Mathématiques, théorie des jeux et prix Nobel

Thomas BRIHAYE

Service de Mathématiques Effectives Département de Mathématique

Séminaire du CREM - 7 novembre 2014

Plan de l'exposé

- 1 Zermelo et le jeu de Nim
 - Jeu de Nim
 - Théorème de Zermelo et applications
- 2 Nash, son équilibre et ses applications
 - Une opportunité en or !!!
 - Tir au but (ou penalty)
 - Théorème de Nash et applications
- 3 Harsanyi et le problème de Monty Hall
 - Le problème de Monty Hall
 - Jeux à information imparfaite
 - Shapley et le lemme des mariages
 - Agence matrimoniale
 - Algorithme de Shapley
- 5 Pour conclure

Plan de l'exposé

- 1 Zermelo et le jeu de Nim
 - Jeu de Nim
 - Théorème de Zermelo et applications
 - Nash, son equilibre et ses application
 - Une opportunité en or !!!
 - Tir au but (ou penalty)
 - Théorème de Nash et applications
 - Harsanyi et le problème de Monty Hall
 - Le problème de Monty Hall
 - Jeux à information imparfaite
 - Shapley et le lemme des mariages
 - Agence matrimoniale
 - Algorithme de Shapley
- 5 Pour conclure

Le jeu de Nim

Les règles du jeu

- Il s'agit d'un jeu à deux joueurs.
- Les joueurs jouent à tour de rôle.
- Une pile de *n* pièces est posée sur une table.
- A chaque étape, le joueur qui a la main retire 1 ou 2 pièces.
- Le joueur qui retire la dernière pièce perd la partie.

Au départ: 8 pièces dans la pile. Joueur 1: Adam ; joueur 2: Eve.

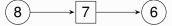
8

Au départ: 8 pièces dans la pile. Joueur 1: (Adam) ; joueur 2: Eve.

Adam retire 1 pièce.

(8)----- 7

- Adam retire 1 pièce.
- Eve retire 1 pièce.



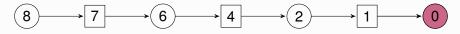
- Adam retire 1 pièce.
- Eve retire 1 pièce.
- (Adam) retire 2 pièces.

- Adam retire 1 pièce.
- Eve retire 1 pièce.
- Adam retire 2 pièces.
- Eve retire 2 pièces.

- Adam retire 1 pièce.
- Eve retire 1 pièce.
- Adam retire 2 pièces.
- Eve retire 2 pièces.
- Adam) retire 1 pièce.

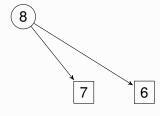
Au départ: 8 pièces dans la pile. Joueur 1: (Adam) ; joueur 2: Eve.

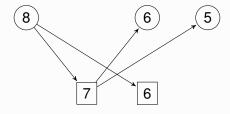
- Adam retire 1 pièce.
- Eve retire 1 pièce.
- Adam retire 2 pièces.
- Eve retire 2 pièces.
- Adam) retire 1 pièce.
- Eve retire 1 pièce.

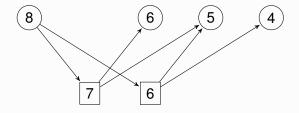


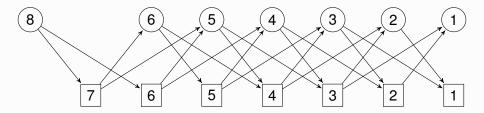
Adam remporte la partie!

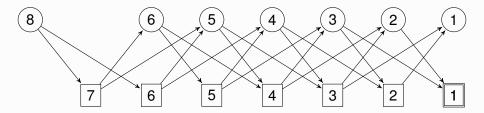
8

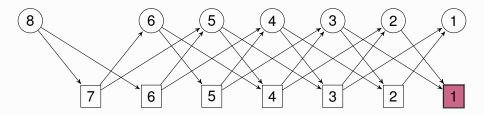


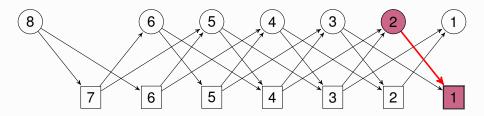


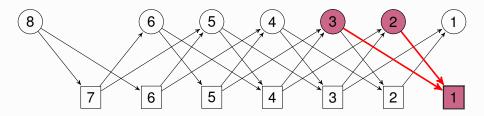


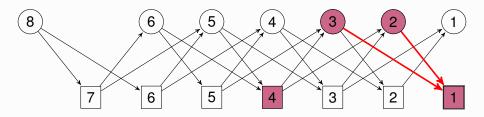


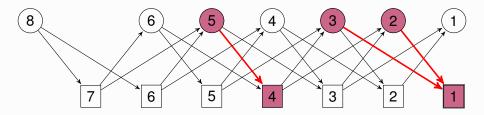


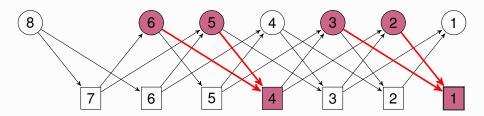


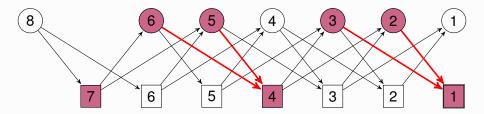


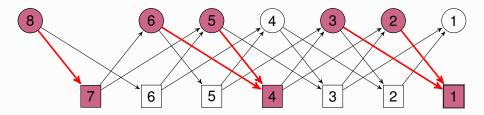


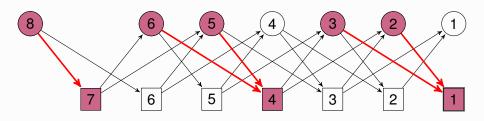












Remarque importante

Cette technique (appelée **backward induction**) permet de calculer des stratégies gagnantes dans les **jeux combinatoires**.

Un peu d'arithmétique...

Division Euclidienne

Soit $a \in \mathbb{N}$ et $d \in \mathbb{N}_0$, il existe deux uniques naturels $q, r \in \mathbb{N}$ tels que:

$$a = d \cdot q + r$$
 et $0 \le r < d$.

- On appelle *a* le dividende, *d* le diviseur, *q* le quotient et *r* le reste.
- Le reste r (de la division de a par d) est noté $a \mod d$.

Un peu d'arithmétique...

Division Euclidienne

Soit $a \in \mathbb{N}$ et $d \in \mathbb{N}_0$, il existe deux uniques naturels $q, r \in \mathbb{N}$ tels que:

$$a = d \cdot q + r$$
 et $0 \le r < d$.

- $lue{}$ On appelle a le dividende, d le diviseur, q le quotient et r le reste.
- Le reste *r* (de la division de *a* par *d*) est noté *a* mod *d*.

