RAVI TEST PAPERS WHATSAPP 8056206308

10TH MATHS PRACTICE QUESTIONS FOR QUARTERLY EXAM PART 1

10th Standard

Maths

ANSWERS AVAILABLE ONLY IN MY BLOGGER https://www.ravitestpapers.in/ (https://www.ravitestpapers.in/)

SEARCH GOOGLE - RAVI TEST PAPERS – RAVI MATHS TUITION CENTER

 $20 \times 2 = 40$

1) Find A x B, A x A and B x A A = $\{2, -2, 3\}$ and B = $\{1, -4\}$

Answer: Given
$$A = \{2, -2, 3\}$$
, $B = \{1, -4\}$.
 $A \times B = \{2, -2, 3\} \times \{1, -4\}$
 $= \{(2, 1), (2, -4), (-2, 1), (-2, -4), (3, 1), (3, -4)\}$
 $A \times A = \{2, -2, 3\} \times \{2, -2, 3\}$
 $= \{(2, 2), (2, -2), (2, 3), (-2, 2), (-2, -2), (-2, 3), (3, 2), (3, -2), (3, 3)\}$
 $B \times A = \{1, -4\} \times \{2, -2, 3\}$

 $= \{(1,2),(1,-2),(1,3)\}, (-4,2), (-4,-2), (-4,3)\}$

A Relation R is given by the set $\{(x,y) / y = x + 3, x \}$ $\{0, 1, 2, 3, 4, 5\}$. Determine its domain and range.

Answer : Given Set =
$$\{(x,y) / y = x + 3, x \}$$
 {0, 1, 2, 3, 4, 5}} When $x = 0$, $y = 0 + 3 = 3$ When $x = 1$, $y = 1 + 3 = 4$ When $x = 2$, $y = 2 + 3 = 5$ When $x = 3$, $y = 3 + 3 = 6$ When $x = 4$, $y = 4 + 3 = 7$ When $x = 5$, $y = 5 + 3 = 8$ Relation $R = \{(0, 3), (1, 4), (2, 5), (3, 6), (4, 7), (5, 8)\}$ Domain of $R = \{0, 1, 2, 3, 4, 5\}$ Range of $R = \{3, 4, 5, 6, 7, 8\}$

3) Let f(x) = 2x + 5. If $x \ne 0$ then find $\frac{2 \cdot 5 = 3}{2} \cdot \frac{2 = 3}{3}$.

Answer:
$$f(x) = 2x + 5, x \neq 0.$$

$$\frac{2 \cdot 5 = 3}{2} \cdot \frac{2}{3} \cdot \frac{2}$$

- 4) Let f be a function $f: N \to N$ be defined by f(x) = 3x + 2, x = N
 - (i) Find the images of 1, 2, 3
 - (ii) Find the pre-images of 29, 53
 - (iii) Identify the type of function

Answer: The function $f:N \to N$ is defined by f(x) = 3x + 2

(i) If
$$x = 1$$
, $f(1) = 3(1) + 2 = 5$

If
$$x = 2$$
, $f(2) = 3(2) + 2 = 8$

If
$$x = 3$$
, $f(3) = 3(3) + 2 = 11$

The images of 1, 2, 3 are 5, 8, 11 respectively.

(ii) If x is the pre-image of 29, then
$$f(x) = 29$$
, Hence $3x + 2 = 29$

$$3x = 27 \Rightarrow x = 9$$

Similarly, if x is the pre-image of 53, then f(x) = 53. Hence 3x + 2 = 53

$$3x = 51 \Rightarrow x = 17$$

Thus the pre-images of 29 and 53 are 9 and 17 respectively.

(iii) Since different elements of N have different images in the co-domain, the function f is one-one function.

The co-domain of f is N.

But the range of $f = \{5, 8, 11, 14, 17, \ldots\}$ is a proper subset of N.

Therefore f is not an onto function. That is, f is an into function.

Thus f is one-one and into function.

5) Find k if f o f(k) = 5 where f(k) = 2k - 1.

