RAVI TEST PAPERS WHATSAPP 8056206308

Trigonometric Functions 10th Standard Maths

if
$$\cos + \sin = \overline{B}\cos$$
, then prove that $\cos - \sin = \overline{B}\sin$

Answer: Now, $\cos + \sin = \overline{B}\cos$
Squaring both sides,
$$(\cos + \sin)^2 = (\overline{B}\cos)^2$$

$$\cos^2 + \sin^2 + 2\sin \cos = 2\cos^2$$

$$2\cos^2 - \cos^2 - \sin^2 = 2\sin \cos$$

$$\cos^2 - \sin^2 = 2\sin \cos$$

$$(\cos + \sin)(\cos + \sin) = 2\sin \cos$$

$$\cos - \sin = \frac{B}{5} = \frac{B}{B} \quad [\text{since } \cos + \sin = \overline{B}\cos]$$

$$= \overline{B}\cos$$
Therefore $\cos - \sin = \overline{B}\cos$

2) prove that (cosec $-\sin$) (sec $-\cos$) (tan $+\cot$) = 1

Answer: (cosec - sin) (sec - cos) (tan + cot)
)
$$\xrightarrow{A}$$
) \xrightarrow{A}) \xrightarrow{B} 5 \xrightarrow{B} T A

3) prove that $\frac{C}{A5}$ $\frac{C}{C}$ $\frac{C}{A}$ $\frac{C}{C}$ $\frac{C}{C}$ $\frac{C}{C}$ $\frac{C}{C}$

Answer:
$$\frac{C}{A5} = \frac{C}{C} = \frac{C}{A} = \frac{C}{C}$$

$$T = \frac{C2A}{2A5} = \frac{C32A}{C32A} = \frac{C3}{C}$$

$$T = \frac{C}{C} = \frac{C}{C} = \frac{C}{C5} = \frac{C}{C} = \frac{C}{C}$$

$$T = \frac{B}{A} = \frac{C}{BC} = \frac{B}{BC} = 2 \csc A$$

prove the following identities. $\sec^4 (1-\sin^4) - 2\tan^2 = 1$

Two ships are sailing in the sea on either sides of a lighthouse as observed from the ships are $\stackrel{C}{=}$ and $\stackrel{C}{=}$ respectively. if the lighthouse is 200 m high, find the distance between the two ships. $\stackrel{C}{=}$ $\stackrel{C}{=$

Answer:

Let AB the lighthouse. Let C and D be the positions of the two ships.

Then, AB = 200m.

 $CED T \subseteq 6 \quad CMD T \subseteq$

In right triangles BAC, $\tan 30^{\circ} = \frac{CD}{C}$

$$\frac{A}{\overline{C}} T \stackrel{B}{=} \overline{C}$$
 $CE T B = \overline{C}$...(1

In the right triangle BAD, $tan45^{\circ} = \frac{CD}{CM}$

AT
$$\frac{B}{CM}$$
 gives AD = 200 ...(2)

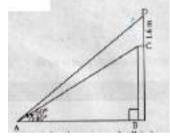
Now, CD = AC + AD =
$$\overline{C}5$$
 B=[by(1) and (2)]

$$CD = 2002 \overline{C}5 A3 = 200 \times 2.732 = 546.4$$

Distance between two ships is 546.4m

A statue 1.6 m tall stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 40° . Find the height of the pedestal ($\tan 40^{\circ} = 0.8391$, $\overline{C} = 1.732$)

Answer:



Let CD be the statue of tall 1.6 m.

BC be the pedestal.

From the right triangle ABC

$$D= T \frac{\overline{DE}}{CD}$$

$$= HO AT \frac{\overline{DE}}{CD}$$

$$CD T \frac{\overline{DE}}{= HO A} \qquad(1)$$

From the right triangle ABD

$$F=T \frac{DM}{CD}$$
 $\overline{C}T \frac{DE5 EM}{CD}$

ASCOBT $\frac{DE5 ASF}{CD}$
 $CD T \frac{DE5 ASF}{ASCOB}$ (2)

From (1) and (2)

$$\frac{DE}{=\$H\Omega A} T \frac{DE5 A\$F}{A\$COB}$$

1.732 BC = 0.8391 (BC + 1.6)

1.732 BC = 0.8391 BC + (0.8391) (1.6)

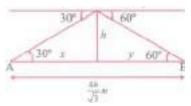
1.732 BC - 0.8391 BC = 1.34256

0.8929 BC = 1.34256

 $c~d~T~\tfrac{A\!S\!CDBEF}{=\!8\!H\,B\!I}~T~\tfrac{A\!CDBESF}{H\,B\!I}~T~A\!S\!E$

Height of the pedestal = 1.5 m

From the top of a lighthouse, the angle of depression of two ships on the opposite sides of it are observed to be 30° and 60°. If the height of the lighthouse is h meters and the line joining the ships passes through the foot of the lighthouse, show that the distance between the ships is $\frac{D}{C}m$.