857	7	Quand on divise 857 par 7:
-7 : : 1 5 :	122	$857 = 7 \cdot 122 + 3$
-14		$857 \mod 7 = 3$
17 -14		
3		

Résultats

Théorème

Dans le jeu de Nim avec n pièces,

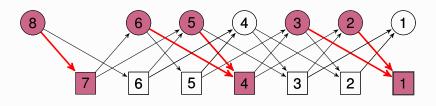
- Le premier joueur a une stratégie gagnante ssi $n \mod 3 \neq 1$.
- La stratégie gagnante consiste à

Résultats

Théorème

Dans le jeu de Nim avec *n* pièces,

- Le premier joueur a une stratégie gagnante ssi $n \mod 3 \neq 1$.
- La stratégie gagnante consiste à



- $8 \mod 3 = 2 \neq 1$ \longrightarrow le premier joueur a une stratégie gagnante.
- $7 \mod 3 = 4 \mod 3 = 1 \mod 3 = 1.$

Résultats (suite)

Théorème

Dans le jeu de Nim avec n pièces,

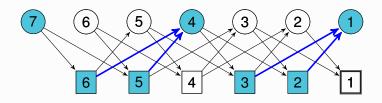
- Le second joueur a une stratégie gagnante ssi *n* mod3 = 1.
- La stratégie gagnante consiste à

Résultats (suite)

Théorème

Dans le jeu de Nim avec *n* pièces,

- Le second joueur a une stratégie gagnante ssi nmod3 = 1.
- La stratégie gagnante consiste à



- 7 mod3 = 1 → le second joueur a une stratégie gagnante.
- \blacksquare 4 mod 3 = 1 mod 3 = 1.

Plan de l'exposé

- 1 Zermelo et le jeu de Nim
 - Jeu de Nim
 - Théorème de Zermelo et applications
 - Nash, son equilibre et ses applications
 - Une opportunité en or !!!
 - Tir au but (ou penalty)
 - Théorème de Nash et applications
 - Harsanyi et le problème de Monty Hal
 - Le problème de Monty Hall
 - Jeux à information imparfaite
 - Shapley et le lemme des mariages
 - Agence matrimoniale
 - Algorithme de Shapley
- 5 Pour conclure

Jeux combinatoires

Un jeu combinatoire est un jeu

- à deux joueurs (pas le foot, ni le rugby),
- où les joueurs jouent à tour de rôle (pas "Pierre-Papier-Ciseaux"),
- fini (pas le tennis),
- à information parfaite (pas le poker, ni la bataille navale),
- sans intervention du hasard (pas le monopoly, ni le jeu de l'oie).

Jeux combinatoires

Un jeu combinatoire est un jeu

- à deux joueurs (pas le foot, ni le rugby),
- où les joueurs jouent à tour de rôle (pas "Pierre-Papier-Ciseaux"),
- fini (pas le tennis),
- à information parfaite (pas le poker, ni la bataille navale),
- sans intervention du hasard (pas le monopoly, ni le jeu de l'oie).

Exemples

Puissance 4, Dames, Echecs,...

Théorème de Zermelo (1913)

Dans un jeu combinatoire fini, avant le début du jeu, on sait déjà que:

- soit exactement un des deux joueurs possède une stratégie gagnante (non perdante),
- soit les deux joueurs peuvent forcer un match nul.

Théorème de Zermelo (1913)

Dans un jeu combinatoire fini, avant le début du jeu, on sait déjà que:

- soit exactement un des deux joueurs possède une stratégie gagnante (non perdante),
- soit les deux joueurs peuvent forcer un match nul.

Preuve: Pour obtenir les stratégies gagnantes:

- On construit un modèle du jeu (le modèle est fini car le jeu est fini).
- On applique la backward induction.

Théorème de Zermelo (1913)

Dans un jeu combinatoire fini, avant le début du jeu, on sait déjà que:

- soit exactement un des deux joueurs possède une stratégie gagnante (non perdante),
- soit les deux joueurs peuvent forcer un match nul.

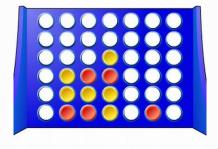
Preuve: Pour obtenir les stratégies gagnantes:

- On construit un modèle du jeu (le modèle est fini car le jeu est fini).
- On applique la backward induction.

Et en pratique?

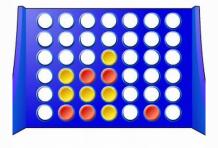
La taille du modèle peut être **gigantesque** et la stratégie gagnante incroyablement complexe (même pour un ordinateur)!!!

Puissance 4 (commercialisé depuis 1974)



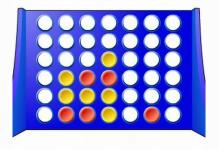
Un modèle du jeu de Puissance 4 contient plus de 4.10¹² états.

Puissance 4 (commercialisé depuis 1974)



Un modèle du jeu de Puissance 4 contient plus de 4.10¹² états. Le nombre d'étoiles dans notre galaxie est de l'ordre de 3.10¹¹.

Puissance 4 (commercialisé depuis 1974)



Un modèle du jeu de Puissance 4 contient plus de 4.10¹² états. Le nombre d'étoiles dans notre galaxie est de l'ordre de 3.10¹¹.

Résolution du Puissance 4

Une description complète d'une stratégie **gagnante** pour le joueur qui commence à jouer n'a été proposée qu'en **1988**.

Les échecs

Un modèle du jeu pour les échecs contient plus de 10⁴³ états.

Les échecs

Un modèle du jeu pour les échecs contient plus de 10⁴³ états.

Le **Sequoia** (IBM 2012) d'une puissance de 16,324 PFlops

 $16,324 \text{ PFlops} = 16,324 \cdot 10^{15} = 16 324 000 000 000 000 op/sec$ a besoin de $\mathbf{10^{26}}$ sec. pour effectuer *naïvement* la backward induction.

Les échecs

Un modèle du jeu pour les échecs contient plus de 1043 états.

Le **Sequoia** (IBM 2012) d'une puissance de 16,324 PFlops

 $16,324 \text{ PFlops} = 16,324 \cdot 10^{15} = 16 324 000 000 000 000 op/sec$ a besoin de **10**²⁶ sec. pour effectuer *naïvement* la backward induction.

Depuis le big bang, il s'est écoulé moins de 10¹⁷ secondes...

C'est rigolo...

... mais ça sert à quoi ???

Application: pilote automatique d'un avion

- Le joueur 1 modélise le pilote automatique.
- Le joueur 2 modélise les conditions météorologiques.
- \blacksquare F_1 modélise la ville que l'avion souhaite atteindre (ex: New York).

