TEST ANSWERS AVAILABLE IN MY BLOG- www.ravitestpapers.in

MY YOUTUBE CHANNEL NAME- RAVI TEST PAPERS

JOIN MY PAID WHATSAPP GROUP 8056206308 FOR DPPS WITH ANSWERS

Q1. If $\triangle ABC \sim \triangle DEF$ such that AB = 1.2cm and DE = 1.4cm, the ratio of the areas of $\triangle ABC$ and $\triangle DEF$ is:

1 Mark

A 49:36

B 6:7

C 7:6

D 36:49

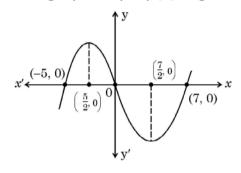
Q2. If the coordinates of one end of a diameter of a circle are (2, 3) and the coordinates of its centre are (-2, 5), then the coordinates of the other end of the diameter are:

1 Mark

A (-6, 7)

B (6, -7)

C (6, 7)


D (-6, -7)

JOIN WHATSAPP

WHATSAPP 8056206308

Q3. The graph of y = p(x) is given in the adjoining figure. Zeroes of the polynomial p(x) are:

1 Mark

A -5, 7

c = -5, 0, 7

B $\frac{-5}{2}, \frac{-7}{2}$

CBSE 9 & 11 - FEES RS.750
JEE - FEES RS.1000
NEET - FEES RS.2000

CBSE 10 & 12 - FEES RS.1250

SEARCH GOOGLE
www.ravitestpapers.com
www.ravitestpapers.in
RAVI MATHS TUITION CENTER

1 Mark

Q4. The quadratic equation $x^2 - 4x + k = 0$ has distinct real roots if:

A k = 4

B k > 4

C k = 16

D k < 4

Q5. The angle of depression of a car, standing on the ground, from the top of a 75 m high tower, is 30°. The distance 1 Mark of the car from the base of the tower (in m.) is:

A $25\sqrt{3}$

B $50\sqrt{3}$

c $75\sqrt{3}$

D 150

Q6. If the difference between the circumference and the radius of a circle is 37 cm, then using $\pi = \frac{22}{7}$, the circumference (in cm) of the circle is:

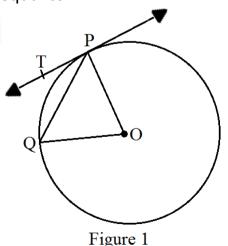
A 154

B 14

C 44

D 7

Q7. A sphere of diameter 18 cm is dropped into a cylindrical vessel of diameter 36 cm, partly filled with water. If the **1 Mark** sphere is completely submerged, then the water level rises (in cm) by


A 3

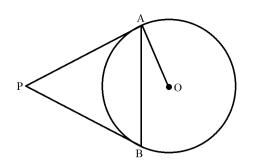
B 4

C 5

D 6

Q8. In Figure 1, O is the centre of a circle, PQ is a chord and PT is the tangent at P. If $\angle POQ = 70^{\circ}$, then $\angle TPQ$ is **1 Mark** equal to:

A 55°


B 70°

C 45°

D 35°

Q9. In Fig. 2, PA and PB are tangents to the circle with centre O. If $\angle APB = 60^{\circ}$ then $\angle OAB$ is:

