (a) 0

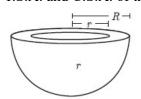
(b) 1

(c)  $\frac{1}{2}$ 

(d)  $\frac{1}{9}$ 


ANSWER ANY 10 QUESTIONS IN WHICH QUESTION NO. 28 IS COMPULSORY

 $12 \times 2 = 20$ 


- 15) Find k if f o g(k) = 5 where f(k)=2k-1.
- 16) Compute x, such that  $10^4 \equiv x \pmod{19}$
- 17) Find the sum of  $1^3+2^3+3^3+..+16^3$

18) If 
$$A = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}$$
,  $B = \begin{bmatrix} 1 & -1 \\ 2 & 1 \\ 1 & 3 \end{bmatrix}$  and  $C = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$  show that  $(AB)C = A(BC)$ 

19) The perimeters of two similar triangles ABC and PQR are respectively 36 cm and 24 cm. If PQ =10 cm, find AB



- 20) Find the equation of a straight line passing through (5, 3) and (7, 4).
- 21) A line makes positive intercepts on coordinate axes whose sum is 7 and it passes through (-3,8). Find its equation
- 22) If A (-5, 7), B (-4, -5), C (-1, -6) and D (4, 5) are the vertices of a quadrilateral, find the area of the quadrilateral ABCD.
- 23) If  $\frac{\cos^2\theta}{\sin\theta}$  =p and  $\frac{\sin^2\theta}{\cos\theta}$ , then prove that  $p^2q^2(p^2+q^2+3)=1$
- 24) In a right triangle ABC, right-angled at B, if  $\tan A = 1$ , then verify that  $2 \sin A \cos A = 1$ .
- 25) A ladder 15 metres long just reaches the top of a vertical wall. If the ladder makes an angle of 60° with the wall, finf the height of the wall.
- 26) The internal and external radii of a hollow hemispherical shell are 3 m and 5 m respectively. Find the T.S.A. and C.S.A. of the shell.



- 27) Find the standard deviation of the data 2, 3, 5, 7, 8. Multiply each data by 4. Find the standard deviation of the new values.
- 28) Find the standard deviation of 30, 80, 60, 70, 20, 40, 50 using the direct method.

ANSWER ANY 10 QUESTIONS IN WHICH QUESTION NO. 42 IS COMPULSORY

 $10 \times 5 = 50$ 

- 29) Let f be a function f:N  $\rightarrow$  N be defined by  $f(x) = 3x+2x \in N$ 
  - (i) Find the images of 1, 2, 3
  - (ii) Find the pre-images of 29, 53
  - (ii) Identify the type of function
- 30) In an A.P. the sum of first n terms is  $\frac{5n^2}{2} + \frac{3n}{2}$ . Find the 17<sup>th</sup> term
- 31) Find the rational form of the number 0.6666....

- 32) A pole 5 m high is fixed on the top of a tower. The angle of elevation of the top of the pole observed from a point 'A' on the ground is  $60^{\circ}$  and the angle of depression to the point 'A' from the top of the tower is  $45^{\circ}$ . Find the height of the tower. ( $\sqrt{3} = 1.732$ )
- 33) The volume of a solid hemisphere is 29106 cm<sup>3</sup>. Another hemisphere whose volume is two-third of the above is carved out. Find the radius of the new hemisphere.
- 34) A card is drawn from a pack of 52 cards. Find the probability of getting a king or a heart or a red card.
- 35) a) Draw a triangle ABC of base BC = 8 cm,  $\angle$  A=60° and the bisector of  $\angle$  A meets BC at D such that BD = 6 cm.

(OR)

- b) BL and CM are medians of a triangle ABC right angled at A. Prove that  $4(BL^2 + CM^2) = 5BC^2$ .
- 36) a) Draw the graph of  $y = x^2 4x + 3$  and use it to solve  $x^2 6x + 9 = 0$

b) 
$$P.T(\frac{1+tan^2A}{1+cot^2A}) = (\frac{1-tan-A}{1-cot-A})^{-2} = tan^2A$$

- 37) Let  $A = \{1,2,3,7\}$  and  $B = \{3,0,-1,7\}$ , which of the following are relation from A to B?
  - (i)  $R_1 = \{(2,1), (7,1)\}$
  - (ii)  $R_2 = \{(-1,1)\}$
  - (iii)  $R_3 = \{(2,-1), (7,7), (1,3)\}$
  - (iv)  $R_4 = \{(7,-1), (0,3), (3,3), (0,7)\}$
- 38) If  $f(x) = \frac{x-1}{x+1}$ ,  $x \ne 1$  show that  $f(f(x)) = -\frac{1}{x}$ , provided  $x \ne 0$ .
- 39) The ratio of 6<sup>th</sup> and 8<sup>th</sup> term of an A.P is 7:9 Find the ratio of 9th term to 13<sup>th</sup> term
- 40) How many terms of the series  $1^3+2^3+3^3+\dots$  Should be taken to get the sum 14400?
- 41) Simplify  $\frac{\frac{1}{p} + \frac{1}{q+r}}{\frac{1}{p} \frac{1}{q+r}} \times (1 + \frac{q^2 + r^2 p^2}{2qr})$
- Given  $A = \begin{pmatrix} p & 0 \\ 0 & 2 \end{pmatrix}$ ,  $B = \begin{pmatrix} 0 & -q \\ 1 & 0 \end{pmatrix}$ ,  $C = \begin{pmatrix} 2 & -2 \\ 2 & 2 \end{pmatrix}$  and if  $BA = C^2$ , find p and q.
- 43) If the roots of the equation  $(c^2 ab)x^2 2(a^2 bc)x + b^2 4ac = 0$  are real and equal prove that either a = 0 (or)  $a^3 + b^3 + c^3 = 3abc$ .
- 44) Find the square root of the following polynomials by division method  $37x^2 28x^3 + 4x^4 + 42x + 9$

\*\*\*\*\*\*\*\*\*\*