Answer:
$$f \circ f(k) = f(f(k))$$

$$= 2(2k - 1) - 1 = 4k - 3$$

Thus, f o
$$f(k) = 4k - 3$$

But, it is given that
$$f \circ f(k) = 5$$

Therefore
$$4k - 3 = 5 \Rightarrow k = 2$$

6) 'a' and 'b' are two positive integers such that $a^b \times b^a = 800$. Find 'a' and 'b'

Answer: The number 800 can be factorized as

$$800 = 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5 = 2^5 \times 5^2$$

Hence
$$a^b x b^a = 2^5 x 5^2$$

This implies that a = 2 and b = 5 or a = 5 and b = 2

7) The general term of a sequence is defined as

Find the eleventh and eighteenth terms.

Answer: To find a_{11} , Since 11 is odd, we put n = 11 in $a_n = n$ (n + 3)

Thus, the eleventh term $a_{11} = 11(11 + 3) = 154$

To find a_{18} , Since 18 is even, we put n = 18 in $a_n = n^2 + 1$

Thus the eighteenth term $a_{18} = 18^2 + 1 = 325$

8) Find the number of terms in the A.P. 3, 6, 9, 12,..., 111.

Answer: First term a = 3; common difference d = 6 - 3 = 3; last term 1 = 111

We know that, n =)—
$$\begin{bmatrix} 5 \\ n = \end{bmatrix}$$
 = 37

9) Find x so that x + 6, x + 12 and x + 15 consecutive terms of a Geometric Progression.

Answer: If the given numbers are consecutive terms of a G.P. then

10) If 1+2+3+...+n=666 then find n.

Answer: Since,
$$1 + 2 + 3 + ... + n = \frac{2 \cdot 5 \cdot 3}{=}$$
, we have $\frac{2 \cdot 5 \cdot 3}{=} = 666$ $n^2 + n - 1332 = 0$ gives $(n + 37) (n - 36) = 0$ So, $n = -37$ or $n = 36$ But $n = -37$ (Since $n = 36$)

11) Simplify $\frac{2 \ 5 \ 3}{5} \ \frac{2 < 3}{5}$

Answer:
$$\frac{2 \ 5 \ 3}{=} \ 5 \ \frac{2 < 3}{=} \ s \ \frac{2 \ 5 \ 35 \ 2 \ 2 < 3}{2 \ =} \ s \ =$$

Find the square root of the following $4x^2 + 20x + 25$

Answer :
$$|2x + 5|$$

Find the LCM of the given expressions. $p^2 - 3p + 2$, $p^2 - 4$

Answer:
$$p^2 - 3p + 2$$
,
 $p^2 - 3p + 2 = (p - 1)(p - 2)$
 $p^2 - 4 = (p + 2)(p - 2)$
L.C.M = $(p - 2)(p + 2)(p - 1)$

14) Reduce each of the following rational expressions to its lowest form.

$$\frac{= [];}{= [] : 5i]}$$
Answer:
$$\frac{= [];}{= [] : 5i]}$$
S
$$\frac{2 \quad n3}{= 2 = <= 5 [= 3]}$$

$$= \frac{(p-8)(p+5)}{2p(p-4)(p-8)}$$

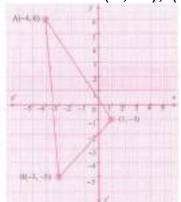
$$\mathbf{S} \quad \frac{o \, \mathbf{5} \, \mathbf{e}}{= \, \mathbf{2} \quad] \, \mathbf{3}}$$

Find the square root of the following expressions $\frac{4 \cdot n}{n \cdot c} = \frac{1}{4}$

Answer:
$$\frac{\langle j \rangle n \langle -i \rangle}{n \langle -i \rangle} S = \frac{1}{[n]} \frac{|i \rangle n}{|i \rangle |i \rangle m}$$

Find the area of the triangle formed by the points (1, -1), (-4, 6) and (-3, -5)

Answer: (1,-1), (-4, 6) and (-3, -5)



Area of triangle ABC s $\stackrel{<}{=}$ 2 $_{<}$ = 5 $_{=}$ [$_{<}$ 3 $_{=}$ < 5 $_{=}$ = 5 $_{<}$ [$_{3}$

$$s \;\; \stackrel{<}{=} \;\; <2 \; = \quad [\; 35 \quad =2 \; [\qquad <35 \quad [\; 2 \; < \quad =3 \qquad 8 \;$$

$$s \leq 45 \ll 5$$

Determine whether the sets of points are collinear?
$$2 \leq 6[3, (-5, 6)]$$
 and $(-8, 8)$

Answer: Given points are $2 = \frac{6}{5} [3, (-5, 6)]$ and (-8, 8)

