RAVI MATHS TUITION CENTER, CHENNAI – 82. PH - 8056206308 Geometry FULL

10th Standard Maths

Reg.No.:

Total Marks : 1 15 x 1 =

Exam Time: 03:00:00 Hrs

1)	If in triangles ABC and EDF, $AB = BC$ then they will be similar, when			
	(a) $\angle B = \angle E$ $DE FL$ (b) $\angle A = \angle D$	(c) $\angle B = \angle D$	(d) $\angle A = \angle F$	
2)	In \angle LMN, \angle L=60°, \angle M=50°, If \triangle LM			
-)	(a) 40° (b) 70°	(c) 30°	(d) 110°	
3)	If \triangle ABC is an isosceles triangle with \angle	· /	` '	
-,	(a) 2.5 cm (b) 5 cm	(c) 10 cm	(d) $5\tilde{A} \overline{2} \text{cm}$	
4)	In a given figure ST QR,PS=2cm and SQ	` '	(-)	
	Then the ratio of the area of \triangle PQR to the area \triangle PST is			
	~			
	p T R			
	(a) 25:4 (b) 25:7	(c) 25:11	(d) 25:13	
5)	5) The perimeters of two similar triangles \triangle ABC and \triangle PQR are 36 cm and 24 cm respectively. If PQ = 1			
	cm, then the length of AB is			
	(a) $6\frac{2}{3}$ (b) $\frac{10\tilde{A}\overline{6}}{3}cm$	(c) $60\frac{2}{3}cm$	(d) 15cm	
	$\frac{6}{3}$ $\frac{-}{3}$ cm	$30\frac{1}{3}$		
6)	6) if △ ABC, DE BC, AB=3.6cm, AC=24 cm and AD=2.1 cm then the length of AE is			
	(a) 1.4 cm (b) 1.8 cm	(c) 1.2 cm	(d) 1.05 cm	
7)	In a \triangle ABC, AD is the bisector \angle BAC.	If AB=5cm and DC=8cm. The le	ngth of the side AC is	
	(a) 6 cm (b) 4 cm	(c) 3 cm	(d) 8 cm	
8) In the adjacent figure $\angle BAC = 90^{\circ} \text{ nd AD} \perp BC$ then				
	(a) BD-CD=BC ² (b) AB.AC=B	BC^2 (c) $BD.CD=AD^2$	(d) AB-AC=AD ³	
9)	Two poles of heights 6 m and 11 m stand	` '	• *	
12 m, what is the distance between their tops?				
	(a) 13 m (b) 14 m	*	(d) 12.8 m	
10	In the given figure PR=26 cm, QR=24cm	* *	, ,	
	AAR 90°	~ .		
	(a) 80° (b) 85°	(c) 75°	(d) 90°	
11)	A tangent is perpendicular to the radius	at the		
	(a) centre (b) point of contact	t (c) infinity	(d) chord	
12)	How many tangents can be drawn to the	circle from an exterior point?		
	(a) one (b) two	(c) infinite	(d) zero	
13) The two tangents from an external points P to a circle with centre at O are PA and PB.If $\angle APB$				
	=70° then the value of $\angle AOB$ is			
	(a) 100° (b) 110°	(c) 120°	(d) 130°	
14) In figure CP and CQ are tangents to a circle with centre at O. ARB is another tangent touching the circle				
at R. If CP=11 cm andBC =7 cm, then the length of BR is				
	O R O			

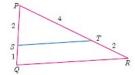
(b) 5 cm

(c) 8 cm

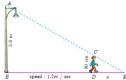
(d) 4 cm

15) In figure if PR is tangent to the circle at P and O is the centre of the circle, then $\angle PQR$ is

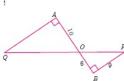
(a) 120°


(b) 100°

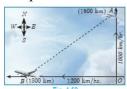
(c) 110°


(d) 90°

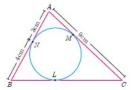
 $5 \times 2 =$


16) Show that $\triangle PST \sim \triangle PQR$

17) A boy of height 90cm is walking away from the base of a lamp post at a speed of 1.2m/sec. If the lamppost is 3.6m above the ground, find the length of his shadow cast after 4 seconds.



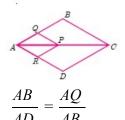
18) QAand PB are perpendiculars to AB. If AO = 10 cm, BO=6 cm and PB=9 cm. Find AQ.


19) If \triangle ABC is similar to \triangle DEFsuch that BC=3 cm, EF=4 cm and area of \triangle ABC= 54 cm². Find the are of \triangle DEF.

20) An Aeroplane leaves an airport and flies due north at a speed of 1000 km/hr. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1200 km/hr. How far apart will be the two planes after 1½ hours?

 $15 \times 5 =$

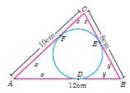
21) In Fig,△ ABC is circumscribing a circle. Find the length of BC.



22) A girl looks the reflection of the top of the lamp post on the mirror which is 66 m away from the foot of the lamppost. The girl whose height is 12.5 m is standing 2.5 m away from the mirror. Assuming the mirror is placed on the ground facing the sky and the girl, mirror and the lamppost are in a same line, fir the height of the lamp post.

23)

Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{2}{3}$ of the corresponding sides the triangle PQR (scale factor $\frac{2}{3}$).


- Construct a triangle similar to a given triangle ABC with its sides equal to $\frac{6}{5}$ of the corresponding sides the triangle ABC (scale factor $\frac{6}{4}$).
- 25) In fig. if PQ||BCandPR||CD prove that

26) In figure DE||BC andCD. Prove that AD²=AB X AF

- 27) Construct a △ PQR which the base PQ= 4.5 cm,∠ R=35° and the median from R to RG is 6 cm.
- 28) Construct a \triangle PQR such that QR = 6.5 cm, \angle P=60° and the altitude from P to QR is of length 4.5 cm.
- 29) Draw a triangle ABC of base BC = 5.6 cm, \angle A=40° and the bisector of \angle A meets BC at D such that C = 4 cm.
- 30) In the adjacent figure, ABC is a right angled triangle with right angle at B and points D, E trisect BC. Prove that $8AE^2=3AC^2+5AD^2$
- 31) A circle is inscribed in \triangle ABC having sides 8 cm, 10 cm and 12 cm as shown in figure, Find AD, BE at CF.

- 32) Draw a circle of radius 4.5 cm. Take a point on the circle. Draw the tangent at that point using the alternate segment theorem.
- 33) Draw the two tangents from a point which is 10 cm away from the centre of a circle of radius 5 cm. Als measure the lengths of the tangents.
- 34) D is the mid point of side BC and AE \perp BC. If BC = a ,AC = b ,AB = c ,ED = x , AD = p and AE = h , prove that

$$b^2 + c^2 = 2p^2 + \frac{a^2}{2}$$

35) In \triangle ABC, D and E are points on the sides AB and AC respectively such that DE||BC If AD=8x-7, DB=5x-3, AE=4x-3, and EC =3x, find the value of x.