1 Mark

	A 30°	B 60°	C 90°	D 15°		
Q10.	The point P which divides the line segment joining the points $A(2,-5)$ and $B(5,2)$ in the ratio 2:3 lies in the quadrant:					
	ΑΙ	В ІІ	C III	D IV		
Q11.	The value of x for which $2x$, $(x + 10)$ and $(3x + 2)$ are the three consecutive terms of an AP, is:					
	A 6	B -6	C 18	D -18		
Q12.	A card is drawn fi	rom a well-shuffled deck of 52 playing	g cards. The probability	that the card will not be an ace is:	1 Mark	
	A $\frac{1}{13}$	$\mathbf{B} \ \ \frac{1}{4}$	C $\frac{12}{13}$	$\mathbf{D} \frac{3}{4}$		
Q13.	The degree of po	lynomial having zeroes -3 and 4 only	is:		1 Mark	
	A 2	B 1	C More than 3	D 3		
Q14.	If p - 1, p + 1 and	2p + 3 are in A.P., then the value of p	is:		1 Mark	
	A -2	B 4	c 0	D 2		
Q15.	n th term of an A.P. is 7n + 4. The common difference is:					
	A 7n	B 4	C 7	D 1		
Q16.	If the radius of the base of a right circular cylinder is halved, keeping the height the same, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is:					
	A 1:2	B 2:1	C 1:4	D 4:1		
Q17.	In what ratio, does x-axis divide the line segment joining the points A(3, 6) and B(-12, -3)?					
	A 1:2	B 1:4	C 4:1	D 2:1		
Q18.	In Question an Assertion (A) statement is followed by a statement of Reason (R). Select the correct option out of the following: Assertion (A): Point P(0, 2) is the point of intersection of y-axis with the line $3x + 2y = 4$. Reason (R): The distance of point P(0, 2) from x-axis is 2 units.					
	A Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).		B Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).			
	C Assertion (A) is true but Reason (R) is false. D Assertion (A) is false but Reason (R) is true.					
Q19.	In Figure, from an external point P, two tangents PQ and PR are drawn to a circle of radius 4cm with centre O. If $\angle { m QPR}=90^\circ,$ then length of PQ is:					
	A 3cm	B $4\mathrm{cm}$	C 2cm	D $2\sqrt{2}$ cm		

If the roots of equation $ax^2+bx+c=0, a
eq 0$ are real and equal, then are real and equal, then which of the ${
m f 1Mark}$ Q21. following relation is true?

C -2

If the point P(k, 0) divides the line segment joining the points A(2, -2) and B(-7, 4) in the ratio 1: 2, then the

A
$$a=rac{b^2}{c}$$
C $\mathrm{ac}=rac{b^2}{4}$

value of k is:

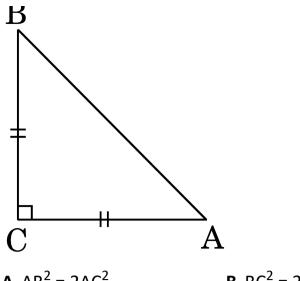
A 1

Q20.

$$\mathbf{B} \,\, \mathrm{b}^2 = \mathrm{ac}$$

D -1

$$\mathsf{c} \ \mathrm{ac} = \frac{b^2}{4}$$

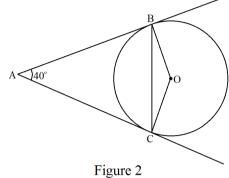

D
$$\mathbf{c}=rac{b^2}{a}$$

Q22. The distance between the points (m, - n) and (-m, n) is:

