RAVI MATHS TUITION CENTER, PH- 8056206308 10th MATHS MODEL PAPER 10

10th Standard Maths

Total Marks: 100

 $14 \times 1 = 14$

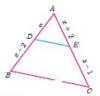
1)	If $f: A \longrightarrow B$ is a bijective function and if $n(B) =$	8, then n(A) is equal to			
	(a) 7 (b) 49	(c) 1	(d) 14		
2)	Let $f(x) = \sqrt{1 + x^2}$ then				
	(a) $f(xy) = f(x).f(y)$ (b) $f(xy) \ge f(x).f(y)$	(c) $f(xy) \le f(x).f(y)$	(d) None of these		
3)	$7^{4k} \equiv \underline{\hspace{1cm}} \pmod{100}$				
	(a) 1 (b) 2	(c) 3	(d) 4		
4)	Given $F_1 = 1$, $F_2 = 3$ and $F_n = F_{n-1} + F_{n-2}$ then F5	is			
	(a) 3 (b) 5	(c) 8	(d) 11		
5)	The square root of $\frac{256x^8y^4z^{10}}{25x^6y^6z^6}$ is equal to				
	(a) $\frac{16}{5} \left \frac{x^2 z^4}{y^2} \right $ (b) $16 \left \frac{y^2}{x^2 z^2} \right $	(c) $\frac{16}{5} \left \frac{y}{xz^2} \right $	(d) $\frac{16}{5} \left \frac{xz^2}{y} \right $		
6)	Which of the following should be added to make $x^4 + 64$ a perfect square				
	(a) $4x^2$ (b) $16x^2$	(c) $8x^2$	(d) $-8x^2$		
7)	If $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 2 & -1 \\ 0 & 2 \end{pmatrix}$ and $C = \begin{pmatrix} 1 & 0 \\ 2 & -1 \\ 0 & 2 \end{pmatrix}$	$=$ $\begin{pmatrix} 0 & 1 \\ -2 & 5 \end{pmatrix}$, Which of the	ne following statements are		
	correct?				
	(i) AB +C = $\begin{pmatrix} 5 & 5 \\ 5 & 5 \end{pmatrix}$				
	$(ii) PC = \begin{pmatrix} 0 & 1 \\ 2 & 2 \end{pmatrix}$				
	(ii) BC = $\begin{pmatrix} 0 & 1 \\ 2 & -3 \\ -4 & 10 \end{pmatrix}$				
	(iii) BA + C = $\begin{pmatrix} 2 & 5 \\ 3 & 0 \end{pmatrix}$				
	(iv) (AB)C = $\begin{pmatrix} -8 & 20 \\ -8 & 13 \end{pmatrix}$				
	(a) (i) and (ii) only (b) (ii) and (iii) only	(c) (iii) and (iv) o	nly (d) all of these		
8)	The perimeters of two similar triangles△ ABC	and \triangle PQR are 36 cm and	24 cm respectively. If $PQ = 10$		

9) In the given figure PR=26 cm, QR=24cm, $\angle PAQ = 90^{\circ}$, PA==6cm and QA=8 cm Find \angle PQR

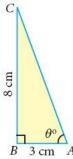
(c) $60\frac{2}{3}cm$

(d) 15cm

10) The straight line given by the equation x = 11 is

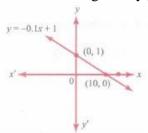

cm, then the length of AB is

Exam Time: 03:00:00 Hrs


(a) parallel to X	(b) parallel to Y	(c) passing through the	(d) passing through the point		
axis	axis	origin	(0,11)		
11) If slope of the line PQ is $\frac{1}{\sqrt{3}}$ then the slope of the perpendicular bisector of PQ is					
(a) $\sqrt{3}$	(b) $-\sqrt{3}$	(c) $\frac{1}{\sqrt{3}}$	(d) 0		

- (a) $\sqrt{3}$ (b) $-\sqrt{3}$ (c) $\frac{1}{\sqrt{3}}$ (d) 0 12) if $\sin\theta = \cos\theta$, then $2\tan^2\theta + \sin^2\theta - 1$ is equal to (a) $\frac{-3}{2}$ (b) $\frac{3}{2}$ (c) $\frac{2}{2}$ (d) $\frac{-2}{2}$
- 13) A solid sphere of radius x cm is melted and cast into a shape of a solid cone of same radius. The height of the cone is(a) 3 x cm(b) x cm(c) 4 x cm(d) 2x cm
- 14) The probability a red marble selected at random from a jar containing p red, q blue and r green marbles is