Let us use area of triangle formula

Let us use area of triangle formula Area of triangle
$$= \frac{1}{2}$$
 $= 2$ $= 2$ $= 3$ $= 2$ $= 3$ $= 2$ $= 3$ $= 3$ $= 2$ $= 3$

$$s \leq 2i \quad n3 \quad e2n \quad [3 \quad n2] \quad i3$$

$$s \leq \leq 2 = 3 e2e3 n2 [3]$$

$$s \stackrel{=}{=} < \stackrel{=}{=} 5 \stackrel{=}{=} s \stackrel{<}{=} 2; 3s;$$

Since, the area of triangle is zero, the given points are collinear.

18) Find the slope of a line joining the given points (-6, 1) and (-3, 2)

Answer: (-6, 1) and (-3, 2)
The slpoe
$$\frac{= <}{= <}$$
 s $\frac{= <}{[5 \text{ i}]}$ s

19) If the three points
$$(3, -1)$$
, $(a, 3)$ and $(1, -3)$ are collinear, find the value of a.

Answer: Given points (3, -1), (a, 3) and (1, -3)

Slope of AB =
$$\frac{\langle = }{\langle = }$$
 s

Let the points be A (3, -1), B (a, 3) and C (1,-3)
Slope of AB =
$$\frac{<}{<}$$
 = $\frac{<}{<}$ s $\frac{<}{<}$ Slope of BC = $\frac{<}{<}$ = $\frac{<}{<}$ = $\frac{<}{<}$ s $\frac{1}{<}$

Since, the points A, B and C are collinear.

Slope of AB = Slope of BC

$$\frac{1}{\int_{-2}^{1} s \frac{i}{s}} = \frac{1}{s}$$

$$-2 (a - 1) = 3(3 - a)$$

$$-2a + 2 = 9 - 3a$$

 $3a - 2a = 9 - 2$

$$a = 7$$

The line through the points (-2, a) and (9, 3) has slope -
$$\leq$$
. Find the value of a.

```
Answer: Given points (-2, a) and (9, 3) and Slope = -\frac{4}{3}.
  Slope of the line = - \leq
  2(a - 3) = 11
  2a = 11 + 6
  a = \frac{4m}{}
PDF QUESTIONS AVAILABLE IN MY WEBSITE https://ravitestpapers.com/
                                                                                                                    20 \times 5 = 100
                              (https://ravitestpapers.com/)
21)
                      N \mid 1 < x < 4, B = \{x \mid W \mid 0 \le x < 2\} and C = \{x \mid N \mid x < 3\} Then verify that
       Let A = \{x\}
       (i) A \times (B \cup C) = (A \times B) \cup (A \times C)
       (ii) A \times (B \cap C) = (A \times B) \cap (A \times C)
       Answer: A = \{x \mid N \mid 1 < x < 4\} = \{2,3\}, B = \{x \mid W \mid 0 \le x < 2\} = \{0,1\}, C = \{x \mid N \mid x < 1\}
       3} = (1,2)
       (i) A \times (B \cup C) = (A \times B) \cup (A \times C)
       B U C = (0,1) U (1,2) = \{0,1,2\}
       A x (B U C) = \{2,3\} x \{0,1,2\} = \{(2,0),(2,1)(2,2)(3,0)(3,1),(3,2)\}
                                                                                             ..(1)
       A \times B = \{2,3\} \times \{0,1\} = \{(2,0),(2,1),(3,0),(3,1)\}
       A \times C = \{2,3\} \times \{1,2\} = \{(2,1),(2,2),(3,1)(3,2)\}
       (A \times B) \cup (A \times C) = \{(2,0),(2,1),(3,0),(3,1)\} \cup \{(2,1),(2,2),(3,1),(3,2)\}
       = \{(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)\}
       From (1) and (2), A \times (B \cup C) = (A \times B) \cup (A \times C) is verified.
       (ii) A \times (B \cap C) = (A \times B) \cap (A \times C)
       (B \cap C) = \{0,1\} \cap \{1,2\} = \{1\}
       A \times (B \cap C) = \{2,3\} \times \{1\} = \{(2,1),(3,1)\} \dots (3)
       A \times B = \{2,3\} \times \{0,1\} = \{(2,0),(2,1),(3,0),(3,1)\}
       A \times C = \{2,3\} \times \{1,2\} = \{(2,1),(2,2),(3,1),(3,2)\}
       (A \times B) \cap (A \times C) = \{(2,0),(2,1),(3,0),(3,1)\} \cap \{(2,1),(2,2),(3,1),(3,2)\}
       = \{(2,1),(3,1)\}
                                      .... (4)
       From (3) and (4), A \times (B \cap C) = (A \times B) \cap (A \times C) is verified.
22)
       Let A = \{x \mid W \mid x < 2\}, B = \{x \mid N \mid 1 < x \le 4\} and C = (3,5). Verify that
       A \times (B \cup C) = (A \times B) \cup (A \times C)
       Answer: Given A = \{x | W | x < 2\} A = \{0, 1\}
                N \mid 1 < x \le 4 B = {2,3,4}
       B = \{x
       C = \{3,5\}
       A \times (B \cup C) = (A \times B) \cup (A \times C)
       N P = \{2,3,4,5\}
       A \times (B \cup C) = \{0,1\} \times \{2,3,4,5\}
       = \{\{0,2\},(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)\}
       A \times B = \{0,1\} \times \{2,3,4\}
       = \{(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)\}
       A \times C = \{0,1\} \times \{3,5\}
       = \{\{0,3\},(0,5),(1,3),(1,5)\}
       2C N3 2C P3 = \{(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)\} ...(2)
       From (1) \times (2), it is clear that
              2N P3s 2C
                                                      P3
```