B 2

1 Mark

	A $\sqrt{\mathrm{m}^2+\mathrm{n}^2}$ C $2\sqrt{\mathrm{m}^2+\mathrm{n}^2}$		B $\mathrm{m}+\mathrm{n}$ D $\sqrt{2\mathrm{m}^2+\mathrm{n}^2}$			
Q23.	The angle of depression of a car parked on the road from the top of a 150m high tower is 30°. The distance of the car from the tower (in metres) is:					
	A $50\sqrt{3}$	B $150\sqrt{3}$	c $150\sqrt{2}$	D 75		
Q24.	If $\sin A = rac{2}{3},$ then value o	f cotA is:			1 Mark	
	A $\frac{\sqrt{5}}{2}$	B $\frac{3}{2}$	$c_{\frac{5}{4}}$	D $\frac{2}{3}$		
Q25.	If the sum of zeroes of the	e polynomial $\mathrm{p}(\mathrm{x}) = 2\mathrm{x}^2 - 1$	${ m k}\sqrt{2}{ m x}+1$ is $\sqrt{2},$ then value	of & is:	1 Mark	
	A $\sqrt{2}$	B 2	C $2\sqrt{2}$	$D \ \frac{1}{2}$		
Q26.	In a right triangle ABC, rigl triangle (in cm) is:	ne circle inscribed in the	1 Mark			
	A 4	B 3	C 2	D 1		
Q27.	If the points A(x, 2), B(-3, -	-4) and C(7, -5) are collinear,	then the value of x is:		1 Mark	
	A -63	B 63	c 60	D -60		
Q28.	The pair of linear equation $rac{3\mathrm{x}}{2}+rac{5\mathrm{y}}{3}=7$ and $9\mathrm{x}+10$				1 Mark	
	A Consistent.C Consistent with one sole	ution.	B Inconsistent.D Consistent with many so	olutions.		
Q29.	If α, β are the zerose of a polynomial p(x) = x ² + x - 1, then, $\frac{1}{\alpha} + \frac{1}{\beta}$ equals to:					
	A 1	B 2	C -1	D $\frac{-1}{2}$		
Q30.	In an A.P., if the first term a = 7, nth term a _n = 84 and the sum of first n terms $s_n=rac{2093}{2},$ then n is equal to:					
	A 22	B 24	C 23	D 26		
Q31.	In a survey, it is found that	t every fifth person has a veh	nicle. The probability of a per	son NOT having a vehicle, is:	1 Mark	
	A $\frac{1}{5}$	B 5%	c $\frac{4}{5}$	D 95%		
Q32.	The value(s) of k for which	n the quadratic equation $2x^2$	+ kx + 2 = 0 has equal roots,	is:	1 Mark	
	A 4	B ± 4	c -4	D 0		
Q33.	The length of shadow of a of sun is:	tower on the plane ground	is $\sqrt{3}$ times the height of the	e tower.The angle of elevation	1 Mark	
	A 45°	B 30°	C 60°	D 90°		
Q34.	Which of the following car	n not be the probability an e	vent?		1 Mark	
	A 1.5	B $\frac{3}{5}$	c 25%	D 0.3		
Q35.	The co-ordinates of the po	pint which is reflection of poi	int (–3, 5) in x-axis are.		1 Mark	
	A (3, 5)	B (3, -5)	C (-3, -5)	D (-3, 5)		
Q36.	A solid right circular cone is cut into two parts at the middle of its height by a plane parallel to its base. The ratio of the volume of the smaller cone to the whole cone is:					
	A 1:2	B 1:4	C 1:6	D 1:8		
Q37.	Two dice are rolled togeth	er. The probability of getting	sum of numbers on the two	dice as 2, 3 or 5, is:	1 Mark	
	A $\frac{7}{36}$	B $\frac{11}{36}$	$C = \frac{5}{36}$	D $\frac{4}{9}$		
Q38.	In Figure, $\triangle \mathrm{ABC}$ is an iso	osceles triangle, right-angled	at C. Therefore.		1 Mark	


B
$$BC^2 = 2AB^2$$

C
$$AC^2 = 2AB^2$$

www.ravitestpapers.in RAVI MATHS TUITION CENTER

In Figure 2, AB and AC are tangents to the circle with centre O such that $\angle BAC=40^\circ$. Then $\angle BOC$ is equal to: 1 Mark Q39.

A 40°

B 50°

C 140°

D 150°

Q40. Two circles touch each other externally at P. AB is a common tangent to the circles touching them at A and B. 1 Mark The value of $\angle APB$ is:

A 30°

B 45

C 60

D 90

If lpha,eta are the zeroes of the polynomial $6{
m x}^2-5{
m x}-4,$ then ${1\overlpha}+{1\overeta}$ is equal to: Q41.

1 Mark

A $\frac{5}{4}$

B $-\frac{5}{4}$

 $C \frac{4}{5}$

D $\frac{5}{24}$

If $\cos(lpha+eta)=0$, then value of $\cos\left(rac{lpha+eta}{2}
ight)$ is equal to: Q42.

1 Mark

A $\frac{1}{\sqrt{2}}$

 $\mathbf{B} \frac{1}{2}$

 $\mathbf{C} 0$

D $\sqrt{2}$

The roots of the equation $x^2 + x - p(p + 1) = 0$, where p is a constant, are: Q43.

1 Mark

Ap, p+1

B -p, p + 1

C p, -(p + 1)

D -p, -(p + 1)

Which of the following is a quadratic polynomial with zeroes $\frac{5}{3}$ and 0? Q44.

