JOIN MY 10TH CBSE PAID WHATSAPP DAILY TEST GROUP WITH ANSWERS. ONE TIME FEES RS.3000 TILL 2026 FINAL EXAM ## **UPLOADING SUBJECTS - MATHS SCIENCE SOCIAL ENGLISH** RAVI TEST PAPERS & NOTES, WHATSAPP - 8056206308 FREE PRACTICE PAPERS AVAILABLE IN MY WEBSITE WWW.ravitestpapers.com & www.ravitestpapers.in Test / Exam Name: Mcqs Test Standard: 10th Subject: Mathematics | - | • | | | | | | |-------------|--|--|--|---|----------|--| | Q1. | If $2 an A=3$, then the value of $ rac{4\sin A+3\cos A}{4\sin A-3\cos A}$ is: | | | | | | | | A $\frac{7}{\sqrt{13}}$ | $B \ \tfrac{1}{\sqrt{13}}$ | C 3 | D Does not exist | | | | Q2. | If α , β are the zerose of a polynomial p(x) = x ² + x - 1, then, $\frac{1}{\alpha} + \frac{1}{\beta}$ equals to: | | | | | | | | A 1 | B 2 | C -1 | D $\frac{-1}{2}$ | | | | Q3. | $(\cot \theta + \tan \theta)$ equals: | | | | | | | | | | $\begin{array}{l} \mathbf{B} \sin \theta \sec \theta \\ \mathbf{D} \sin \theta \cos \theta \end{array}$ | | | | | Q4. | A card is drawn at random from a pack of 52 cards. What is the probability that the card drawn is a spade or a king? | | | | | | | | A $\frac{1}{13}$ | B $\frac{2}{13}$ | C $\frac{4}{13}$ | D $\frac{9}{13}$ | | | | Q 5. | If the maximum number of students has obtained 52 marks out of 80, then: | | | | | | | | A 52 is the mean of theC 52 is the mode of the | | B 52 is the median of thD 52 is the range of the | | | | | Q 6. | If $\sin(lpha+eta)=1,$ then | the value of $\sin\left(rac{lpha+eta}{2} ight)$ i | - | ANSWERS
AVAILABLE IN MY
YOUTUBE
CHANNEL NAME | A TUITON | | | | A $\frac{1}{\sqrt{2}}$ | B $\frac{1}{2}$ | C 0 | D 1 RAVI TEST PAPERS | Pose2063 | | | Q7. | A system of two linear equations in two variables is inconsistent, if the lines in the graph are: | | | | | | | | A coincidentC intersecting at one point | | B parallel D intersecting at right a | ngles | | | | Q8. | If x is the LCM of 4, 6, 8 and y is the LCM of 3, 5, 7 and p is the LCM of x and y, then which of the following is true? | | | | | | | | A p = 35x | B p = 4y | C p = 8x | D p = 16y | | | | Q9. | | | | mmon difference of the AP? | 1 Mark | | | | A 42 | B 21 | C 6 | D 3 | | | | Q10. | Directions: In question number 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option: Assertion (A): 4" ends with digit 0 for some natural number n. Reason (R): For a number 'x' having 2 and 5 as its prime factors, x" always ends with digit 0 for every natural number r. | | | | | | | | A Both, Assertion (A) ar and Reason (R) is con Assertion (A).C Assertion (A) is true b | rrect explanation of | B Both, Assertion (A) are but Reason (R) is not of Assertion (A).D Assertion (A) is false | the correct explanation | | | | Q11. | The line represented by | the equation $x - y = 0$ is: | | | 1 Mark | | B parallel to y-axis **D** passing through the point (3, 2) 1 Mark A parallel to x-axis Q12. **C** passing through the origin Which of the following is a rational number between $\sqrt{3}$ and $\sqrt{5}$? | | A $1 \cdot 4142387954012$ C π | | B $2 imes32\overline{6}$
D $1\cdot857142$ | | | | |------|---|--|--|---|------------|--| | Q13. | The distance of point (a | , -b) from x-axis is: | | | 1 Mark | | | | A a | B b | C -a | D -b | | | | Q14. | If α and β are the zeroes of the polynomial p(x) = x ² — ax — b, then the value of $(\alpha + \beta + \alpha\beta)$ is equal to: | | | | | | | | A a + b | B -a-b | C a - b | D - a + b | | | | Q15. | If HCF(98, 28) = m and | LCM(98, 28) = n, then the | value of n 7m is: | | 1 Mark | | | | A 0 | B 28 | C 98 | D 198 | | | | Q16. | In the adjoining figure, AP and AQ are tangents to the circle with centre O. If reflex $\angle POQ=210^\circ,$ the value of 2x is: | | | | | | | | 210° Q x | > A | | ANSWERS AVAILABLE IN MY