Let D and C be the positions of two ships AB be the light house of height 'h'm.

0

In right triangle BAC

$$\vec{F} = T \frac{CD}{CE}$$

$$\overline{\mathrm{CT}} \ _{\overline{CE}}$$

$$bd T \frac{\partial E}{\partial C}$$

In right triangle BAD

$$\leftarrow$$
 T $\frac{CD}{CM}$

$$\frac{A}{\overline{C}} T \overline{C} M$$

$$be T \overline{C}$$

2A35 2B3 bd 5 be
$$T - \overline{C}$$
 5

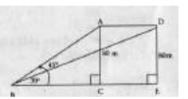
e d T
$$\frac{5}{\overline{C}}$$
 $\overline{\overline{C}}$

e d T
$$\frac{5 \text{ C}}{\overline{\text{C}}}$$
 T $\frac{\text{D}}{\overline{\text{C}}}$

Distance between the ships is $\frac{D}{C}$

A bird is sitting on the top of a 80 m high tree. From a point on the ground, the angle of elevation of the bird is 45°. The bird flies away horizontally in such away that it remained at a constant height from the ground. After 2 seconds, the angle of elevation of the bird from the same point is 30°. Determine the speed at which the bird flies. (\overline{C} = 1.732)

Answer:



Let the initial position of the bird be A and after two seconds its position is at D.

$$AC = DE = 80m$$

$$\angle ABC = 45^{\circ}$$

In right ABC

DE T
$$\frac{CE}{DE}$$

$$AT \frac{H}{DE}$$

$$BC = 80 \text{ m}$$

In right triangle DBE

$$\begin{array}{c}
C = T \frac{Ma}{Da} \\
\underline{A} T \frac{H}{DE5} Ea
\end{array}$$

$$\frac{A}{\overline{C}} T \xrightarrow{H=5} \frac{B}{Ea}$$

$$H=5 df T H= \overline{C}$$

$$T \mapsto \overline{C} + A3$$

$$= 80 (1.732 - 1)$$

$$= 80 \times 0.732$$

$$CE = 58.56 \text{ m}$$

The bird travelled 58.56 m in 2 seconds.

Speed of the bird T

$$T \frac{EHNEF}{B}$$

$$= 29.28 \text{ m/s}$$

Speed of flying bird = 29.28 m/s.

Two ships are sailing in the sea on either side of the lighthouse. The angles of depression of two ships as observed from the top of the lighthouse are 60° and 45° respectively. If the distance between the ships is $200 \left| \frac{\overline{C}5 \text{ A}}{\overline{C}} \right|$ metres, find the height of the lighthouse.

Answer:

Let C and D are two ships.

Let AB be the height of the light house.

$$de T = -\frac{\overline{C}5 A}{\overline{C}}$$

In the right ABD

$$F = T \frac{CD}{DM}$$

$$\overline{ ext{CT}} \; rac{CL}{DM}$$

$$\mathrm{c} \; \mathrm{e} \; \; \mathrm{T} \; rac{DM}{\overline{\mathrm{C}}}$$

In the right triangle ABC

$$ext{DE} ext{ T } rac{CD}{DE}$$

$$\mathrm{AT} \, \, rac{CD}{DE}$$

 $DE \perp CD$

2A3 5 2B3 DM5 DE T $\frac{CD}{\overline{C}}$ 5 CD

$$\operatorname{de} \operatorname{T} CD$$
 $\frac{A}{\overline{C}}$ 5 A $\left[\angle \operatorname{dc} \operatorname{5} \operatorname{ce} \operatorname{T} \operatorname{de} \right]$ $\frac{EM}{\left[\angle \operatorname{A} \operatorname{C} \operatorname{5} \operatorname{A} \right]}$ T b c

$$CD T \stackrel{\text{B}}{=} \frac{\text{C5 A}}{\text{C}} \left[\frac{\text{C5 A}}{\text{C}} \right]$$

$$AB = 200 \text{ m}$$

Height of the light house is 200 m.

From the top of a tower 50 m high, the angles of depression of the top and bottom of a tree are observed to be 30° and 45° respectively. Find the height of the tree.(\overline{C} = 1.732)

Answer: The height of the tower AB = 50 m

Let the height of the tree CD = y and BD = x

From the diagram, $XAC = 30^{\circ} = ACM$ and $= XAD = 45^{\circ} = ADB$

In right triangle ABD,

$$\tan 45^{\circ} = \frac{CD}{DM}$$

$$1 = \frac{E}{m}$$
 gives x = 50 m

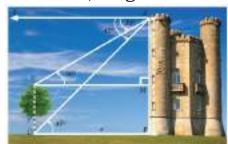
In right triangle AMC,

$$\tan 30^{\circ} = \frac{Cn}{En}$$

$$\frac{A}{C}$$
 T $\frac{Cn}{E}$ [since DB = CM]

$$AM = \frac{E}{\overline{C}} T \frac{E}{C} T \frac{E}{C} = 28.87 m.$$

Therefore, height of the tree = CD = MB = AB - AM = 50 - 28.87 = 21.13 m



11) prove the following identities.