23) Let A = $\{1,2,3,4\}$ and B = $\{2, 5, 8, 11,14\}$ be two sets. Let f: A \rightarrow B be a function given by f(x) = 3x - 1. Represent this function (i) by arrow diagram

N3

Hence verified

2C

- (ii) in a table form
- (iii) as a set of ordered pairs
- (iv) in a graphical form

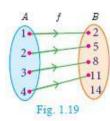
Answer:
$$A = \{1, 2, 3, 4\}$$
; $B = \{2, 5, 8, 11, 14\}$; $f(x) = 3x - 1$

$$f(1) = 3(1) - 1 = 3 - 1 = 2$$
; $f(2) = 3(2) - 1 = 6 - 1 = 5$

$$f(3) = 3(3) - 1 = 9 - 1 = 8$$
; $f(4) = 4(3) - 1 = 12 - 1 = 11$

(i) Arrow diagram

Let us represent the function $f:A \to B$ by an arrow diagram



(ii) Table form

The given function f can be represented in a tabular form as given below

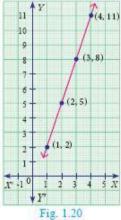
f(x)25811

(iii) Set of ordered pairs

The function f can be represented as a set of ordered pairs as $f = \{(1,2),(2,5),(3,8),(4,11)\}$

(iv) Graphical form

In the adjacent xy -plane the points



118.1.20

24) If the function $f: R \rightarrow R$ defined by

$$= 5 \text{ n6} \text{ r} =$$

$$2 3 s = = 6 = r$$

$$=6$$

- (i) f(4)
- (ii) f(-2)

(iii)
$$f(4) + 2f(1)$$

(iv)
$$\frac{2 < 3 \ [2] \ 3}{2 \ [3]}$$

Answer: The function f is defined by three values in intervals I, II, III as shown by the side.

For a given value of x = a, find out the interval at which the point a is located, there after find

- f(a) using the particular value defined in that interval.
- (i) First, we see that, x = 4 lie in the third interval.

Therefore,
$$f(x) = 3x - 2$$
; $f(4) = 3(4) = 10$

(ii) x = -2 lies in the second interval

Therefore,
$$f(x) = x^2 - 2$$
; $f(-2) = (-2)^2 - 2 = 2$

(iii) From (i), f(4) = 10.

To find f(1) first we see that x = 1 lies in the second interval.

Therefore,
$$f(x) = x^2 - 2 \Rightarrow f(1) = 1^2 - 2 = -1$$

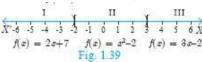
So,
$$f(4) + 2f(1) = 10 + 2(-1) = 8$$

(iv) We know that f(1) = -1 and f(4) = 10

For finding f(-3), we see that x = -3, lies in the first interval.