Application: pilote automatique d'un avion

- Le joueur 1 modélise le pilote automatique.
- Le joueur 2 modélise les conditions météorologiques.
- \mathbf{F}_1 modélise la ville que l'avion souhaite atteindre (ex: New York).

 J_1 possède une stratégie gagnante face à J_2 pour atteindre F_1 signifie

Le pilote automatique peut amener l'avion à New York, quelles que soient les conditions météorologiques.

Plan de l'exposé

- 1 Zermelo et le jeu de Nim
 - Jeu de Nim
 - Théorème de Zermelo et applications
- 2 Nash, son équilibre et ses applications
 - Une opportunité en or !!!
 - Tir au but (ou penalty)
 - Théorème de Nash et applications
- 3 Harsanyi et le problème de Monty Hall
 - Le problème de Monty Hall
 - Jeux à information imparfaite
 - Shapley et le lemme des mariages
 - Agence matrimoniale
 - Algorithme de Shapley
- 5 Pour conclure

Pour un court instant, faisons l'hypothèse (peu plausible) suivante:

Je suis un homme d'affaires brillant, honnête et totalement fiable.

Pour un court instant, faisons l'hypothèse (peu plausible) suivante:

Je suis un homme d'affaires brillant, honnête et totalement fiable.

Je propose (à chacun d'entre vous) d'investir 100 € dans ma société.

Pour un court instant, faisons l'hypothèse (peu plausible) suivante:

Je suis un homme d'affaires brillant, honnête et totalement fiable.

Je propose (à chacun d'entre vous) d'investir 100 € dans ma société.

Offre d'investissement individuelle

Vous pouvez Investir ou Refuser.

Pour un court instant, faisons l'hypothèse (peu plausible) suivante:

Je suis un homme d'affaires brillant, honnête et totalement fiable.

Je propose (à chacun d'entre vous) d'investir 100 € dans ma société.

Offre d'investissement individuelle

Vous pouvez Investir ou Refuser.

Si vous **R**efusez, vous ne gagnerez rien.

Pour un court instant, faisons l'hypothèse (peu plausible) suivante:

Je suis un homme d'affaires brillant, honnête et totalement fiable.

Je propose (à chacun d'entre vous) d'investir 100 € dans ma société.

Offre d'investissement individuelle

Vous pouvez Investir ou Refuser.

Si vous **R**efusez, vous ne gagnerez rien.

Si vous Investissez,

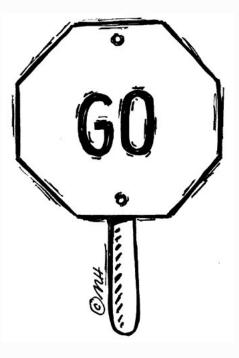
vous gagnerez 150 € si plus de 51 % Investit. vous perdrez 100 € si moins de 51 % Investit.

Jouons ensemble!

Règles du jeu

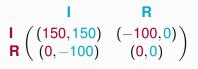
- Vous ne pouvez pas communiquer entre vous.
- Je vais compter 3, 2, 1, Go!
 Ceux qui souhaitent Investir devront lever la main au moment du Go.
- Si vous **R**efusez, vous ne gagnerez rien.
- Si vous Investissez,
 - > vous gagnerez 150 € si plus de 51 % de la salle Investit.
 - vous perdrez 100 € si moins de 51 % de la salle Investit.

Souhaitez-vous Investir?



Votre choix était-il rationnel ?

Le cas de deux investisseurs



Le cas de deux investisseurs

$$\begin{array}{ccc} & & & \mathbf{R} \\ \mathbf{I} & & & \\ \mathbf{R} & (150, 150) & (-100, 0) \\ \mathbf{(0, -100)} & & (0, 0) \\ \end{array})$$

Le concept de **stratégie gagnante** n'a plus de sens dans ce contexte.

- Investir n'est intéressant que si l'autre Investit.
- Refuser n'est intéressant que si l'autre Refuse.

Le cas de deux investisseurs

$$\begin{array}{ccc} & & & \mathbf{R} \\ \mathbf{I} & & & \\ \mathbf{R} & (150, 150) & (-100, 0) \\ (0, -100) & & (0, 0) \\ \end{array})$$

Le concept de **stratégie gagnante** n'a plus de sens dans ce contexte.

- Investir n'est intéressant que si l'autre Investit.
- Refuser n'est intéressant que si l'autre Refuse.

→ on a besoin d'un nouveau concept... une notion d'équilibre...

Meilleure Réponse (de J_1)

Soit s_2 une stratégie de mon adversaire (J_2) . Une stratégie s_1 (de J_1) est une **Meilleure Réponse** face à s_2 ssi

Sachant que J_2 joue S_2 , J_1 maximise son gain en jouant S_1 .

Meilleure Réponse (de J_1)

Soit s_2 une stratégie de mon adversaire (J_2) . Une stratégie s_1 (de J_1) est une **Meilleure Réponse** face à s_2 ssi

Sachant que J_2 joue S_2 , J_1 maximise son gain en jouant S_1 .

$$\begin{array}{ccc} & & & & R \\ I & & & \\ R & (0,-100) & (0,0) \\ \end{array}$$

Sachant que J_2 joue I, J_1 maximise son gain en jouant I.

La strat. I (de J_1) est une meilleure réponse face à la strat. I (de J_2).

Meilleure Réponse (de J_1)

Soit s_2 une stratégie de mon adversaire (J_2) . Une stratégie s_1 (de J_1) est une **Meilleure Réponse** face à s_2 ssi

Sachant que J_2 joue S_2 , J_1 maximise son gain en jouant S_1 .

$$\begin{array}{ccc} & & & & R \\ I & & & (150,150) & (-100,0) \\ R & (0,-100) & & (0,0) \end{array} \right)$$

Sachant que J_2 joue R, J_1 maximise son gain en jouant R.

La strat. \mathbf{R} (de J_1) est une meilleure réponse face à la strat. \mathbf{R} (de J_2).

Meilleure Réponse (de J₂)

Soit s_1 une stratégie de mon adversaire (J_1) . Une stratégie s_2 (de J_2) est une **Meilleure Réponse** face à s_1 ssi

Sachant que J_1 joue S_1 , J_2 maximise son gain en jouant S_2 .

$$\begin{array}{ccc} & & & & R \\ I & & & \\ R & (150,150) & (-100,0) \\ R & (0,-100) & (0,0) \end{array} \right)$$

Sachant que J_1 joue R, J_2 maximise son gain en jouant R.

La strat. \mathbf{R} (de J_2) est une meilleure réponse face à la strat. \mathbf{R} (de J_1).

Equilibre de Nash

Pour contenter tout le monde, on cherche un couple (s_1, s_2) :

- **s**₁ est une **meilleure rép.** face à s_2 ,
- **s**₂ est une **meilleure rép.** face à s_1 .

