RAVI MATHS TUITION CENTER PH - 8056206308

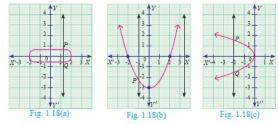
Relations and Functions FULL TEST 10th Standard Reg.No.: Maths Exam Time: 02:30:00 Hrs Total Marks: 1 $14 \times 1 =$ 1) If $n(A \times B) = 6$ and $A = \{1,3\}$ then n(B) is (c) 3 (d) 6 (b) 2 (a) 1 2) $A=\{a,b,p\}, B=\{2,3\}, C=\{p,q,r,s\} \text{ then } n[(A \cup C) \times B] \text{ is }$ (b) 20 (d) 16 3) If $A = \{1,2\}$, $B = \{1,2,3,4\}$, $C = \{5,6\}$ and $D = \{5,6,7,8\}$ then state which of the following statement is true... (a) $(A \times C) \subset (B \times D)$ (b) $(B \times D) \subset (A \times C)$ (c) $(A \times B) \subset (A \times D)$ (d) $(D \times A) \subset (B \times A)$ 4) If there are 1024 relations from a set $A = \{1, 2, 3, 4, 5\}$ to a set B, then the number of elements in B is (b) 2 (c) 4 (d) 8 5) The range of the relation $R = \{(x, x^2) | x \text{ is a prime number less than } 13 \}$ is (b) {2,3,5,7,11} (c) {4,9,25,49,121} (d) {1,4,9,25,49,121} (a) $\{2,3,5,7\}$ 6) If the ordered pairs (a+2,4) and (5,2a+b) are equal then (a,b) is (a) (2,-2)(b) (5,1)(d) (3,-2)7) Let n(A) = m and n(B) = n then the total number of non-empty relations that can be defined from A to B (b) n^m (c) $2^{mn}-1$ (d) 2^{mn} (a) mⁿ 8) If $\{(a,8),(6,b)\}$ represents an identity function, then the value of a and b are respectively (c) (6.8)(a) (8,6) (b) (8,8) 9) Let $A = \{1,2,3,4\}$ and $B = \{4,8,9,10\}$. A function f: $A \rightarrow B$ given by $f = \{(1,4), (2,8), (3,9), (4,10)\}$ is a (a) Many-one function (b) Identity function (c) One-to-one function (d) Into function 10) If $f(x)=2x^2$ and $g(x)=\frac{1}{3x}$, then f o g is (c) $\frac{2}{9x^2}$ (d) $\frac{1}{6x^2}$ 11) If f: A \rightarrow B is a bijective function and if n(B) =8, then n(A) is equal to (b) 49 (d) 14 (c) 1 12) Let f and g be two functions given by $f=\{(0,1), (2,0), (3,-4), (4,2), (5,7)\}$ $g=\{(0,2), (1,0), (2,4), (-4,2), (7,0)\}$ then the range of f o g is (a) $\{0,2,3,4,5\}$ (b) $\{-4,1,0,2,7\}$ (d) $\{0,1,2\}$ (c) $\{1,2,3,4,5\}$ 13) Let $f(x) = \tilde{A} \frac{1 + x^2}{1 + x^2}$ then (a) f(xy) = f(x).f(y)(b) $f(xy) \ge f(x).f(y)$ (c) $f(xy) \le f(x).f(y)$ (d) None of these

14) If $g=\{(1,1), (2,3), (3,5), (4,7)\}$ is a function givrn by $g(x)=\alpha x+\beta$ then the values of α and β are

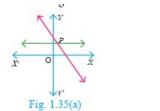
(a) (-1,2)

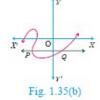
(b) (2,-1)

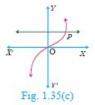
(c) (-1,-2)


(d) (1,2)

 $10 \times 2 =$

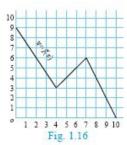

15) A relation 'f' is defined by $f(x)=x^2-2$ where $x \in \{-2,-1,0,3\}$


- (i) List the elements of f
- (ii) Is f a function?
- 16) Find f o g and g o f when f(x)=2x+1 and $g(x)=x^2-2$
- 17) Represent the function $f(x) = \tilde{A} \frac{2x^2 5x + 3}{2x^2 5x + 3}$ as a composition of two functions.
- 18) Find k if f o g(k) = 5 where f(k)=2k-1.
- 19) If f(x)=2x+3, g(x)=1-2x and h(x)=3x. Prove that f(0) (f(0)) o h.
- 20) Let A = $\{0, 1, 2, 3\}$ and B = $\{1, 3, 5, 7, 9\}$ be two sets. Let f: A \rightarrow B be a function given by f(x) = 2x + 1Represent this function as a set of ordered pairs.