Therefore,
$$f(x) = 2x + 7$$
; thus, $f(-3) = 2(-3) + 7 = 1$

Hence,
$$\frac{2 < 3 + [2] 3}{2 + [3]}$$
 s $\frac{= [2 < 3]}{<} = -31$



25) If $f(x) = x^2$, g(x) = 3x and h(x) = x - 2, Prove that (f o g) o h = f o (g o h).

Answer:
$$f(x) = x^2$$
, $g(x) = 3x$, $h(x) = x - 2$

$$f \circ g = f [g(x)] = f (3x)$$

$$= (3x)^2 - 9x^2$$

$$(f \circ g) \circ h = (f \circ g) [h (x)] = (f \circ g) [x - 2]$$

$$= 9 (x - 2)^2$$

$$g \circ h = g [h (x)] = g[x - 2] = 3 (x - 2)$$

$$f \circ (g \circ h) = f [g (h(x))]$$

$$= f [3(x-2)] = [3(x-2))]^2 = 9 (x-2)^2$$

$$(f \circ g) \circ h = f \circ (g \circ h)$$

Hence proved.

The sum of three consecutive terms that are in A.P. is 27 and their product is 288. Find the three terms.

Answer: Let the three consecutive terms be a - d, a, a + d

Given their sum is 27 (a - d) + a + (a + d) = 27 a - d + a + a + d = 27 3a = 27

3a = 27 $S = \frac{m}{s} S O$

Product = 288

(a - d) a (a + d) = 288

 $a(a^2 - d^2) = 288$

 $9(9^2 - d^2) = 288$

 $n < \frac{s}{2} = s \frac{s}{2}$

 $81 - d^2 = 32$

 $d^2 = 81 - 32 = 49$

 $d \times d = 7 \times 7$

d = 7

(i) a = 9, d = 7, The three terms are,

= 9 - 7, 9, 9 + 7

= 2,9, 16

(ii) a = 9, d = -7, Thethree terms are

9-(-7), 9, 9-7 16,9,2

The required three consecutive terms of the A.P are 2,9,16.

The product of three consecutive terms of a Geometric Progression is 343 and their sum is $\frac{o<}{\downarrow}$. Find the three terms.

Answer: Since the product of 3 consecutive terms is given. we can take them as -, a, ar

Product of the terms = 343

-xaxar = 343

 $a^3 = 73$ gives a = 7

Sum of the terms = $\frac{0}{1}$

Hence $\int <5 <5$ $\left[s \quad \frac{o<}{s} \quad m\right] \frac{<5 \quad 5}{s} = \left[s \quad \frac{o<}{s}\right]$

 $3 + 3r + 3r^2 = 13r$ gives $3r^2 - 10r + 3 = 0$

(3r - 1)(r - 3) = 0 gives r = 3 or $r = \frac{4}{5}$

if a = 7, r = 3 then the three terms are $\frac{m}{1}$, 7, 21

If a = 7, r = $\frac{<}{1}$ then the three terms are 21, 7, $\frac{m}{1}$.

28) In a G.P. the 9th term is 32805 and 6th term is 1215. Find the 12th term

Answer: 9^{th} term - ar^{9-1} = 32805 = ar^8 = 32805 ...(1)

 6^{th} term = ar^{6-1} = 1215 = ar^5 = 1215 ...(2)

$$\frac{2 < 3}{2 = 3}$$
 $\frac{n}{e}$ s $\frac{\text{=n; e}}{\text{=e}}$

 $r^3 = 27$

$$r^3 = 3^3$$

r = 3

Put r = 3 in (2)

$$ar^5 = 1215$$

$$a(3)^5 = 1215$$

$$\mathbf{S} = \frac{\langle \mathbf{e} \rangle}{\left[\mathbf{e} \right]}$$

a = 5

$$= 5(3)11 = 5 \times 1,53,147$$

12th term of the G.P. = 7,65,735

8

Find the sum to n terms of the series 0.4 + 0.44 + 0.444 + ...to n terms

Answer: $0.4 + 0.44 + 0.444 + \dots$ to n terms

Let $S_n = 0.4 + 0.44 + 0.444 + \dots$ to n terms.