 (a) $\frac{q}{p+q+r}$ (b) $\frac{p}{p+q+r}$ (c) $\frac{p+q}{p+q+r}$ (d) $\frac{p+r}{p+q+r}$ $10 \times 2 = 20$
- 15) If α and β are the roots of x² + 7x + 10 = 0 find the values of α⁴ + β⁴
 16) An insect 8 m away initially from the foot of a lamp post which is 6 m tall, crawls towards it moving
- 16) An insect 8 m away initially from the foot of a lamp post which is 6 m tall, crawls towards it moving through a distance. If its distance from the top of the lamp post is equal to the distance it has moved, how far is the insect away from the foot of the lamp post?
- 17) Find the equation of a straight line whose Slope is 5 and y intercept is $-\theta$
- 18) Show that $\tan^4\theta + \tan^2\theta = \sec^4\theta \sec^2\theta$.
- 19) Find the depth of a cylindrical tank of radius 28 m, if its capacity is equal to that of a rectangular tank of size 28 m x 16 m x 11 m.
- 20) A bag contains 5 blue balls and 4 green balls. A ball is drawn at random from the bag. Find the probability that the ball drawn is (i) blue (ii) not blue.
- 21) Is $7 \times 5 \times 3 \times 2 + 3$ a composite number? Justify your answer
- 22) Find the rational form of the number 0.6666....
- 23) Find the sum and product of the roots for each of the following quadratic equations: $kx^2 k^2x 2k^3 = 0$
- 24) In \triangle ADC=, if DE||BC, AD=x, DB=x-2, and EC=x-1 then find the lengths of the sides AB and AC.


25) A(1, -2), B(6, -2), C(5, 1) and D(2, 1) be four points Find the slope of the line segment (a) AB (b) CD 26) calculate the size of \angle BAC in the given triangles

- 27) The volume of a cylindrical water tank is 1.078×10^6 litres. If the diameter of the tank is 7m, find its height.
- 28) The mean of a data is 25.6 and its coefficient of variation is 18.75. Find the standard deviation.

$$10 \times 5 = 50$$

- 29) Let $A = \{1,2,3\}$ and $B = \{x \mid x \text{ is a prime number less than } 10\}$. Find $A \times B$ and $B \times A$.
- 30) Let $A = \{1,2,3,4,...,45\}$ and R be the relation defined as "is square of" on A. Write R as a subset of A x A. Also, find the domain and range of R.
- 31) When the positive integers a, b and c are divided by 13, the respective remainders are 9,7 and 10. Show that a+b+c is divisible by 13.
- 32) Find the sum of all natural numbers between 602 and 902 which are not divisible by 4.
- 33) If Sn = (x + y) + (x²+xy+y²) + (x³+x²y+xy²+y³) +n terms then prove that (x y)S_n = $\left[\frac{x^2(x^n-1)}{x-1} \frac{y^2(y^n-1)}{y-1}\right]$
- 34) A bus covers a distance of 90 km at a uniform speed. Had the speed been 15 km/hour more it would have taken 30 minutes less for the journey. Find the original speed of the bus.
- 35) Music is been played in two opposite galleries with certain group of people. In the first gallery a group of 4 singers were singing and in the second gallery 9 singers were singing. The two galleries are separated by the distance of 70 m. Where should a person stand for hearing the same intensity of the singers voice? (Hint: The ratio of the sound intensity is equal to the square of the ratio of their corresponding distances).
- 36) If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ show that $A^2 (a + d)A = (bc ad)I_2$
- 37) Find the equation of the perpendicular bisector of the line joining the points A(-4, 2) and B(6,-4).
- 38) You are downloading a song. The percent y (in decimal form) of mega bytes remaining to get downloaded in x seconds is given by y = -0.1x + 1.

Find the total MB of the song.

39) An aeroplane is flying parallel to the Earth's surface at a speed of 175 m/sec and at a height of 600 m. The angle of elevation of the aeroplane from a point on the Earth's surface is 37° at a given point. After what period of time does the angle of elevation increase to 53°? (tan53°=1.3270,tan37°=0.7536)

- 40) if $\sin\theta (1+\sin^2\theta)=\cos^2\theta$, then prove that $\cos^6\theta 4\cos^4\theta + 8\cos^2\theta = 4$
- 41) If the mean and coefficient of variation of a data are 15 and 48 respectively, then find the value of standard deviation.
- Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{7}{3}$ of the corresponding sides of the triangle PQR (scale factor $\frac{7}{3}$)

(OR)

- b) Construct a \triangle PQR in which QR= 5 cm, \angle P=40° and the median PG from P to QR is 4.4 cm. Find the length of the altitude from P to QR.
- 43) a) Draw the graph of $y = 2x^2 3x 5$ and hence solve $2x^2 4x 6 = 0$

. .