- 21) Let $A = \{0, 1, 2, 3\}$ and $B = \{1, 3, 5, 7, 9\}$ be two sets. Let $f: A \rightarrow B$ be a function given by f(x) = 2x + B Represent this function as a graph.
- 22) Let $A = \{3,4,7,8\}$ and $B = \{1,7,10\}$. Which of the following sets are relations from A to B?
 - (i) $R_1 = \{(3,7), (4,7), (7,10), (8,1)\}$
 - (ii) $R_2 = \{(3,1), (4,12)\}$
 - (iii) $R_3 = \{(3,7), (4,10), (7,7), (7,8), (8,11), (8,7), (8,10)\}$
- 23) Using vertical line test, determine which of the following curves (Fig.1.18(a), 1.18(b), 1.18(c), 1.18(d)) represent a function?

24) Using horizontal line test (Fig.1.35(a), 1.35(b), 1.35(c)), determine which of the following functions are one – one.

- 25) Let $A = \{1,2,3\}$, $B = \{4,5,6,7\}$, and $f = \{(1,4),(2,5),(3,6)\}$ be a function from A to B. Show that f is one c but not onto function.
- 26) If $A = \{-2, -1, 0, 1, 2\}$ and f: $A \rightarrow B$ is an onto function defined by $f(x) = x^2 + x + 1$ then find B.
- 27) Let f be a function f:N \rightarrow N be defined by $f(x) = 3x+2x \in N$
 - (i) Find the images of 1, 2, 3
 - (ii) Find the pre-images of 29, 53
 - (ii) Identify the type of function
- 28) A function f: $[-7,6) \rightarrow R$ is defined as follows.


$$f(x) = \begin{cases} x^2 + 2x + 1 & -7 \le x < -5 \\ x + 5 & -5 \le x \le 2 \\ x - 1 & 2 < x < 6 \end{cases}$$

$$f(-7) - f(-3)$$

 $10 \times 5 =$

- 29) Find A x B, A x A and B x A A=(2,-2,3) and B={1,-4}
- 30) If $A = \{5,6\}$, $B = \{4,5,6\}$, $C = \{5,6,7\}$, Show that $A \times A = (B \times B) \cap (C \times C)$
- 31) Let $A = \{x \in W | x < 2\}$, $B = \{x \in N | < x \le 4\}$ and C = (3,5). Verify that $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- 32) A graph representing the function f(x) is given in Fig.1.16 it is clear that f(9) = 2.
 - (i) Find the following values of the function
 - (a) f(0)
 - (b) f(7)

- (c) f(2)
- (d) f(10)
- (ii) For what value of x is f(x) = 1?
- (iii) Describe the following (i) Domain (ii) Range.
- (iv) What is the image of 6 under f?

- 33) Let f(x)=2x+5. If $x \neq 0$ then find $\frac{f(x+2)-f(2)}{x}$.
- 34) The data in the adjacent table depicts the length of a woman's forehand and her corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length(x) as y ax + b, where a, b are constants.
 - (i) Check if this relation is a function.
 - (ii) Find a and b.
 - (iii) Find the height of a woman whose forehand length is 40 cm.
 - (iv) Find the length of forehand of a woman if her height is 53.3 inches.

Length 'x' of	Height 'y'
forehand (in cm)	(in inches)
45.5	65.5
35	56
45	65
50	69.5
55	75

- 35) Let f: A \to B be a function defined by $f(x) = \frac{x}{2}$ -1, where A={2,4,6,10,12}, B={0,1,2,4,5,9}, Represent by
 - (i) set of ordered pairs
 - (ii) a table
 - (iii) an arrow diagram
 - (iv) a graph
- 36) Let $A=\{1,2,3,4\}$ and B=N. Let $f:A \longrightarrow B$ be defined by $f(x)=x^3$ then
 - (i) find the range of f
 - (ii) identify the type of function
- 37) The function 't' which maps temperature in Celsius (C) into temperature in Fahrenheit (F) is defined by t(C)=F where F- $\frac{9}{5}$ C+32. Find,
 - (i) t(0)
 - (ii) t(28)
 - (iii) t(-10)
 - (iv) the value of C whenn t(C)=212
 - (v) the temperature when the Celsius value is equal to the Farenheit value.
- 38) Consider the functions f(x), g(x), h(x) as given below. Show that (f o g) o h = f o (g o h) in each case. f(x)=x-1, g(x)=3x+1 and $h(x)=x^2$
- 39) If $f(x)=x^2$, g(x)=3x and h(x)=x-2, Prove that (f o g) o h = f o (g o h).

- 40) Let $A = \{x \in W | x < 2\}$, $B = \{x \in N | < x \le 4\}$ and C = (3,5). Verify that $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- 41) A function f: $[-5,9] \rightarrow R$ is defined as follows:

$$f(x) = \begin{bmatrix} 6x+1 & \text{if } -5 \le x < 2\\ 5x^2 - 1 & \text{if } 2 \le x < 6\\ 3x - 4 & \text{if } 6 \le x \le 9 \end{bmatrix}$$

Find
$$\frac{2f(-2) - f(6)}{f(4) + f(-2)}$$
.

42) Consider the functions f(x), g(x), h(x) as given below. Show that (f o g) o h = f o (g o h) in each case. f(x)=x-4, $g(x)=x^2$ and h(x)=3x-5