1 Mark

A 3x(3x - 5)

B 3x(x-5) **D** $\frac{5}{3}x^2$

C $x^2 - \frac{5}{3}$

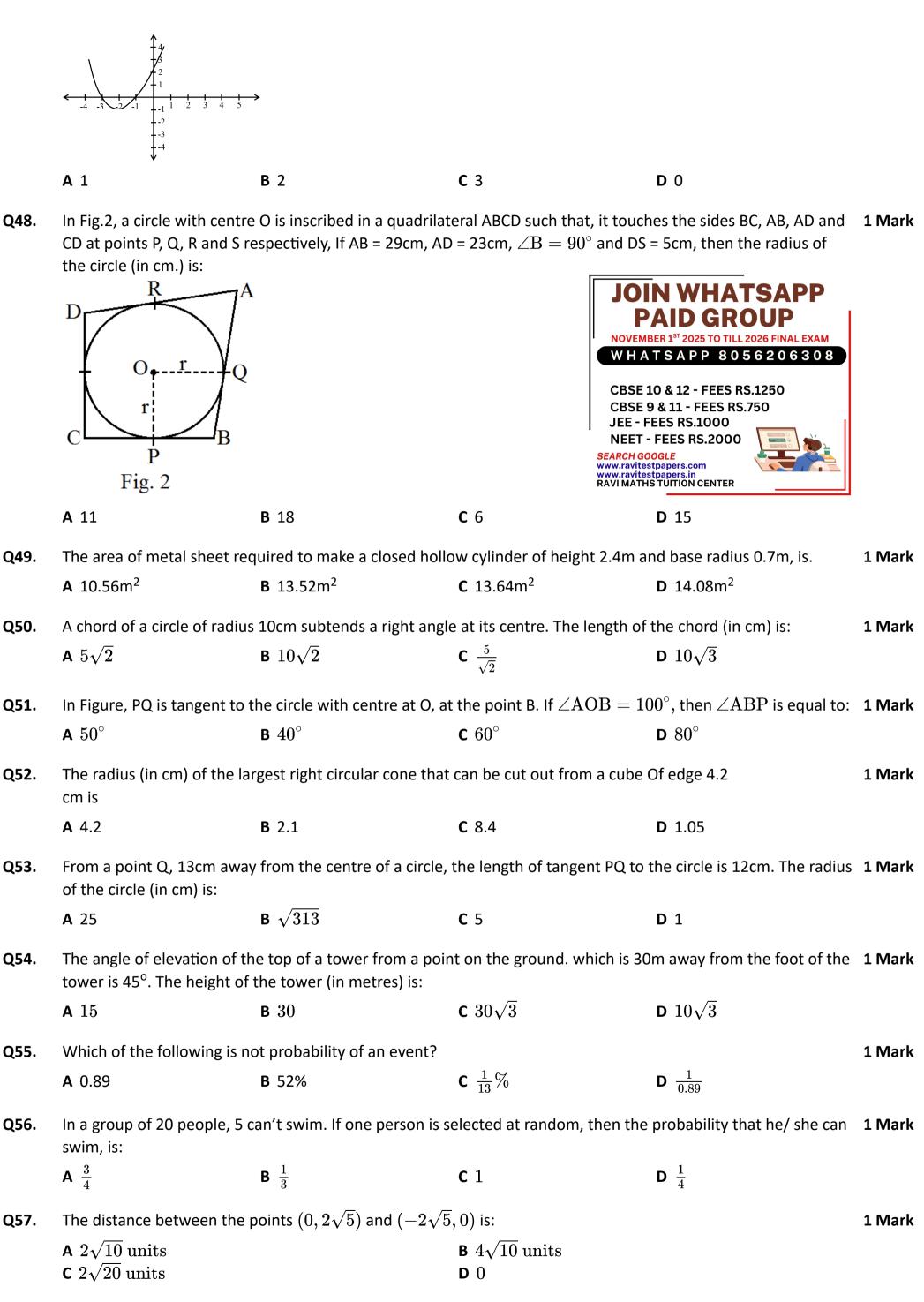
If 2 an A = 3, then the value of $rac{4 \sin A + 3 \cos A}{4 \sin A - 3 \cos A}$ is: Q45.

1 Mark

A $\frac{7}{\sqrt{13}}$

C 3

D Does not exist


Q46. **Directions:** In a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option. 1 Mark **Assertion (A):** The tangents drawn at the end points of a diameter of a circle, are parallel. **Reason (R):** Diameter of a circle is the longest chord.

A Both, Assertion (A) and Reason (R) are true and Reason (R) is correct explanation of Assertion (A). **B** Both, Assertion (A) and Reason (R) are true but Reason (R) is not correct explanation for Assertion (A).

