
L3X Pre Launch

L3XPre Launch Audit Report

Apr 22, 2024

L3X Pre Launch

Table of Contents
Summary 2

Overview 3

Issues 4

[WP‐L1] getUserStakedBalances() should include all user stakes even if a token is removed
from acceptedTokens . 4

[WP‐L2] getAllAcceptedTokens , acceptedTokenCount , and getUserStakedBalancesmay return
duplicate results. 5

[WP‐G3] Caching storage reads can save gas 8

[WP‐N4] Consider _disableInitializers() in PreLaunchStaking#constructor() 9

[WP‐N5] Consider using SafeERC20.forceApprove() instead of IERC20.approve() . 10

Appendix 12

Disclaimer 13

1

L3X Pre Launch

Summary
This report has been prepared for L3X Pre Launch smart contract, to discover issues and
vulnerabilities in the source code of their Smart Contract as well as any contract dependencies
that were not part of an officially recognized library. A comprehensive examination has been
performed, utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

• Testing the smart contracts against both common and uncommon attack vectors.
• Assessing the codebase to ensure compliance with current best practices and industry
standards.

• Ensuring contract logic meets the specifications and intentions of the client.
• Cross referencing contract structure and implementation against similar smart contracts
produced by industry leaders.

• Thorough line‐by‐line manual review of the entire codebase by industry experts.

2

L3X Pre Launch

Overview

Project Summary

Project Name L3X Pre Launch
Codebase https://github.com/L3X‐Protocol/l3x‐pre‐launch‐contracts
Commit b0c353b63a39a5368e09900760dbb87fba46c7ee
Language Solidity

Audit Summary

Delivery Date Apr 22, 2024
Audit Methodology Static Analysis, Manual Review
Total Isssues 5

3

L3X Pre Launch

[WP‐L1] getUserStakedBalances() should include all user stakes
even if a token is removed from acceptedTokens .

Low

Issue Description

https://github.com/L3X‐Protocol/l3x‐pre‐launch‐contracts/blob/
3b00fbb9f46abdb10c99e9b82b17cbf7e2b5d0db/contracts/PreLaunchStaking.sol#L167‐L182

167 function getUserStakedBalances(address _user) external view returns (address[]
memory, uint256[] memory) {

168 uint256 count = acceptedTokenCount();
169 address[] memory stakedTokens = new address[](count);
170 uint256[] memory stakedBalances = new uint256[](count);
171
172 uint256 index = 0;
173 for (uint256 i = 0; i < acceptedTokensArray.length; ++i) {
174 address acceptedToken = acceptedTokensArray[i];
175 if (acceptedTokens[acceptedToken]) {
176 stakedTokens[index] = acceptedToken;
177 stakedBalances[index] = userStakes[_user][acceptedToken];
178 ++index;
179 }
180 }
181 return (stakedTokens, stakedBalances);
182 }

Recommendation

Consider removing L175.

Status

Fixed

4

https://github.com/L3X-Protocol/l3x-pre-launch-contracts/blob/3b00fbb9f46abdb10c99e9b82b17cbf7e2b5d0db/contracts/PreLaunchStaking.sol#L167-L182
https://github.com/L3X-Protocol/l3x-pre-launch-contracts/blob/3b00fbb9f46abdb10c99e9b82b17cbf7e2b5d0db/contracts/PreLaunchStaking.sol#L167-L182

L3X Pre Launch

[WP‐L2] getAllAcceptedTokens , acceptedTokenCount , and
getUserStakedBalances may return duplicate results.