= 4 (0.1 + 0.11 + 0.111 + to n terms)(multiply and divide by 9)

= $\frac{1}{0} (0.9 + 0.99 + 0.999 + \dots$ to n terms) $s = \frac{1}{0} (0.9 + 0.99 + 0.999 + \dots$ to n terms) $s = \frac{1}{0} (0.9 + 0.99 + 0.999 + \dots$ to n terms) $s = \frac{1}{0} (0.9 + 0.99 + 0.999 + \dots$ to $\frac{1}{0} (0.9 + 0.999 + \dots) = \frac{1}{0} (0.9 + 0.999 + \dots) = \frac{1}{0}$

$$\mathbf{S} \quad \frac{1}{\mathbf{o}} \quad \mathbf{0} \quad \frac{\frac{<}{<} > < \frac{<}{<} |}{\frac{\mathbf{o}}{<}}$$

Find the sum to n terms of the series 3 + 33 + 333 + ...to n terms

Answer: 3 + 33 + 333 + ... to n terms. Let $S_n = 3 + 33 + 333 + ...$ upto n terms = 3(1 + 11 + 111 + ... to n terms) = $\frac{1}{9}(9 + 99 + 999 + ...$ to n terms) (multiply and divide by 9) = $\frac{1}{9}(10 - 1) + (100 - 1) + (1000 - 1) +$

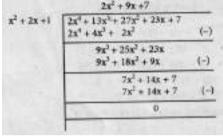
Find the sum of the following series
$$10^3 + 11^3 + 12^3 + ... + 20^3$$

Answer:
$$\[\] \[\] \[$$

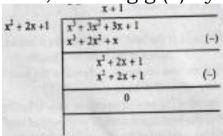
Find the GCD of the following by division algorithm $2x^4 + 13x^3 + 27x^2 + 23x + 7$, $x^3 + 3x^2 + 3x + 1$, $x^2 + 2x + 1$

Answer: Let $f(x) = 2x^4 + 13x^3 + 27x^2 + 23x + 7$, $g(x) = x^3 + 3x^2 + 3x + 1$, $h(x) = x^2 + 2x + 1$ which is the least degree polynomial.

Now Dividing f(x) by h(x)

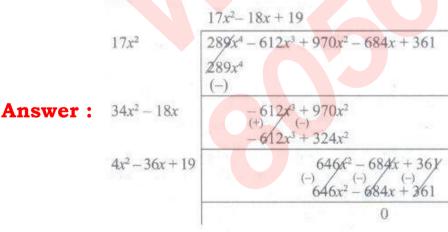


Since the Remainder is zero, h (x) is the GCD of f (x) and h (x) Now, dividing g (x) by h (x)



Remainder is zero,h (x) is the GCD of g (x) and h (x) h (x) divides both f(x) and g (x) completely $GCD = x^2 + 2x + 1$

33) Find the square root of $289x^4 - 612x^3 + 970x^2 - 684x + 361$



 $|17x^2 - 18x + 19|$

34) Solve x + 2y - z = 5; x - y + z = -2; -5x - 4y + z = -11

Answer: Let,
$$x + 2y - z = 5...$$
 (1)
 $x - y + z = -2....$ (2)
 $-5x - 4y + z = -11...$ (3)
Adding (1) and (2) we get, $z + 2y - z = 8$
 $x - y + z = -2$
 $2x + y = 3$
Subtracting (2) and (3), $x - y + z = -2$
 $-5x - 4y + z = -11$ (-)
 $6x + 3y = 0$
Dividing by 3
 $2x + y = 3$
 $2x + y = 3$
 $0 = 0$

Here we arrive at an identity 0 = 0

Hence the system has an infinite number of solutions.

35) If
$$x = \frac{-5[]}{[]}$$
 and $y = \frac{-5 = n}{= -1}$ find the value of x^2y^{-2}

Answer:
$$x = \frac{-5[]}{[=[]}, y = \frac{-5=n}{===]}$$

$$= = \int_{S} \frac{-5[]}{[=[]} \left[\frac{-5[]}{[=[]} \right] = \frac{-3}{==[]} \left[\frac{-3}{==[]} \right]$$

$$= \frac{(a+4)(a-1)}{3(a+1)(a-1)} \times \frac{(a+4)(a-1)}{3(a+1)(a-1)}$$

$$\times \frac{2(a-2)(a+1)2(a-2)(a+1)}{(a+4)(a-2)(a+4)(a-2)}$$

$$= \frac{1}{0}$$

36) If
$$9x^4 + 12x^3 + 28x^2 + ax + b$$
 is a perfect square, find the values of a and b.

$$3s^{2} \xrightarrow{9x^{4} + 12x^{3} + 28x^{2} + 4x + b} (-\frac{12s^{2} + 28x^{2} + 4x + b}{9x^{4}})$$

$$6s^{2} + 4s + 4 \xrightarrow{12s^{4} + 4s^{2}} (-\frac{12s^{4} + 4s + b}{24s^{2} + 16x + 16})$$

Because the given polynomial is a perfect square a - 16 = 0, b - 16 = 0Therefore, a = 16, b = 16.