Equilibre de Nash

Pour contenter tout le monde, on cherche un couple (s_1, s_2) :

- **s**₁ est une **meilleure rép.** face à s_2 ,
- **s**₂ est une **meilleure rép.** face à s_1 .

Dans une telle situation, personne n'a intérêt à changer...

Equilibre de Nash

Pour contenter tout le monde, on cherche un couple (s_1, s_2) :

- s_1 est une **meilleure rép.** face à s_2 ,
- **s**₂ est une **meilleure rép.** face à s_1 .

Dans une telle situation, personne n'a intérêt à changer...

Equilibre de Nash

On dira que (s_1, s_2) est un équilibre de Nash si aucun joueur n'a intérêt à changer seul de stratégie.

 s_1 est une meilleure rép. face à s_2 ,

 s_2 est une meilleure rép. face à s_1 .

Equilibres de Nash dans le jeu d'investissement

$$\begin{array}{ccc} & & & & \mathbf{R} \\ \mathbf{I} & & & & \\ \mathbf{I} & & & & \\ \mathbf{R} & & & & & \\ (0,-100) & & & & & \\ \end{array}$$

On a deux équilibres de Nash dans cet exemple:

$$(I,I)$$
 et (R,R) .

Equilibres de Nash dans le jeu d'investissement

$$\begin{array}{ccc} & & & & \\ I & & & \\ I & (150,150) & (-100,0) \\ R & (0,-100) & (0,0) \end{array}$$

On a deux équilibres de Nash dans cet exemple:

$$(I,I)$$
 et (R,R) .

La notion d'équilibre de Nash s'étend aux jeux à *n* joueurs...

Dans le jeu d'investissement, il n'y a que deux équilibres de Nash: tout le monde Investit et tout le monde Refuse.

Plan de l'exposé

- 1 Zermelo et le jeu de Nim
 - Jeu de Nim
 - Théorème de Zermelo et applications
- 2 Nash, son équilibre et ses applications
 - Une opportunité en or !!!
 - Tir au but (ou penalty)
 - Théorème de Nash et applications
- 3 Harsanyi et le problème de Monty Hall
 - Le problème de Monty Hall
 - Jeux à information imparfaite
 - Shapley et le lemme des mariages
 - Agence matrimoniale
 - Algorithme de Shapley
- 5 Pour conclure

Le penalty

Importance du penalty

Finale de la coupe du monde 2006: Italie 1 (5) - France 1 (3) Penalty français manqué de Trezeguet

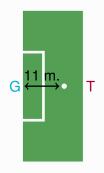
Finale de la coupe du monde 1994: Brésil 0 (3) - Italie 0 (2) Penalty italien manqué par Baggio

...

Le penalty - Les règles du jeu

Un tireur T fait face à un gardien G. L'objectif du T est de faire rentrer le ballon dans le but. L'objectif du G est de l'en empêcher.

Le penalty - Les règles du jeu



Un tireur T fait face à un gardien G. L'objectif du T est de faire rentrer le ballon dans le but. L'objectif du G est de l'en empêcher.

Le ballon est placé à 11 mètres de la ligne de but. Dans le cas d'un tir à 150 Km/h, le ballon atteint la ligne de but en **moins de 0.3 sec**.

Le penalty - Les règles du jeu

Un tireur T fait face à un gardien G.

L'objectif du T est de faire rentrer le ballon dans le but. L'objectif du G est de l'en empêcher.

Le ballon est placé à 11 mètres de la ligne de but.

Dans le cas d'un tir à 150 Km/h,

le ballon atteint la ligne de but en **moins de 0.3 sec**.

Le gardien n'a donc pas le temps de réagir une fois le ballon frappé.

→ On supposera donc que T et G jouent simultanément.

Dans un premier temps, nous supposerons:

- Le Tireur ne peut tirer qu'à **Ga**uche ou à **Dr**oite.
- Le Gardien ne peut plonger qu'à Gauche ou à Droite.
- Le Tireur ne manque jamais sa cible.
- Le Gardien, s'il plonge du bon côté, bloque toujours le tir.

Dans un premier temps, nous supposerons:

- Le Tireur ne peut tirer qu'à Gauche ou à Droite.
- Le Gardien ne peut plonger qu'à Gauche ou à Droite.
- Le Tireur ne manque jamais sa cible.
- Le Gardien, s'il plonge du bon côté, bloque toujours le tir.

```
Tireur Gardien Ga Dr Ga (0,100) (100,0) (100,0) (100,0)
```

Dans un premier temps, nous supposerons:

- Le Tireur ne peut tirer qu'à Gauche ou à Droite.
- Le Gardien ne peut plonger qu'à Gauche ou à Droite.
- Le Tireur ne manque jamais sa cible.
- Le Gardien, s'il plonge du bon côté, bloque toujours le tir.

```
Tireur Gardien Ga Dr Ga (0,100) (100,0) Dr (100,0) (0,100)
```

Ce jeu ne possède aucun équilibre de Nash!

Plaçons-nous dans la peau d'un joueur professionnel (qui doit souvent tirer des penaltys) et demandons-nous:

"De quel côté dois-je tirer ?"

Tireur Gardien Ga Dr $Ga \begin{pmatrix} (0,100) & (100,0) \\ Dr & (100,0) & (0,100) \end{pmatrix}$

Plaçons-nous dans la peau d'un joueur professionnel (qui doit souvent tirer des penaltys) et demandons-nous:

"De quel côté dois-je tirer ?"

Tireur
$$Gardien$$
 Ga Dr $Ga \begin{pmatrix} (0,100) & (100,0) \\ Dr & (100,0) & (0,100) \end{pmatrix}$

Idée 1: Toujours tirer à Gauche,

Plaçons-nous dans la peau d'un joueur professionnel (qui doit souvent tirer des penaltys) et demandons-nous:

"De quel côté dois-je tirer ?"

Tireur
$$Gardien$$
 Ga Dr $Ga \begin{pmatrix} (0,100) & (100,0) \\ Dr & (100,0) & (0,100) \end{pmatrix}$

Idée 1: Toujours tirer à Gauche,

les Gardiens vont vite comprendre ma stratégie...

... ils plongeront toujours à Gauche et je ne marquerai plus jamais!

Plaçons-nous dans la peau d'un joueur professionnel (qui doit souvent tirer des penaltys) et demandons-nous:

"De quel côté dois-je tirer ?"

Tireur
$$Gardien$$
 Ga Dr Ga $(0,100)$ $(100,0)$ $(100,0)$ $(100,0)$ $(100,0)$

Idée 1: Toujours tirer à Gauche,

les Gardiens vont vite comprendre ma stratégie...

... ils plongeront toujours à Gauche et je ne marquerai plus jamais!

Toujours tirer à **Droite** ne semble pas être une meilleure idée.