Low

Issue Description

removeToken does not actually remove elements from acceptedTokensArray . If a token is
added again after being removed , it causes duplicates in acceptedTokensArray , resulting in
getAllAcceptedTokens , acceptedTokenCount , and getUserStakedBalances returning duplicate
results.

https://github.com/L3X‐Protocol/l3x‐pre‐launch‐contracts/blob/
3b00fbb9f46abdb10c99e9b82b17cbf7e2b5d0db/contracts/PreLaunchStaking.sol#L222‐L230

222 /**
223 * @dev Owner can remove a token from being acceptable for staking.
224 * @param _token Address of the token to be removed.
225 */
226 function removeToken(address _token) external onlyOwner {
227 require(acceptedTokens[_token], "removeToken: token not whitelisted");
228 acceptedTokens[_token] = false;
229 emit TokenRemoved(_token);
230 }

https://github.com/L3X‐Protocol/l3x‐pre‐launch‐contracts/blob/
3b00fbb9f46abdb10c99e9b82b17cbf7e2b5d0db/contracts/PreLaunchStaking.sol#L132‐L182

132 /**
133 * @notice A helper function to get all accepted tokens
134 * @return Array of addresses representing accepted tokens
135 */
136 function getAllAcceptedTokens() external view returns (address[] memory) {
137 address[] memory result = new address[](acceptedTokenCount());
138 uint256 index = 0;
139 for (uint256 i = 0; i < acceptedTokensArray.length; i++) {
140 if (acceptedTokens[acceptedTokensArray[i]]) {
141 result[index] = acceptedTokensArray[i];

5

https://github.com/L3X-Protocol/l3x-pre-launch-contracts/blob/3b00fbb9f46abdb10c99e9b82b17cbf7e2b5d0db/contracts/PreLaunchStaking.sol#L222-L230
https://github.com/L3X-Protocol/l3x-pre-launch-contracts/blob/3b00fbb9f46abdb10c99e9b82b17cbf7e2b5d0db/contracts/PreLaunchStaking.sol#L222-L230
https://github.com/L3X-Protocol/l3x-pre-launch-contracts/blob/3b00fbb9f46abdb10c99e9b82b17cbf7e2b5d0db/contracts/PreLaunchStaking.sol#L132-L182
https://github.com/L3X-Protocol/l3x-pre-launch-contracts/blob/3b00fbb9f46abdb10c99e9b82b17cbf7e2b5d0db/contracts/PreLaunchStaking.sol#L132-L182

L3X Pre Launch

142 index++;
143 }
144 }
145 return result;
146 }
147
148 /**
149 * @notice A helper function to get the count of accepted tokens
150 * @return Number of accepted tokens
151 */
152 function acceptedTokenCount() public view returns (uint256) {
153 uint256 count = 0;
154 for (uint256 i = 0; i < acceptedTokensArray.length; ++i) {
155 if (acceptedTokens[acceptedTokensArray[i]]) {
156 ++count;
157 }
158 }
159 return count;
160 }
161
162 /**
163 * @notice A helper function to get all of a user’s all staked balances
164 * @param _user Address of the user
165 * @return Arrays of addresses and uint256 representing staked tokens and

their balances
166 */
167 function getUserStakedBalances(address _user) external view returns (address[]

memory, uint256[] memory) {
168 uint256 count = acceptedTokenCount();
169 address[] memory stakedTokens = new address[](count);
170 uint256[] memory stakedBalances = new uint256[](count);
171
172 uint256 index = 0;
173 for (uint256 i = 0; i < acceptedTokensArray.length; ++i) {
174 address acceptedToken = acceptedTokensArray[i];
175 if (acceptedTokens[acceptedToken]) {
176 stakedTokens[index] = acceptedToken;
177 stakedBalances[index] = userStakes[_user][acceptedToken];
178 ++index;
179 }
180 }
181 return (stakedTokens, stakedBalances);
182 }

6

L3X Pre Launch

Recommendation

Consider changing acceptedTokensArray from Array to EnumerableSet.AddressSet to avoid
duplicates.