YOUTUBE CHANNEL NAME RAVI TEST PAPERS | AVICESTPAN | | | | A 30° | B 60° | C 120° | D 300° | | | | Q17. | Which of the following s | tatements is incorrect? | | | 1 Mark | | | | A Two congruent figures | | B A square and a rhom always similar. | | | | | | C Two equilateral triangles are always similar. D Two similar triangles need not be congruent. | | | | | | | Q18. | The 10 th term of the AP | $5, \frac{19}{4}, \frac{9}{2}, \frac{17}{4}, \dots$ is: | | | 1 Mark | | | | A $\frac{11}{4}$ | B $\frac{4}{11}$ | C $\frac{13}{4}$ | $D = \frac{4}{13}$ | | | | Q19. | The value of k' for which many solutions is: | The value of k' for which the system of linear equations $6x + y = 3k$ and $36x + 6y = 3$ have infinitely many solutions is: | | | | | | | A 6 | B $\frac{1}{6}$ | C $\frac{1}{2}$ | D $\frac{1}{3}$ | | | | Q20. | The value of $\frac{2\tan^2 60^\circ}{1-\tan^2 60^\circ}$ i | The value of $\frac{2\tan^2 60^\circ}{1-\tan^2 60^\circ}$ is same as the value of: | | | | | | | A $- an 30^\circ$
C $2\sin 60^\circ$ | | B $- an60^\circ$
D $2\cos60^\circ$ | | | | | Q21. | Directions: In question number 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option: In an experiment of throwing a die, Assertion (A: Event E, : getting a number less than 3 and Event E, : getting a number greater than are complementary events. Reason (R): If two events E and F are complementary events, then P(E) + P(F) = 1. | | | | | | | | A Both Assertion (A) and Reason (R) are true and Reason (R) is correct explanation of Assertion (A). C Assertion (A) is true, but Reason (R) is false. | | B Both Assertion (A) and but Reason (R) is not of Assertion (A).D Assertion (A) is false. | | | | | Q22. | If $\tan 30 = \sqrt{3}$, then $ frac{ heta}{2}$ equals: | | | | | | | | A 60° | B 30° | C 20° | D 10° | | | | Q23. | The mid-point of the line A x-axis | segment joining the point | ts P(4, 5) and Q(4, 6) lies B y-axis | on: | 1 Mark | | | | | | _ , 55 | | | | - Zeroes of the polynomial $p(x) = x^2 3\sqrt{2}x + 4$ are: Q24. - A $2,\sqrt{2}$ - **B** $2\sqrt{2}, \sqrt{2}$ - **c** $4\sqrt{2}, -\sqrt{2}$ - $D\sqrt{2},2$ - Q25. A die is thrown once. The probability of getting a number which is not a factor of 36, is: - 1 Mark 1 Mark $A \frac{1}{2}$ $\mathbf{B} \frac{2}{3}$ If $(1)^n + (1)^8 = 0$, then n is: Q26. 1 Mark A any positive integer B any negative integer C any odd number - D any even number - If in two triangles \triangle DEF and \triangle PQR, \angle D= \angle Q and \angle R = \angle E, then which of the following is not Q27. - 1 Mark - $\begin{array}{l} \textbf{A} \ \frac{DE}{QR} = \frac{DF}{PQ} \\ \textbf{C} \ \frac{EF}{RP} = \frac{DE}{QR} \end{array}$ - $\begin{array}{c} \textbf{B} \ \frac{\text{EF}}{\text{PR}} = \frac{\text{DF}}{\text{PQ}} \\ \textbf{D} \ \frac{\text{DE}}{\text{PQ}} = \frac{\text{EF}}{\text{RP}} \end{array}$ - If the sum of first m terms of an AP is $2m^2 + 3m$, then its second term is: Q28. 1 Mark **A** 10 **B** 9 - **D** 4 - The coordinates of the end points of a diameter of a circle are (5, -2) and (5, 2). The length of the Q29. radius of the circle is: - 1 Mark $\mathbf{A} \pm 2$ $\mathsf{B}\ \pm 4$ C 4 - **D** 2 - Q30. The value of 'p' for which the equations px + 3y = p-3, 12x + py = p has infinitely many solutions is: - 1 Mark - A -6 only - **C** ± 6 **B** 6 only **D** Any real number except ± 6 - The distance of a point A from x-axis is 3 units. Which of the following cannot be coordinates of the Q31. point A? - 1 Mark - **A** (1, 3) - **B** (-3, -3) - **C** (-3, 3) - **D** (3, 1) - If -4 is a zero of the polynomial $p(x) = x^2 x (2 + 2k)$, then the value of k is: Q32. 1 Mark **D**-9 If $7\cos^2\theta + 3\sin^2\theta = 4$, then the value of θ is: Q33. 