If the area of the triangle formed by the vertices A(-1, 2), B(k, -2) and C(7, 4) (taken in order) is 22 sq. units, find the value of k.

Answer : The vertices are A(1, 2), B(k, -2) and C(7, 4) Area of triangle ABC is 22 sq.units $\stackrel{\leq}{=} \{ (x_1y_2 + x_2y_3 + x_3y_1) - (x_2y_1 + x_3y_2 + x_1y_3) \} = 22$ $\stackrel{\leq}{=} \{ (2 + 4k + 14) - (2k - 14 - 4) \} = 22$ 2k + 34 = 44 gives 2k = 10 so k = 5.

38) Find the area of the quadrilateral formed by the points (8, 6), (5, 11), (-5, 12) and (-4, 3).

Answer: Before determining the area of quadrilateral, plot the vertices in a graph.

Let the vertices be A(8, 6), B(5, 11), C(-5, 12) and D(-4, 3).

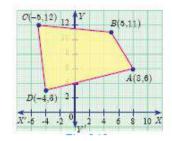
Therefore, area of the quadrilateral ABCD

$$= \leq \{ (x_1y_2 + x_2y_3 + x_3y_1) - (x_2y_1 + x_3y_2 + x_1y_3) \}$$

$$=$$
 \leq { (80 + 60 - 15 - 24) - (30 - 55 - 48 + 24)}

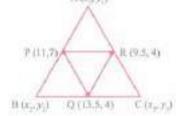
$$=\frac{<}{-}\{109 + 49\}$$

$$=\frac{<}{=}$$
 { 158 } = 79 sq.units



Let P(11, 7), Q(13.5, 4) and R(9.5, 4) be the midpoints of the sides AB, BC and AC respectively of Δ ABC. Find the coordinates of the vertices A, B and C. Hence find the area of Δ ABC and compare this with area of Δ PQR.

Answer:



Given B Q, R are the mid points of the sides of a triangle.

Let the vertices of triangle ABC be A (x_1, y_1) ,

B (x_2, y_2) and C (x_3, y_3)

P is the mid point of AB

$$\left\{ \frac{-5}{=} 6 \frac{-5}{=} \text{ s } 2 < 6 \text{ m}^{3} \right\}$$

Comparing the co-ordinates, we get

$$x_1 + x_2 = 22$$
 and(1)

$$y_2 + y_3 = 8$$

Q is the mid point of BC

$$x_2 + x_3 = 27$$
(3)

$$y_2 + y_3 = 8$$
(4)

R is the mid point of AC

$$\left\{ \frac{5}{6} \right\} = 6 \frac{5}{6} \left[s \quad 208e6 \right] 3$$

$$x_1 + x_3 = 19$$
(5)

$$y_1 + y_3 = 8$$
(6)

Solving (1), (3) and (5), we get

$$x_1 = 7$$
, $x_2 = 15$ and $x_3 = 12$.

Solving (2), (4) and (6)

we get
$$y_1 = 7, y_2 = 7, y_3 = 1$$

The vertices are A (7, 7),8 (15, 7) and C(12, 1)

Area of ABC s
$$\stackrel{<}{=}$$
 $<$ 2 $_{=}$ $_{[}$ 35 $_{=}$ 2 $_{[}$ $<$ 35 $_{[}$ 2 $_{<}$ $_{=}$ 3

$$s \leq] = o; s \leq 2] n3s \Rightarrow$$

= 24 sq. units [Area cannot be negative]

Area of PQR

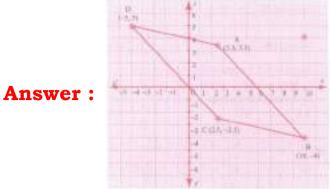
$$\mathbf{s} \leq \ll 2$$
] $\mathbf{35} \leq 82$ $\mathbf{m35} \cdot \mathbf{08e2m}$] $\mathbf{3}$

$$s \stackrel{<}{=};]; \& 5 = n\& s \stackrel{\Leftarrow}{=} s i$$

Area = 6 sq.units [... area cannot be negative]

Area of ABC = 4 (Area of PQR).