Status

Fixed

7

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/structs/EnumerableSet.sol

L3X Pre Launch

[WP‐G3] Caching storage reads can save gas

Gas

Issue Description

By reusing the storage read result from L140 in L141, we can save one hot storage read per loop
iteration.

https://github.com/L3X‐Protocol/l3x‐pre‐launch‐contracts/blob/
3b00fbb9f46abdb10c99e9b82b17cbf7e2b5d0db/contracts/PreLaunchStaking.sol#L36

36 address[] private acceptedTokensArray;

https://github.com/L3X‐Protocol/l3x‐pre‐launch‐contracts/blob/
3b00fbb9f46abdb10c99e9b82b17cbf7e2b5d0db/contracts/PreLaunchStaking.sol#L132‐L146

132 /**
133 * @notice A helper function to get all accepted tokens
134 * @return Array of addresses representing accepted tokens
135 */
136 function getAllAcceptedTokens() external view returns (address[] memory) {
137 address[] memory result = new address[](acceptedTokenCount());
138 uint256 index = 0;
139 for (uint256 i = 0; i < acceptedTokensArray.length; i++) {
140 if (acceptedTokens[acceptedTokensArray[i]]) {
141 result[index] = acceptedTokensArray[i];
142 index++;
143 }
144 }
145 return result;
146 }

Status

Fixed

8

https://github.com/L3X-Protocol/l3x-pre-launch-contracts/blob/3b00fbb9f46abdb10c99e9b82b17cbf7e2b5d0db/contracts/PreLaunchStaking.sol#L36
https://github.com/L3X-Protocol/l3x-pre-launch-contracts/blob/3b00fbb9f46abdb10c99e9b82b17cbf7e2b5d0db/contracts/PreLaunchStaking.sol#L36
https://github.com/L3X-Protocol/l3x-pre-launch-contracts/blob/3b00fbb9f46abdb10c99e9b82b17cbf7e2b5d0db/contracts/PreLaunchStaking.sol#L132-L146
https://github.com/L3X-Protocol/l3x-pre-launch-contracts/blob/3b00fbb9f46abdb10c99e9b82b17cbf7e2b5d0db/contracts/PreLaunchStaking.sol#L132-L146

L3X Pre Launch

[WP‐N4] Consider _disableInitializers() in
PreLaunchStaking#constructor()

Issue Description

It is a best practice to call _disableInitializers() in the constructor function of an
upgradeable contract.

See: https://docs.openzeppelin.com/upgrades‐plugins/1.x/writing‐upgradeable#initializing_
the_implementation_contract

Recommendation

/// @custom:oz‐upgrades‐unsafe‐allow constructor
constructor() {

_disableInitializers();
}

Status

Acknowledged

9

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract
https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract

L3X Pre Launch

[WP‐N5] Consider using SafeERC20.forceApprove() instead of
IERC20.approve() .

Issue Description

https://github.com/OpenZeppelin/openzeppelin‐contracts/blob/v5.0.2/contracts/token/ERC20/
utils/SafeERC20.sol#L73‐L74

71 /**
72 * @dev Set the calling contract's allowance toward `spender` to `value`. If

`token` returns no value,
73 * non‐reverting calls are assumed to be successful. Meant to be used with

tokens that require the approval
74 * to be set to zero before setting it to a non‐zero value, such as USDT.
75 */
76 function forceApprove(IERC20 token, address spender, uint256 value) internal {
77 bytes memory approvalCall = abi.encodeCall(token.approve, (spender,

value));
78
79 if (!_callOptionalReturnBool(token, approvalCall)) {
80 _callOptionalReturn(token, abi.encodeCall(token.approve, (spender,

0)));
81 _callOptionalReturn(token, approvalCall);
82 }
83 }

https://github.com/L3X‐Protocol/l3x‐pre‐launch‐contracts/blob/
3b00fbb9f46abdb10c99e9b82b17cbf7e2b5d0db/contracts/PreLaunchStaking.sol#L105‐L126

