RAVI MATHS TUITION CENTER ,GKM COLONY, CH- 82. PH: 8056206308 10th MATHS MODEL PAPER 2

10th Standard
Maths Reg.No.:

Instructions : (1) check the question paper for fairness of printing. if there is any lack of fairness, inform the hall supervisor immediately.(2) use blue or black ink to write and underline and pencil to								
(draw diagrams							
Ex	am Time: 03:00:00	Hrs		Total Marks: 90				
		PART -	- l	$14 \times 1 = 14$				
		ANSWER ALL THE	QUESTIONS.					
1)	$A=\{a,b,p\}, B=\{2,3\}$	$, C=\{p,q,r,s\} $ then $n[(A)]$	UC) xB] is					
	(a) 8	(b) 20	(c) 12	(d) 16				
2)	If $g = \{(1,1), (2,3), (3,3),$	(3,5), (4,7) is a function	givrn by $g(x)=\alpha x+\beta$ then th	e values of α and β are				
	(a) (-1,2)	(b) (2,-1)	(c) (-1,-2)	(d) (1,2)				
3)	Using Euclid's divis	sion lemma, if the cube of	of any positive integer is div	vided by 9 then the possible				
	(a) 0, 1, 8	(b) 1, 4, 8	(c) 0, 1, 3	(d) 0, 1, 3				
4)	If the sequence t_1, t_2, t_3 are in A.P. then the sequence $t_6, t_{12}, t_{18}, \dots$ is							
	(a) a Geometric (b) an Arithmetic (c) neither an Arithmetic Progression nor a (d) a constant							
	Progression	Progression	Geometric Progression	sequence				
5)	The solution of the	system x + y - 3x = -6,	-7y + 7z = 7, $3z = 9$ is					
	(a) $x = 1, y = 2, z =$	= 3 (b) $x = -1, y = 2, z$	z = 3 (c) $x = -1, y = -2$	z = 3 (d) $x = 1, y = 2, z = 3$				
6)				$\begin{pmatrix} 1 & 2 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$				
	Which of the follow	ving can be calculated fro	om the given matrices A =	$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix},$				
	(i) A^2							
	(ii) B ²							
	(iii) AB							
	(iv) BA							
	` ′	(b) (ii) and (iii)	only (c) (ii) and (iv	only (d) all of these				
7)	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		\triangle PQR then the value of \triangle					
.,	(a) 40°	(b) 70°	(c) 30°	(d) 110°				
8)			· /					
υ,	In figure CP and CQ are tangents to a circle with centre at O. ARB is another tangent touching the circle at R. If CP=11 cm and BC = 7 cm, then the length of BR is							
		ibe –/ em, then the leng	ill of DK is					
	O B							
	(a) 6 cm	(b) 5 cm	(c) 8 cm	(d) 4 cm				
9)	A man walks near a wall, such that the distance between him and the wall is 10 units. Consider the wall to							
	be the Y axis. The p	oath travelled by the man	is					
	(a) $x = 10$	(b) $y = 10$	(c) $x = 0$	(d) $y = 0$				
10) When proving that	a quadrilateral is a paral	lelogram by using slopes ye					
	(a) The slopes of two sides	(b) The slopes of two proposite sides		f (d) Both the lengths and slopes of two sides				

		•			
11)	$tan\theta$	$\mathrm{cosec}^2 heta$ -ta	$n\theta$ is	eaual	to

- (a) $\sec\theta$
- (b) $\cot^2\theta$

- (c) $\sin\theta$
- (d) $cot\theta$
- 12) If two solid hemispheres of same base radius r units are joined together along their bases, then curved surface area of this new solid is
 - (a) $4\pi r^2$ sq.units
- (b) $6\pi r^2$ sq.units
- (c) $3\pi r^2$ sq.units
- (d) $8\pi r^2$ sq.units

 $10 \times 2 = 20$

- 13) The height and radius of the cone of which the frustum is a part are h_1 units and r_1 units respectively. Height of the frustum is h_2 units and radius of the smaller base is r_2 units. If $h_2 : h_1 = 1:2$ then $r_2:r_1$ is
 - (a) 1:3

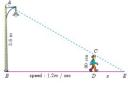
(b) 1:2

(c) 2:1

(d) 3:1

- 14) The range of the data 8, 8, 8, 8, 8. . . 8 is
 - (a) 0

(b) 1


(c) 8

(d) 3

PART II
ANSWER ANY 10 QUESTIONS IN WHICH QUESTION NO. 28 IS COMPULSORY.

- 15) Let $X = \{1,2,4\}$ and $Y = \{2,4,6,8,10\}$ and $R = \{(1,2),(2,4),(3,6),(4,8)\}$ Show that R is a function and find its domain, co-domain and range?
- 16) Find the HCF of 396, 504, 636.
- 17) Find the sum of

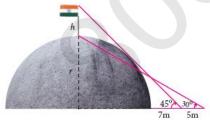
- 18) Solve 2x 3y = 6, x + y = 1
- 19) If α , β are the roots of the equation $3x^2 + 7x 2 = 0$, find the values of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$
- 20) A boy of height 90cm is walking away from the base of a lamp post at a speed of 1.2m/sec. If the lamppost is 3.6m above the ground, find the length of his shadow cast after 4 seconds.