Plaçons-nous dans la peau d'un joueur professionnel (qui doit souvent tirer des penaltys) et demandons-nous:

"De quel côté dois-je tirer ?"

Tireur
$$Gardien$$
 Ga Dr Ga $(0,100)$ $(100,0)$ $(100,0)$ $(100,0)$ $(100,0)$

Idée 2: Alterner Gauche, Droite, Gauche, Droite,...

Plaçons-nous dans la peau d'un joueur professionnel (qui doit souvent tirer des penaltys) et demandons-nous:

"De quel côté dois-je tirer ?"

Idée 2: Alterner Gauche, Droite, Gauche, Droite,...

les Gardiens vont (un peu moins) vite comprendre ma stratégie...

... ils s'adapteront à mes tirs et je ne marquerai plus jamais!

Plaçons-nous dans la peau d'un joueur professionnel (qui doit souvent tirer des penaltys) et demandons-nous:

"De quel côté dois-je tirer ?"

Idée 2: Alterner Gauche, Droite, Gauche, Droite,...

les Gardiens vont (un peu moins) vite comprendre ma stratégie...

... ils s'adapteront à mes tirs et je ne marquerai plus jamais!

Il faudrait arriver à jouer de manière imprévisible !!!

Plaçons-nous dans la peau d'un joueur professionnel (qui doit souvent tirer des penaltys) et demandons-nous:

"De quel côté dois-je tirer ?"

Tireur
$$Gardien$$
 Ga Dr Ga $(0,100)$ $(100,0)$ $(100,0)$ $(100,0)$ $(100,0)$

Avant de tirer, je lance une pièce en l'air: si j'obtiens Pile, je tire à **Ga**uche, si j'obtiens Face, je tire à **Dr**oite.

Plaçons-nous dans la peau d'un joueur professionnel (qui doit souvent tirer des penaltys) et demandons-nous:

"De quel côté dois-je tirer ?"

Tireur
$$Gardien$$
 Ga Dr Ga $(0,100)$ $(100,0)$ $(100,0)$ $(100,0)$ $(100,0)$

Avant de tirer, je lance une pièce en l'air: si j'obtiens Pile, je tire à **Ga**uche, si j'obtiens Face, je tire à **Dr**oite.

Cette stratégie est totalement imprévisible.

Supposons que le Tireur fasse son choix en jouant à pile ou face.

```
 \begin{array}{c|cccc} & & & & & & & & & \\ & & & & & & & & \\ \hline \text{Tireur} & 1/2 & \textbf{Ga} & \left( (0,100) & (100,0) \\ 1/2 & \textbf{Dr} & \left( (100,0) & (0,100) \right) \end{array}
```

Supposons que le Tireur fasse son choix en jouant à pile ou face.

$$\begin{array}{c|cccc} & & & & & & & & & \\ & & & & & & & & \\ \hline \text{Tireur} & 1/2 & \textbf{Ga} & \left(\begin{array}{cccc} (0,100) & (100,0) \\ 1/2 & \textbf{Dr} & \left(100,0 \right) & (0,100) \end{array} \right) \end{array}$$

Si le Gardien plonge toujours à gauche, son gain espéré est:

$$\frac{1}{2} \cdot 100 + \frac{1}{2} \cdot 0 = 50$$

Supposons que le Tireur fasse son choix en jouant à pile ou face.

$$\begin{array}{c|cccc} & & & & & & & & & \\ & & & & & & & & \\ \hline \text{Tireur} & 1/2 & \textbf{Ga} & \left((0,100) & (100,0) \\ 1/2 & \textbf{Dr} & \left((100,0) & (0,100) \right) \end{array}$$

Si le Gardien plonge toujours à droite, son gain espéré est:

$$\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 100 = 50$$

Supposons que le Tireur fasse son choix en jouant à pile ou face.

Tireur
$$1/2$$
 Ga $(0,100)$ $(100,0)$ $(100,0)$ $(100,0)$

Si le Gardien plonge en jouant à pile ou face, son gain espéré est:

$$\frac{1}{4} \cdot 100 + \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot 100 + \frac{1}{4} \cdot 0 = 50$$

Supposons que le Tireur fasse son choix en jouant à pile ou face.

$$\begin{array}{c|cccc} & & & & & & & & & \\ & & & & & & & & \\ \hline \text{Tireur} & 1/2 & \textbf{Ga} & \left((0,100) & (100,0) \\ 1/2 & \textbf{Dr} & \left((100,0) & (0,100) \right) \end{array}$$

Si le Gardien plonge en jouant à pile ou face, son gain espéré est:

$$\frac{1}{4} \cdot 100 + \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot 100 + \frac{1}{4} \cdot 0 = 50$$

L'équilibre (de Nash) du penalty est obtenu quand les deux joueurs font leurs choix au hasard, en jouant à *pile ou face* !!!

- Le Tireur ne peut tirer qu'à Gauche ou à Droite.
- Le Gardien ne peut plonger qu'à Gauche ou à Droite.
- Le Tireur ne manque jamais sa cible.
- Le Gardien, s'il plonge du bon côté, bloque toujours le tir.

- Le Tireur ne peut tirer qu'à Gauche ou à Droite.
- Le Gardien ne peut plonger qu'à Gauche ou à Droite.
- Le Tireur ne manque jamais sa cible.
- Le Gardien, s'il plonge du bon côté, bloque toujours le tir.

- Le Tireur ne peut tirer qu'à Gauche ou à Droite.
- Le Gardien ne peut plonger qu'à Gauche ou à Droite.
- Le Tireur ne manque jamais sa cible.
- Le Gardien, s'il plonge du bon côté, bloque toujours le tir.

Tireur
$$Gardien$$
 Ga Dr $Ga \begin{pmatrix} (63,37) & (94,6) \\ Dr & (89,11) & (43,57) \end{pmatrix}$

L'unique équilibre de Nash de ce jeu est

$$\mathbb{P}_{T}(\mathbf{Ga}) = \frac{46}{87} \; ; \; \mathbb{P}_{T}(\mathbf{Dr}) = \frac{41}{87} \; ; \; \mathbb{P}_{G}(\mathbf{Ga}) = \frac{51}{87} \; ; \; \mathbb{P}_{G}(\mathbf{Dr}) = \frac{36}{87}.$$

- Le Tireur ne peut tirer qu'à Gauche ou à Droite.
- Le Gardien ne peut plonger qu'à Gauche ou à Droite.
- Le Tireur ne manque jamais sa cible.
- Le Gardien, s'il plonge du bon côté, bloque toujours le tir.