1 Mark **A** 30° **B** 45° **C** 60° - **D** 90° - If $x = 2\sin 60^{\circ}\cos 60^{\circ}$ and $y = 2\sin^2 30^{\circ} \cos^2 30^{\circ}$ and and $x^2 = ky^2$, the value of k is: Q34. - 1 Mark A $\sqrt{3}$ - Two polynomials are shown in the graph below. The number of distinct zeroes of both the polynomials 1 Mark Q35. **PAPERS** **A** 3 **B** 5 **C** 2 **D** 4 The value of $(\tan A \csc A)^2$ — $(\sin A \sec A)^2$ is: Q36. 1 Mark **A** 0 **B** 1 C -1 **D** 2 | Q37. | If x^2 + bx +b = 0 has two real and distinct roots, then the value of b can be: | | | | | | |--------------|---|--|--|--|--------|--| | | A 0 | B 4 | C 3 | D -3 | 1 Mark | | | Q38. | $(\sqrt{3}+2)^2(\sqrt{3}-2)^2$ is a/ an. | | | | | | | | A positive rational numberC positive irrational number | | B negative rational num D negative irrational num | | | | | Q39. | The value of (1 - 2 sin ² 60°) is same as that of: | | | | | | | | A sin 30° | B -sin 30° | C cos 60° | D -cos 30° | | | | Q40. | The quadratic equation whose roots are 7 and $\frac{1}{7}$ is: | | | | | | | | A $7x^2 - 50x + 7 = 0$ | B $7x^2 - 50x + 1 = 0$ | C $7x^2 + 50x - 7 = 0$ | D $7x^2 + 50x - 1 = 0$ | | | | Q41. | In the given figure, in \triangle ABC, AD \bot BC and \angle BAC = 90°. If BC = 16 cm and DC = 4 cm, then the value of x is: | | | | | | | | B C 16 cm D C | | | | | | | | A 4 cm | B 5 cm | C 8 cm | D 3 cm | | | | Q42. | The line represented by $\frac{x}{4} + \frac{y}{6} = 1$, intersects x - axis and y - axis respectively at P and Q. The coordinates of the mid-point of line segment PQ are: | | | | | | | | A (2,3) | B (6,2) | C (2,0) | D (0,3) | | | | Q43. | In the adjoining figure, A | BCD is a trapezium in whi | ich XY AB CD. If \mathbf{AX} : | $= rac{2}{3}\mathrm{AD},$ then CY : YB = | 1 Mark | | | | A 2:3 B 3:2 C 1:3 D 1:2 | | | | | | | Q44. | If $\mathbf{x} = \mathbf{ah}^3$ and $\mathbf{y} = \mathbf{a}^3\mathbf{h}$ w | here a and h are prime i | numbers then [HCF (x v) | — LCM (x, y)] is equal to: | 1 Mark | | | Q 77. | A 1 - a^3b^3 | | C ab - a^4b^4 | D ab (1 - ab) (1 + ab) | I Walk | | | Q45. | What is the mode of a data if median and mean of the same data are 9-6 and 10-5, respectively? | | | | | | | | A 7.8 | B 12.3 | C 8.4 | D 7 | | | | Q46. | Which of the following equations does not have a real root? | | | | | | | | A $x^2 = 0$ | B 2x - 1 = 3 | $C x^2 + 1 = 0$ | D $x^3 + x^2 = 0$ | | | | Q47. | - · | uadratic equations has rea | • | 0 | 1 Mark | | | | A $(x + 1)^2 = 2x + 1$ | B $x^2 + x = 0$ | $\mathbf{C} \ \mathbf{x}^2 - 4 = 0$ | D $x^2 + x + 1 = 0$ | | | | Q48. | The value of $ an^2 heta-\Big($ | $\left(rac{1}{\cos heta} imes\sec heta ight)$ is: | | | 1 Mark | | | | A 1 | B 0 | C -1 | D 2 | | | | Q49. | Assertion (A): The probability of selecting a number at random from the numbers 1 to 20 is 1. Reason (R): For any event E, if $P(E) = 1$, then E is called a sure event. | | | | | | | | A Both Assertion (A) and and Reason (R) is the the Assertion (A).C Assertion (A) is true, but the Assertion (B) the Assertion (B) is the Assertion (B) is the Assertion (B). | correct explanation of | B Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A). D Assertion (A) is false, but Reason (R) is true. | | | | **Q50.** If α and β are the zeroes of polynomial $3x^2 + 6x + k$ such that $\alpha + \beta + \alpha\beta = -\frac{2}{3}$, then the value **1 Mark** **A** -8 **B** 8 **C** -4 **D** 4 JOIN MY WHATSAPP PAID TEST GROUP WITH ANSWERS ONE TIME FEES TILL FINAL EXAM 12TH & 10TH CBSE - RS.2500 **NEET & JEE - RS.3000** 10 11 12 SAMACHEER KALVI - RS.1500 CBSE CLASS 6TH TO 9TH - RS.1000 **OR MONTHLY FEES RS.500** **WHATSAPP - 8056206308** **CHECK MY WEBSITES FOR FREE PAPERS** www.ravitestpapers.com www.ravitestpapers.in MY YOUTUBE CHANNEL NAME RAVI TEST PAPERS