- 21) Show that the points P(-1.5,3), Q(6,-2), R(-3,4) are collinear.
- 22) prove that $\sec\theta \cos\theta = \tan\theta \sin\theta$
- 23) A ladder 15 metres long just reaches the top of a vertical wall. If the ladder makes an angle of 60° with the wall, finf the height of the wall.
- 24) The curved surface area of a right circular cylinder of height 14 cm is 88 cm². Find the diameter of the cylinder.
- 25) The range of a set of data is 13.67 and the largest value is 70.08. Find the smallest value.
- 26) A bag contains 5 blue balls and 4 green balls. A ball is drawn at random from the bag. Find the probability that the ball drawn is (i) blue (ii) not blue.
- 27) Find the equation of a straight line passing through (5, 3) and (7, 4).

28) If
$$A = \begin{bmatrix} 1 & 8 & 3 \\ 3 & 5 & 0 \\ 8 & 7 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 8 & -6 & -4 \\ 2 & 11 & -3 \\ 0 & 1 & 5 \end{bmatrix}$, $C = \begin{bmatrix} 5 & 3 & 0 \\ -1 & -7 & 2 \\ 1 & 4 & 3 \end{bmatrix}$ compute the following

3A + 2B - C

ANSWER ANY 10 QUESTIONS IN WHICH QUESTION NO. 42 IS COMPULSORY.


- 29) Consider the functions f(x), g(x), h(x) as given below. Show that (f o g) o h = f o (g o h) in each case. f(x)=x-1, g(x)=3x+1 and $h(x)=x^2$
- 30) A function f: $[-5,9] \rightarrow R$ is defined as follows:

$$f(x) = \begin{bmatrix} 6x+1 & \text{if } -5 \le x < 2 \\ 5x^2 - 1 & \text{if } 2 \le x < 6 \\ 3x - 4 & \text{if } 6 \le x \le 9 \end{bmatrix}$$

Find
$$\frac{2f(-2) - f(6)}{f(4) + f(-2)}$$
.

- 31) Priya earned Rs.15,000 in the first month. Thereafter her salary increased by Rs1500 per year. Her expenses are Rs.13,000 during the first year and the expenses increases by Rs.900 per year. How long will it take for her to save Rs.20,000 per month
- 32) Find the sum to n terms of the series 0.4 + 0.44 + 0.444 + ...to n terms
- 33) The number of seats in a row is equal to the total number of rows in a hall. The total number of seats in the hall will increase by 375 if the number of rows is doubled and the number of seats in each row is reduced by 5. Find the number of rows in the hall at the beginning.

34) If
$$A = \frac{2x+1}{2x-1}$$
, $B = \frac{2x-1}{2x+1}$ find $\frac{1}{A-B} - \frac{2B}{A^2-B^2}$

- 35) Find the equation of a straight line passing through the point P(-5, 2) and parallel to the line joining the points Q(3, -2) and R(-5, 4).
- 36) Find the area of the quadrilateral whose vertices, taken in order, are (-4, -2), (-3, -5), (3, -2) and (2, 3).
- 37) prove the following identities. $\frac{\sin A \sin B}{\cos A + \cos B} + \frac{\cos A \cos B}{\sin A + \sin B} = 0$
- 38) A flag pole 'h' metres is on the top of the hemispherical dome of radius 'r' metres. A man is standing 7 m away from the dome. Seeing the top of the pole at an angle 45° and moving 5 m away from the dome and seeing the bottom of the pole at an angle
 - 30°. Find (i) the height of the pole (ii) radius of the dome ($\sqrt{3}$ =1.732)

- 39) A solid iron cylinder has total surface area of 1848 sq.m. Its curved surface area is five sixth of its total surface area. Find the radius and height of the iron cylinder.
- 40) A right circular cylinder just enclose a sphere of radius r units. Calculate (i) the surface area of the sphere (ii) the curved surface area of the cylinder
 - (iii) the ratio of the areas obtained in (i) and (ii).
- 41) Find the standard deviation of first 21 natural numbers.
- 42) Two unbiased dice are rolled once. Find the probability of getting
 - (i) a doublet (equal numbers on both dice)

- (ii) the product as a prime number
- (iii) the sum as a prime number
- (iv) the sum as 1

44)

Construct a triangle similar to a given triangle ABC with its sides equal to $\frac{6}{5}$ of the corresponding

sides of the triangle ABC (scale factor $\frac{6}{4}$).

TYPE IN GOOGLE RAVI MATHS TUITION CENTER (TYPE SUBJECT NAME) TEST PAPERS MINIMUM STUDY MATERIALS AND SAMPLE PAPERS PDF AVAILABLE FOR SALES. WHATSAPP 8056206308

Draw the graph of $y = x^2 + 3x + 2$ and use it to solve $x^2 + 2x + 1 = 0$