C Assertion (A) is true but Reason (R) is false.

D Assertion (A) is false but Reason (R) is true.

Q47. In fig. the graph of the polynomial p(x) is given. The number of zeroes of the polynomial is: 1 Mark

Q58. The first three terms of an AP respectively are 3y - 1, 3y + 5 and 5y + 1. Then y equals: 1 Mark

A -3

B 4

C 5

D 2

Q59.				ne length of one of its diagonals is:	1 Mark		
	A 5	B 4	C 3	D 25			
Q60.				then the sum of first 10 terms is:	1 Mark		
	A - 200	B - 70	C - 250	D 250			
Q61.	The sum of exponents of prime factors in the prime-factorisation of 196 is:						
	A 3	B 4	C 5	D 2			
Q62.	If (a, b) is the mid-point of the line segment joining the points A(10, -6) and B(k, 4) and a $-2b = 18$, the value of k is:						
	A 30	B 22	C 4	D 40			
Q63.	Ť	pes for a polynomial p(x) w	here graph of y = p(x) is give	n in Figure, is:	1 Mark		
	A 3	B 4	c 0	D 5			
Q64.	A ladder makes an angle of 60° with the ground when placed against a wall. If the foot of the ladder is 2 m away from the wall, then the length of the ladder (in metres) is:						
	A $\frac{4}{\sqrt{3}}$	B $4\sqrt{3}$	c $2\sqrt{2}$	D 4			
Q65.	EK = 9cm, then the	perimeter of $\triangle EDF$ (in constant)	m) is:	produced at K and M respectively. If	1 Mark		
	A 18	B 13.5	C 12	D 9			
Q66.	The radius of a sphere (in cm) whose volume is $12\pi~{ m cm}^3,$ is:						
	A 3	B $3\sqrt{3}$	C $3^{\frac{2}{3}}$	D $3^{rac{1}{3}}$			
Q67.	The value of $ heta$ for v	which $\cos(10^\circ + heta) = \sin heta$	$30^\circ,$ is:		1 Mark		
	A 50°	B 40°	C 80°	D 20°			
Q68.	IFor θ = 30°, the value of (2 sin θ cos θ) is:						
٦٠٠.	A 1	B $\frac{\sqrt{3}}{2}$	$C \ \frac{\sqrt{3}}{4}$	D $\frac{3}{2}$	1 Mark		
Q69.	A ladder makes an	2	nd when placed against a wa	ll. If the foot of the ladder is 2m away	1 Mark		

c $2\sqrt{2}$

 $\mathbf{D} \ 4$

1 Mark

B $4\sqrt{3}$

If α , β are the zerose of a polynomial p(x) = x² + x - 1, then, $\alpha^2 + \beta^2$ is equals to:

A $\frac{4}{\sqrt{3}}$

Q70.

Δ	-3
^	$\overline{4}$

B
$$\frac{5}{4}$$

$$c_{\frac{1}{4}}$$

D
$$\frac{3}{4}$$

Q71. If A and B are the points (-6, 7) and (-1, -5) respectively, then the distance 2AB is equal to 1 Mark

A 13

B 26

C 169

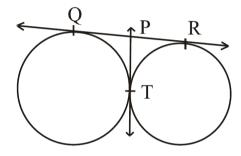
- **D** 238
- Q72. The distance between the points $(a\cos\theta + b\sin\theta, 0)$ and $(0, a\sin\theta - b\cos\theta)$, is:

1 Mark

A
$$a^2 + b^2$$

$$\begin{array}{c} {\bf B} \ a^2 - b^2 \\ {\bf D} \ \sqrt{a^2 - b^2} \end{array}$$

$$\mathbf{C} \sqrt{\mathbf{a}^2 + \mathbf{b}^2}$$


The coordinates of the point P dividing the line segment joining the points A(1, 3) and B(4, 6) in the ratio 2:1 Q73. are:

1 Mark

- **A** (2, 4)
- **B** (3, 5)
- **C** (4, 2)
- **D** (5, 3)
- Q74. The curved surface area of a cone having height 24cm and radius 7cm, is:

1 Mark

- **A** 528cm²
- **B** 1056cm²
- **C** 550cm²
- **D** 500cm²
- Q75. In Fig. 1, QR is a common tangent to the given circles, touching externally at the point T. The tangent at T meets **1 Mark** QR at P. If PT = 3.8cm, then the length of QR (in cm) is:

A 3.8

B 7.6

C 5.7

- **D** 1.9
- Q76. Probability of happening of an event is denoted by p and probability of non-happening of the event is denoted 1 Mark by q. Relation between p and q is.