105 /**
106 * @notice Allow users to bridge their assets to L3 after the bridge is

established
107 * @param _token Address of the token to bridge
108 * @param _minGasLimit Minimum gas limit for each individual withdrawal

transaction
109 * @param _receiver The receiver of the funds on L3
110 */
111 function bridgeAsset(address _token, uint32 _minGasLimit, address _receiver)

external whenNotPaused nonReentrant {

10

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v5.0.2/contracts/token/ERC20/utils/SafeERC20.sol#L73-L74
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v5.0.2/contracts/token/ERC20/utils/SafeERC20.sol#L73-L74
https://github.com/L3X-Protocol/l3x-pre-launch-contracts/blob/3b00fbb9f46abdb10c99e9b82b17cbf7e2b5d0db/contracts/PreLaunchStaking.sol#L105-L126
https://github.com/L3X-Protocol/l3x-pre-launch-contracts/blob/3b00fbb9f46abdb10c99e9b82b17cbf7e2b5d0db/contracts/PreLaunchStaking.sol#L105-L126

L3X Pre Launch

112 address bridgeAddress = bridgeProxyAddress;
113 require(bridgeAddress != address(0), "Bridge not ready");
114 uint256 transferAmount = userStakes[msg.sender][_token];
115 require(transferAmount != 0, "Withdrawal completed or token never

staked");
116 require(acceptedTokens[_token], "token not accepted");
117
118 userStakes[msg.sender][_token] = 0;
119 stakedAmounts[_token] ‐= transferAmount;
120
121 // bridge ERC20 token
122 IERC20(_token).approve(bridgeAddress, transferAmount);
123 BridgeInterface(bridgeAddress).depositERC20To(_token, _receiver,

transferAmount, _minGasLimit, hex"");
124
125 emit AssetBridged(msg.sender, _token, _receiver, transferAmount);
126 }

Status

Fixed

11

L3X Pre Launch

Appendix

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is
subject to change without notice, unless indicated otherwise by WatchPug; however, WatchPug
does not guarantee or warrant the accuracy, timeliness, or completeness of any report you
access using the internet or other means, and assumes no obligation to update any information
following publication.

12

L3X Pre Launch

Disclaimer
This report is based on the scope of materials and documentation provided for a limited review
at the time provided. Results may not be complete nor inclusive of all vulnerabilities. The
review and this report are provided on an as‐is, where‐is, and as‐available basis. You agree that
your access and/or use, including but not limited to any associated services, products,
protocols, platforms, content, and materials, will be at your sole risk. Smart Contract
technology remains under development and is subject to unknown risks and flaws. The review
does not extend to the compiler layer, or any other areas beyond the programming language, or
other programming aspects that could present security risks. A report does not indicate the
endorsement of any particular project or team, nor guarantee its security. No third party
should rely on the reports in any way, including for the purpose of making any decisions to buy
or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim
all warranties, expressed or implied, in connection with this report, its content, and the related
services and products and your use thereof, including, without limitation, the implied
warranties of merchantability, fitness for a particular purpose, and non‐infringement. We do
not warrant, endorse, guarantee, or assume responsibility for any product or service
advertised or offered by a third party through the product, any open source or third‐party
software, code, libraries, materials, or information linked to, called by, referenced by or
accessible through the report, its content, and the related services and products, any
hyperlinked websites, any websites or mobile applications appearing on any advertising, and
we will not be a party to or in any way be responsible for monitoring any transaction between
you and any third‐party providers of products or services. As with the purchase or use of a
product or service through any medium or in any environment, you should use your best
judgment and exercise caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT,
ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES
OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

13

	Summary
	Overview
	Issues
	[WP-L1] getUserStakedBalances() should include all user stakes even if a token is removed from acceptedTokens .
	[WP-L2] getAllAcceptedTokens , acceptedTokenCount , and getUserStakedBalances may return duplicate results.
	[WP-G3] Caching storage reads can save gas
	[WP-N4] Consider _disableInitializers() in PreLaunchStaking#constructor()
	[WP-N5] Consider using SafeERC20.forceApprove() instead of IERC20.approve() .

	Appendix
	Disclaimer