Tireur
$$Gardien$$
 Ga Dr $Ga \begin{pmatrix} (63,37) & (94,6) \\ Dr & (89,11) & (43,57) \end{pmatrix}$

L'unique équilibre de Nash de ce jeu est

$$\mathbb{P}_{T}(\mathbf{Ga}) = \frac{46}{87} \; ; \; \mathbb{P}_{T}(\mathbf{Dr}) = \frac{41}{87} \; ; \; \mathbb{P}_{G}(\mathbf{Ga}) = \frac{51}{87} \; ; \; \mathbb{P}_{G}(\mathbf{Dr}) = \frac{36}{87}.$$

Dans la réalité, on constate que:

les "bons tireurs de penaltys" suivent l'équilibre de Nash !!!

Le conseil de Pelé

"Pour être un grand footballeur,

il faut être un excellent mathématicien !"

Plan de l'exposé

- 1 Zermelo et le jeu de Nim
 - Jeu de Nim
 - Théorème de Zermelo et applications
- 2 Nash, son équilibre et ses applications
 - Une opportunité en or !!!
 - Tir au but (ou penalty)
 - Théorème de Nash et applications
- 3 Harsanyi et le problème de Monty Hall
 - Le problème de Monty Hall
 - Jeux à information imparfaite
 - Shapley et le lemme des mariages
 - Agence matrimoniale
 - Algorithme de Shapley
- 5 Pour conclure

Théorème de Nash

Théorème [Nash 1950]

Tout jeu fini admet un équilibre de Nash en stratégies mixtes.

Théorème de Nash

Théorème [Nash 1950]

Tout jeu fini admet

un équilibre de Nash en stratégies mixtes.

Prix Nobel d'économie 1994: J. Nash, R. Selten et J. Harsanyi

Théorème de Nash

Théorème [Nash 1950]

Tout jeu fini admet un équilibre de Nash en stratégies mixtes.

En 2001, Russel Crowe interprète John Forbes Nash dans le film: *Un homme d'exception* réalisé par Ron Howard.

Ce film remporta 4 oscars en 2002, dont celui du meilleur film.

Un mot de la preuve du Théorème de Nash

Théorème [Nash 1950]

Tout jeu fini admet un équilibre de Nash en stratégies mixtes.

On peut construire une fonction ¹ $f: X \rightarrow Y$ telle que:

 (σ_1, σ_2) est un équilibre de Nash ssi (σ_1, σ_2) est un point fixe de f.

¹La fonction *f* est liée au concept de meilleure réponse.

Un mot de la preuve du Théorème de Nash

Théorème [Nash 1950]

Tout jeu fini admet un équilibre de Nash en stratégies mixtes.

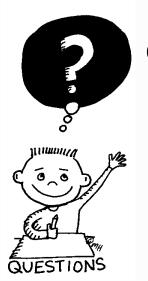
On peut construire une fonction ¹ $f: X \to Y$ telle que:

 (σ_1, σ_2) est un équilibre de Nash ssi (σ_1, σ_2) est un point fixe de f.

Trouver des équilibres de Nash revient à trouver des points fixes...

¹La fonction *f* est liée au concept de meilleure réponse.

C'est quoi un point fixe?



C'est quoi un point fixe?

Soit $f: \mathbb{R} \to \mathbb{R}$, $x_0 \in \mathbb{R}$, x_0 est un point fixe de f ssi $f(x_0) = x_0$.

Théorème

Si $f: [-1,1] \rightarrow [-1,1]$ est continue, alors f admet un point fixe.

Théorème

Si $f: [-1,1] \rightarrow [-1,1]$ est continue, alors f admet un point fixe.

Preuve: On pose g(x) = f(x) - x

Théorème

Si $f: [-1,1] \rightarrow [-1,1]$ est continue, alors f admet un point fixe.

Preuve: On pose g(x) = f(x) - x, on cherche une racine de g.

f admet un point fixe si et seulement si g admet une racine.

$$f(x_0) = x_0 \qquad \Leftrightarrow \qquad g(x_0) = f(x_0) - x_0 = 0.$$

Théorème

Si $f: [-1,1] \rightarrow [-1,1]$ est continue, alors f admet un point fixe.

Preuve: On pose g(x) = f(x) - x, on cherche une racine de g.

f admet un point fixe si et seulement si g admet une racine.

$$f(x_0) = x_0 \qquad \Leftrightarrow \qquad g(x_0) = f(x_0) - x_0 = 0.$$

Pour tout $x \in [-1, 1]$, on a $-1 \le f(x) \le 1$, en particulier

- $g(1) = f(1) (1) \le 1 1 = 0$
- $g(-1) = f(-1) (-1) = f(-1) + 1 \ge -1 + 1 = 0$

Théorème

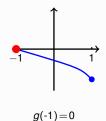
Si $f: [-1,1] \rightarrow [-1,1]$ est continue, alors f admet un point fixe.

$$g(-1) \ge 0$$
 et $g(1) \le 0$.

Théorème

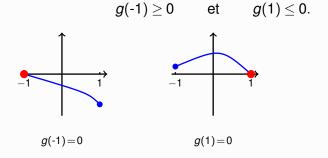
Si $f: [-1,1] \rightarrow [-1,1]$ est continue, alors f admet un point fixe.

$$g(\text{-1}) \geq 0 \qquad \text{ et } \qquad g(\text{1}) \leq 0.$$



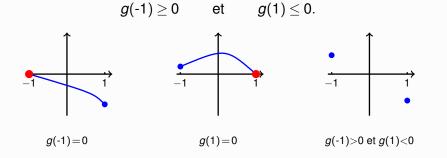
Théorème

Si $f: [-1,1] \rightarrow [-1,1]$ est continue, alors f admet un point fixe.



Théorème

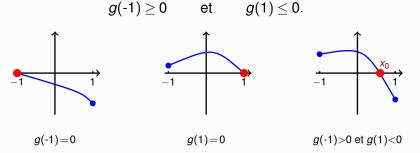
Si $f: [-1,1] \rightarrow [-1,1]$ est continue, alors f admet un point fixe.



Théorème

Si $f: [-1,1] \rightarrow [-1,1]$ est continue, alors f admet un point fixe.

Preuve: On pose g(x) = f(x) - x, on cherche une racine de g.

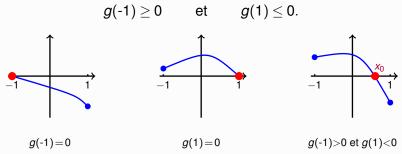


Comme g est continue, le *Thm des valeurs intermédiaires* assure qu'il existe x_0 tq $g(x_0) = 0$.

Théorème

Si $f: [-1,1] \rightarrow [-1,1]$ est continue, alors f admet un point fixe.

Preuve: On pose g(x) = f(x) - x, on cherche une racine de g.

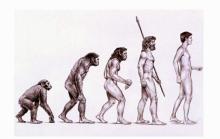


Comme g est continue, le *Thm des valeurs intermédiaires* assure qu'il existe x_0 tq $g(x_0) = 0$.