A p + q = 1

- **C** p = q 1
- **D** p + a + 1 = 0

The zeroes of the polynomial $x^2 - 3x - m (m + 3)$ are: Q77.

1 Mark

- **A** m, m + 3
- **B** -m, m + 3

B p = 1, q = 1

- C m, -(m + 3)
- **D** -m, -(m + 3)
- Q78. The first term of an A.P. is 5 and the last term is 45. If the sum of all the terms is 400, the number of terms is:

1 Mark

A 20

B 8

C 10

- **D** 16
- Q79. From an external point Q, the length of the tangent to a circle is 5cm and the distance of Q from the centre is 1 Mark 8cm. The radius of the circle is

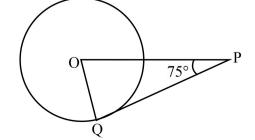
- **A** 39cm
- **B** 3cm

- $\mathbf{C} \sqrt{39} \mathrm{cm}$
- **D** 7cm
- In Figure, TP and TQ are tangents drawn to the circle with centre at O. If $\angle PQR=115^{\circ}\angle PQR=115^{\circ}$ then Q80. 1 Mark $\angle PTQ$ is:

A 115°

B 57.5°

C 55°


- **D** 65°
- Q81. The centre of a circle whose end points of a diameter are (-6, 3) and (6, 4) is:

1 Mark

- **A** (8,-1)
- **B** (4,7)
- $\mathsf{C}\left(0,rac{7}{2}\right)$
- D $\left(4, \frac{7}{2}\right)$
- **Directions:** In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Q82. Mark the correct choice as:

1 Mark

Assertion: In the given figure, if PQ is a tangent to the circle with centre O, then the value of $\angle POQ$ is 25°

	centre					
	A Assertion and Reason both ar and Reason is the correct exp		В	Assertion and Reason b but Reason is not the co Assertion.	oth are correct statements orrect explanation of	
	C Assertion is correct statement statement.	but Reason is wrong	D	Assertion is wrong state statement.	ement but Reason is correct	
Q83.	For what value of k do the equat point?	tions kx - 2y = 3 and 3x	+ y	= 5 represent two lines	intersecting at a unique	1 Mark
	A k = 3 C k = 6			k = -3 All real values except -6	5	
Q84.	Directions: In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following: Assertion: Whole no. are known as non negative integers and it does not include any fractional or decimal part. Reason: Set of whole numbers are {-1, -2, -3}.					1 Mark
	A Both assertion (A) and reason reason (R) is the correct expla (A).C Assertion (A) is true but reason	nation of assertion		Both assertion (A) and reason (R) is not the coassertion (A). Assertion (A) is false but	rrect explanation of	
					• •	1 Mark
Q85.	Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as: Assertion: A bicycle wheel makes 5000 revolutions in covering 11km. Then diameter of the wheel is 35cm. Reason: Area of segment of a circle is $\frac{\theta}{360} \times \pi r^2 - \frac{1}{2}r^2 \sin \theta$					
	 A Both assertion (A) and reason reason (R) is the correct expla (A). C Assertion (A) is true but reason 	nation of assertion		Both assertion (A) and reason (R) is not the coassertion (A). Assertion (A) is false but	rrect explanation of	
Q86.	DIRECTION: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as: Assertion: D and E are points on the sides AB and AC respectively of a $\triangle ABC$ such that AB = 10.8cm, AD = 6.3cm, AC = 9.6cm and EC = 4cm then DEis parallel to BC. Reason: If a line is parallel to one side of a triangle then it divides the other two sides in the same ratio.					1 Mark
	 A Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A). C Assertion (A) is true but reason (R) is false. 		 B Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A). D Assertion (A) is false but reason (R) is true 			
Q87.	From a point P which is at a distance 13cm from the centre O of a circle of radius 5cm, the pair of tangent PQ and PR to the circle are drawn. Then the area of the quadrilateral PQOR is:					
	A 60cm ² B 69	5cm ²	C	30cm ²	D 32.5cm ²	
Q88.	From a well shuffled pack of 52 of	cards, one card is draw	'n a	t random. The probabilit	ry of getting a diamond is:	1 Mark
	A $\frac{12}{52}$ C $\frac{3}{4}$		B D	$\frac{1}{4}$ $\frac{1}{2}$		
Q89.	Directions: In the following quest the statements carefully and cho Assertion: The no. which are exa Reason: Even no. can be positive	oose the correct alternated actly divisible by 2 are of	ativ	e from the following:	een put forward. Read both	1 Mark