$$\frac{1}{5}$$
 T $\frac{A}{5A}$

$$T = \frac{2}{2A} = \frac{3}{2A5}$$
 $T = \frac{2A}{2A5} = \frac{3}{3}$
 $T = \frac{A}{A5} = \frac{3}{3}$
 $T = \frac{A}{A5} = \frac{3}{3}$

$$T = \frac{2A}{2A5} = \frac{3}{3}$$

ni wT
$$\frac{A}{A5}$$
(1)

$$vi wT \frac{A}{5A}$$

$$T \stackrel{\stackrel{A}{=} A}{= \frac{A}{5}} T \stackrel{\stackrel{A}{=} A}{= \frac{A}{5}} T \stackrel{A}{= \frac{A}{5}}$$

$$vi w T \frac{A}{A5}$$

From (1) and (2)

LHS = RHS

prove the following identities.

$$\frac{{}^{\text{C}}_{C5}}{C}$$
 $\frac{{}^{\text{C}}_{C}}{C}$ $\frac{{}^{\text{C}}_{C}}{C}$ $\frac{{}^{\text{C}}_{C}}{C}$ $\frac{{}^{\text{C}}_{C}}{C}$ $\frac{{}^{\text{C}}_{C}}{C}$ $\frac{{}^{\text{C}}_{C}}{C}$

Answer:
$$\frac{{}^{\circ}C5}{C}$$
 $\frac{{}^{\circ}C}{C}$ $\frac{{}^{\circ}C}{C}$ $\frac{{}^{\circ}C}{C}$ $\frac{{}^{\circ}C}{C}$ $\frac{{}^{\circ}C}{C}$ $\frac{{}^{\circ}C}{C}$ $\frac{{}^{\circ}C}{C}$

$$\text{ni w T} = \frac{{}^{\circ}C5}{C5} \cdot \frac{{}^{\circ}C}{C} \cdot 5 \cdot \frac{{}^{\circ}C}{C} \cdot \frac{{}^{\circ}C}{C} \cdot \frac{{}^{\circ}C}{C}$$

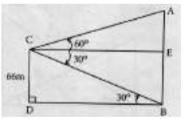
 $= \sin^2 A + \cos^2 A + 2\sin A \cos A - 3\sin A \cos A + \sin^2 A + \cos^2 A - 2\sin A \cos A + 3\sin A \cos A$

 $= 2 \sin^2 A + 2\cos^2 A$

 $= 2 (\sin^2 A + \cos^2 A) = 2 = RHS$

13) The angles of elevation and depression of the top and bottom of a lamp post from the top of a 66 m high apartment are 60° and 30° respectively. Find the distance between the lamp post and the apartment. C = 1.732)

Answer:



Let AB be the lamp post and CD be the apartment given CD = 66 m = EB.

CEa T F =

$$a ED T EDMT \subseteq$$

In the right triangle

$$C = T \frac{EM}{DM}$$

$$\frac{A}{C}$$
 T $\frac{FF}{DM}$

 $DMT \text{ FF } \overline{C}$

$$= 66 \times 1.732 = 114.312 \text{ m}$$

The distance between the lamp post and the apartment = 114.31 m

Now BD = EC = 114.31 m

In the right triangle

$$F = T \frac{Ca}{Ea}$$

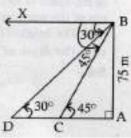
$$\overline{\mathrm{CT}} \; \frac{Ca}{\mathrm{FF} \; \overline{\mathrm{C}}}$$

 $Ca ext{ T FF } \overline{ ext{C}}$ C/g 2A3

 $= 66 \times 3 = 198 \text{m}$

The distance between the lamp post and apartment = 114.31 m.

As observed from the top of a 75 m high lighthouse from the sea level, the angles of depression of two ships iue 30° and 45°. If one ship is exactly behind the other on the same side of the light house tind the distance between the two ships



Let C and D be the ships.

k
$$CDE$$

$$\frac{CD}{CE}$$
 T DE

$$\frac{GE}{CE}$$
 T A
$$CE$$
 T GE
k CDM

$$\frac{A}{C}$$
 T $\frac{CD}{CM}$

$$\frac{A}{C}$$
 T $\frac{GE}{CM}$

$$CMT GE C$$

$$EMT CM CE$$
T $GE C$
T

 $^{15)}$ k 5 T T 8 8 5 8 T 8 5 1

8

 \mathbf{T} Answer: h 5 ${
m T}$ $^{
m B}5$ vi wT $3^{B}52$ T 2 5 В 5 В \mathbf{B} В \mathbf{B} \mathbf{T} \mathbf{B} 5 B) B) 5 \mathbf{B} В \mathbf{B} \mathbf{T} $T^{B}5$ $^{\mathrm{B}}\,\mathrm{T}$ ni w