On a donc trouvé une racine de g et donc un point fixe de f.

Applications

Les applications de la théorie des jeux sont multiples:



■ Biologie: évolution des espèces,...

Economie: fixation du prix d'un produit,...

Politique: résolution de conflits,...

...

Deux compagnies produisent le même produit.

Chaque compagnie choisit sa quantité de production,
de façon indépendante, en sachant que le prix de vente
est fonction de la quantité totale produite.

Cette fonction est connue de tous.

Deux compagnies produisent le même produit.

Chaque compagnie choisit sa quantité de production,
de façon indépendante, en sachant que le prix de vente
est fonction de la quantité totale produite.

Cette fonction est connue de tous.

Trois niveaux de production possibles: **B**asse, **M**oyenne et **H**aute.

	В	M	Н
В	(4,4)	(2,5)	(1,3)
M	(5,2)	(3,3)	(2,1)
Н	(3,1)	(1,2)	(0,0)

Deux compagnies produisent le même produit.

Chaque compagnie choisit sa quantité de production,
de façon indépendante, en sachant que le prix de vente
est fonction de la quantité totale produite.

Cette fonction est connue de tous.

Trois niveaux de production possibles: **B**asse, **M**oyenne et **H**aute.

	_	M	Н
В	(4,4) (5,2) (3,1)	(2,5)	(1,3)
M	(5 ,2)	(3,3)	(2,1)
Н	(3,1)	(1,2)	(0,0)

On remarque que (B,B) n'est pas un équilibre de Nash.

Deux compagnies produisent le même produit.

Chaque compagnie choisit sa quantité de production,
de façon indépendante, en sachant que le prix de vente
est fonction de la quantité totale produite.

Cette fonction est connue de tous.

Celle lonction est confide de lous.

Trois niveaux de production possibles: **B**asse, **M**oyenne et **H**aute.

	В	M	Н
В	(4,4)	(2,5)	(1,3)
M	(5,2)	(3,3)	(2,1)
Н	(3,1)	(1,2)	(0,0)

Le profil de stratégies (M,M) est l'unique équilibre de Nash du jeu.

Deux compagnies produisent le même produit.

Chaque compagnie choisit sa quantité de production,
de façon indépendante, en sachant que le prix de vente
est fonction de la quantité totale produite.

Cette fonction est connue de tous.

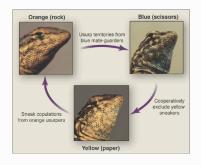
La quantité (q_i) de production peut être n'importe quel réel positif.

$$\mathsf{Profit}^1(q_1,q_2) = q_1 \ (\underbrace{\alpha - \beta(q_1 + q_2)}_{\mathsf{prix} \ \mathsf{de} \ \mathsf{vente}}) \ - \underbrace{\gamma q_1}_{\mathsf{coût} \ \mathsf{de} \ \mathsf{production}}$$

L'unique équilibre de Nash:
$$\left(\frac{\alpha-\gamma}{3\beta}, \frac{\alpha-\gamma}{3\beta}\right)$$

Le calcul des meilleures réponses revient à chercher le sommet d'une parabole.

Uta stansburiana – Lézard à flancs maculés



$$\begin{array}{ccccc} \textbf{Pi} & \textbf{Pa} & \textbf{Ci} \\ \textbf{Pi} & (0,0) & (-1,+1) & (+1,-1) \\ \textbf{Pa} & (+1,-1) & (0,0) & (-1,+1) \\ \textbf{Ci} & (-1,+1) & (+1,-1) & (0,0) \\ \end{array}$$

La **théorie des jeux évolutionnaires** utilise l'équilibre de Nash pour comprendre et expliquer l'évolution de certaines populations.

Plan de l'exposé

- 1 Zermelo et le jeu de Nim
 - Jeu de Nim
 - Théorème de Zermelo et applications
- Nash, son équilibre et ses applications
 - Une opportunité en or !!!
 - Tir au but (ou penalty)
 - Théorème de Nash et applications
- 3 Harsanyi et le problème de Monty Hall
 - Le problème de Monty Hall
 - Jeux à information imparfaite
 - Shapley et le lemme des mariages
 - Agence matrimoniale
 - Algorithme de Shapley
- 5 Pour conclure

est un jeu télévisé américain (1963 à 1986) présenté par Monty Hall

Le principe

Trois portes fermées,

Le principe

Trois portes fermées, derrière l'une d'elle se trouve une superbe voiture,

Le principe

Trois portes fermées, derrière l'une d'elle se trouve une superbe voiture, derrière les deux autres se trouve une chèvre.

Le déroulement du jeu

Le candidat (qui ignore où est la voiture) doit choisir une porte,

Le déroulement du jeu

- Le candidat (qui ignore où est la voiture) doit choisir une porte,
- Le présentateur (qui sait où est la voiture) ouvre une porte...

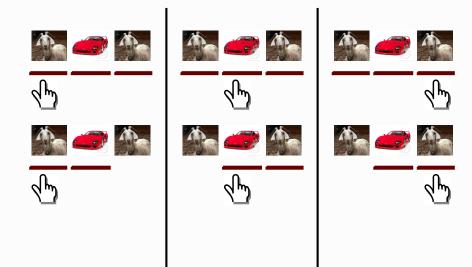
Le déroulement du jeu

- Le candidat (qui ignore où est la voiture) doit choisir une porte,
- Le présentateur (qui sait où est la voiture) ouvre une porte... ...derrière laquelle se trouve toujours une chèvre...

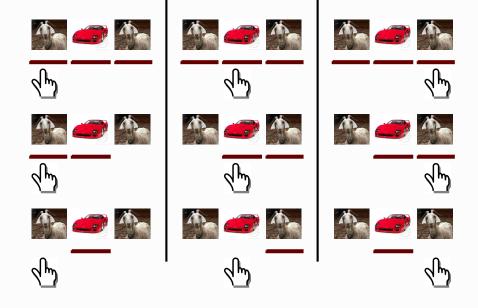
Le déroulement du jeu

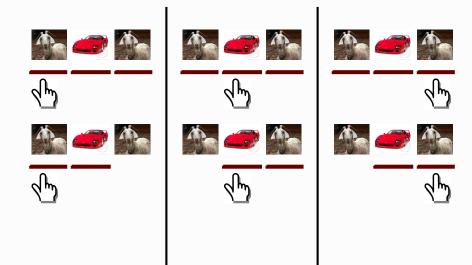
- Le candidat (qui ignore où est la voiture) doit choisir une porte,
- Le présentateur (qui sait où est la voiture) ouvre une porte... ...derrière laquelle se trouve toujours une chèvre...