Show that the given points form a parallelogram: A(2.5, 3.5), B(10, -4), C(2.5, -2.5) and D(-5, 5)



Given points A(2.5,3.5), B (10, -4), C (2.5, -2.5) and D(-5, 5) slope of a line = $\frac{<}{}$

Slope of a line =
$$\frac{}{}$$
 = Slope of AB = $\frac{ \left[\frac{8e5}{} \right] }{ = \frac{8e}{} \le \frac{}{} }$ s $\frac{}{}$ $\frac{}{}$ $\frac{}{}$ s $\frac{}{}$ $\frac{}{}$ Slope of BC = $\frac{}{}$ $\frac{}{}$ $\frac{}{}$ $\frac{}{}$ $\frac{}{}$ $\frac{}{}$ s $\frac{}{}$ $\frac{}{}$ $\frac{}{}$ Slope of CD = $\frac{}{}$ $\frac{}{}$ $\frac{}{}$ $\frac{}{}$ $\frac{}{}$ s $\frac{}{}$ $\frac{}{}$ Slope of AD = $\frac{}{}$ $\frac{}{}$

Slope of AB = Slope of CD =
$$-1$$

Slope of BC = Slope of AD =
$$\frac{\leq}{e}$$

AB is parallel to CD and BC is parallel to AD. Hence, the given points form a parallelogram.

10TH SAMACHEER KALVI

STUDY MATERIALS **MODEL PAPERS** CHAPTERWISE **CHAPTERWISE MATHS 449 PAGES MATHS 102 PAPERS** RS.350 **EACH** SCIENCE 512 PAGES PHYSICS 30 PAPERS RS.100 PDF COST **SOCIAL 316 PAGES** CHEMISTRY 25 PAPERS RS.100 RS.350 **ENGLISH 333 PAGES** BIOLOGY 58 PAPERS RS.200

RAVI MATHS TUITION CENTER ... **WHATSAPP 8056206308** 0 0 0 **ALL MY FREE WHATSAPP TEST GROUPS LINKS GIVEN IN MY BLOGGER CHECK FOOTER**

0

www.ravitestpapers.in

just click link and join any free groups (2024 -25 unlimited papers upload in groups)

GOOGLE & DOWNLOAD FOR MORE PAPERS

BLOGGER LINK (DOWNLOAD IMAGE)

https://www.ravitestpapers.in/

WEBSITE LINK (DOWNLOAD PDF)

https://ravitestpapers.com/

DON'T DELAY JOIN TODAY MY PAID WHATSAPP GROUP

FEES FOR ONE YEAR TILL EXAM

CBSE GRO	OUP FEES	FOR 6 TH TO	9 TH RS.1000	
CBSE 10 TH	CBSE 11 TH		CBSE SCI 12TH	
RS.1750	RS.1500		RS.1750	
NEET 2025	NEET 11	JEE 2025	JEE 11	
RS.2750	RS.2500	RS.2750	RS.2500	
TN 10TH	TN 11TH	TH 12TH		
RS.1500	RS.1500	RS.1500		

UNLIMITED CUSTOMIZED TEST PAPERS & NOTES
UPLOAD IN MY PAID WHATSAPP GROUP

RAVI MATHS TUITION CENTER, CHENNAI

WHATSAPP - 8056206308

CENTER CLASS/HOME TUITION/ONLINE CLASS

JOIN MY WHATSAPP FREE TEST GROUP

JUST CLICK BELOW LINKS

NEET 2025	CLICK HERE		
நீட் தமிழ் மீடியம்	CLICK HERE		
JEE 2025	CLICK HERE		
12 TH CBSE	CLICK HERE		
11 TH CBSE	CLICK HERE		
10 TH CBSE	CLICK HERE		
9 TH CBSE	CLICK HERE		
6 TO 8 CBSE	CLICK HERE		
TN 12	CLICK HERE		
TN 11	CLICK HERE		
TN 10	CLICK HERE		
TN 6 TO 9	CLICK HERE		

RAVI TEST PAPERS & NOTES,

WHATSAPP - 8056206308

SEARCH GOOGLE - RAVI TEST PAPERS
RAVI MATHS TUITION CENTER