Reason: If two tangents are drawn to a circle from an external point, then they subtend equal angles at the

	(A).		assertion (A).		
	C Assertion (A) is tr	ue but reason (R) is false.	D Assertion (A) is false but reason (R) is true.		
Q90.	If tangents PA and F ∠POA is equal to	PB from a point P to a circle with ce	entre O are inclined	to each other at angle of 80°, then	1 Mark
	A 50°	B 60°	C 70°	D 80°	
Q91.	Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as: Assertion: If $\triangle ABC$ and $\triangle PQR$ are congruent triangles, then they are also similar triangles. Reason: All congruent triangles are similar but the similar triangles need not be congruent.				
	reason (R) is the (A).	a) and reason (R) are true and correct explanation of assertion	B Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).		
	C Assertion (A) is tr	ue but reason (R) is false.	D Assertion (A) is	s false but reason (R) is true.	
Q92.	The relation between	en mean, mode and median is:			1 Mark
	A Mode = $(3 \times mea$ C Mode = $(3 \times mea$		•	edian) - (2 × mean) ledian) - (2 × mode)	
Q93.	Directions: In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following: Assertion: If a pair of linear equations is consistent, then the lines are intersecting or coincident Reason: Because the two lines definitely have a solution.				
	correct explanati		correct explan	and reason are correct but reason is ation for assertion and reason are false	
Q94.	Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as: Assertion: The probability of winning a game is 0.4, then the probability of losing it, is 0.6. Reason: $P(E) + P(not E) = 1$.				
	 A If both Assertion and Reason are true and Reason is the correct explanation of Assertion. B If both Assertion and Reason are true and Reason is not the correct explanation of Assertion. D If Assertion is false but Reason is true. 				
Q95.	If $lpha$ and eta are zeros	of $x^2 + 5x + 8$, then the value of (a)	(lpha+eta) is:		1 Mark
	A 8	B 5	C -5	D -8	
Q96.	In the given figure,	if $\angle { m AOD} = 135^\circ$ then $\angle { m BOC}$ is ${ m COD}$	equal to:		1 Mark
	A 25º	B 45º	C 52.5º	D 62.5º	
Q97.	Directions: In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following: Assertion: $(2x - 1)^2 - 4x^2 + 5 = 0$ is not a quadratic equation. Reason: An equation of the form $ax^2 + bx + c = 0$, $a \ne 0$, where a, b, $c \in R$ is called a quadratic equation.				
	A If both Assertion Reason is the cor	and Reason are correct and rect explanation of Assertion. rect but Reason is incorrect.	B If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.D If Assertion is incorrect but Reason is correct.		
Q98.	If $3\cot heta=4$ then	$\frac{(5\sin\theta+3\cos\theta)}{(5\sin\theta-3\cos\theta)} = ?$			1 Mark

B Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of

A Both assertion (A) and reason (R) are true and

reason (R) is the correct explanation of assertion

Q99. If the angles of elevation of a tower from two points distant a and b (a > b) from its foot and in the same straight 1 Mark line from it are 30° and 60°, then the height of the tower is:

A $\sqrt{a+b}$ C $\sqrt{a-b}$

 $oldsymbol{\mathsf{B}} \sqrt{\mathrm{ab}} \ oldsymbol{\mathsf{D}} \sqrt{rac{\mathrm{a}}{-}}$

Q100. If the sum of the zeros of the polynomial $f(x) = 2x^3 - 3kx^2 + 4x - 5$ is 6, then the value of k is:

1 Mark

A 2

B 4

C -2

D -4