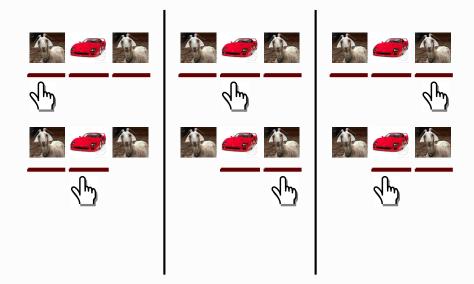
Le présentateur demande au candidat s'il veut changer de porte...



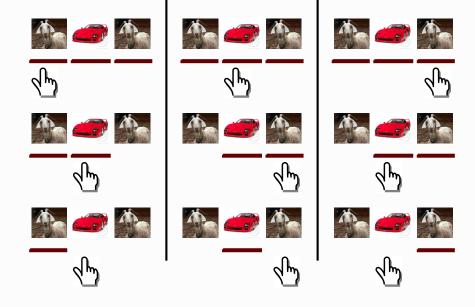
Que doit faire le candidat ? Garder sa porte → 1/3







Que doit faire le candidat ? Changer de porte → 2/3

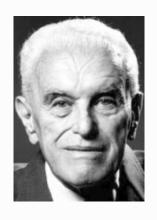


Il doit toujours accepter de changer de porte!

Plan de l'exposé

- 1 Zermelo et le jeu de Nim
 - Jeu de Nim
 - Théorème de Zermelo et applications
- Nash, son équilibre et ses applications
 - Une opportunité en or !!!
 - Tir au but (ou penalty)
 - Théorème de Nash et applications
- 3 Harsanyi et le problème de Monty Hall
 - Le problème de Monty Hall
 - Jeux à information imparfaite
 - Shapley et le lemme des mariages
 - Agence matrimoniale
 - Algorithme de Shapley
- 5 Pour conclure

La contribution du troisième prix Nobel de 1994



Les jeux à information imparfaite

ont été introduits par J. C. Harsanyi

Les jeux à information imparfaite ou jeux Bayesiens

Théorème de Bayes

Soit (Ω, \mathbb{P}) un espace de probabilité. Soient $B_1, B_2, \dots, B_n \subseteq \Omega$ des événements qui partitionnent Ω

Les jeux à information imparfaite ou jeux Bayesiens

B ₁	B_2	<i>B</i> ₃	J,
A			

Théorème de Bayes

Soit (Ω, \mathbb{P}) un espace de probabilité. Soient $B_1, B_2, \ldots, B_n \subseteq \Omega$ des événements qui partitionnent Ω et $A \subseteq \Omega$ un événement quelconque. Quel que soit B_i , on a:

$$\mathbb{P}(B_i|A) = \frac{\mathbb{P}(A|B_i).\mathbb{P}(B_i)}{\sum_{j=1}^n \mathbb{P}(A|B_j).\mathbb{P}(B_j)}$$

Le candidat a choisi la porte 3.

- Le candidat a choisi la porte 3.
- Le présentateur a ouvert la porte 1 (où se trouve une chèvre).

- Le candidat a choisi la porte 3.
- Le présentateur a ouvert la porte 1 (où se trouve une chèvre).

Le candidat doit-il changer de porte?

- Le candidat a choisi la porte 3.
- Le présentateur a ouvert la porte 1 (où se trouve une chèvre).

Le candidat doit-il changer de porte?

On note B_i l'événement: La voiture se trouve derrière la porte i.

On note A l'événement: Le présentateur ouvre la porte 1.

Pour répondre à la question "Le candidat doit-il changer de porte ?"

on va comparer $\mathbb{P}(B_2|A)$ et $\mathbb{P}(B_3|A)$

- Le candidat a choisi la porte 3.
- Le présentateur a ouvert la porte 1 (où se trouve une chèvre).

Le candidat doit-il changer de porte?

On note B_i l'événement: La voiture se trouve derrière la porte i.

On note A l'événement: Le présentateur ouvre la porte 1.

Pour répondre à la question "Le candidat doit-il changer de porte ?"

on va comparer $\mathbb{P}(B_2|A)$ et $\mathbb{P}(B_3|A)$

Pour cela, on applique le théorème de Bayes.

- Le candidat a choisi la porte 3.
- Le présentateur a ouvert la porte 1 (où se trouve une chèvre).

A: Le présentateur ouvre la porte 1 B_i: La voiture est derrière la porte i

$$\mathbb{P}(B_2|A) = \frac{\mathbb{P}(A|B_2).\mathbb{P}(B_2)}{\mathbb{P}(A|B_1).\mathbb{P}(B_1) + \mathbb{P}(A|B_2).\mathbb{P}(B_2) + \mathbb{P}(A|B_3).\mathbb{P}(B_3)}$$

- Le candidat a choisi la porte 3.
- Le présentateur a ouvert la porte 1 (où se trouve une chèvre).

A: Le présentateur ouvre la porte 1 B_i: La voiture est derrière la porte i

$$\mathbb{P}(B_2|A) = \frac{\mathbb{P}(A|B_2).\mathbb{P}(B_2)}{\mathbb{P}(A|B_1).\mathbb{P}(B_1) + \mathbb{P}(A|B_2).\mathbb{P}(B_2) + \mathbb{P}(A|B_3).\mathbb{P}(B_3)}$$

Que peut déduire le candidat (qui a choisi la porte 3) ?

■ $\mathbb{P}(B_i) = \frac{1}{3}$, quel que soit i = 1, 2, 3.

- Le candidat a choisi la porte 3.
- Le présentateur a ouvert la porte 1 (où se trouve une chèvre).

A: Le présentateur ouvre la porte 1 B_i: La voiture est derrière la porte i

$$\mathbb{P}(B_2|A) = \frac{\mathbb{P}(A|B_2).\mathbb{P}(B_2)}{\mathbb{P}(A|B_1).\mathbb{P}(B_1) + \mathbb{P}(A|B_2).\mathbb{P}(B_2) + \mathbb{P}(A|B_3).\mathbb{P}(B_3)}$$

- $\mathbb{P}(B_i) = \frac{1}{3}$, quel que soit i = 1, 2, 3.
- ho $\mathbb{P}(A|B_1)=0$ Le présentateur ne dévoile jamais la voiture

- Le candidat a choisi la porte 3.
- Le présentateur a ouvert la porte 1 (où se trouve une chèvre).

A: Le présentateur ouvre la porte 1 B_i: La voiture est derrière la porte i

$$\mathbb{P}(\textit{B}_{2}|\textit{A}) = \frac{\mathbb{P}(\textit{A}|\textit{B}_{2}).\mathbb{P}(\textit{B}_{2})}{\mathbb{P}(\textit{A}|\textit{B}_{1}).\mathbb{P}(\textit{B}_{1}) + \mathbb{P}(\textit{A}|\textit{B}_{2}).\mathbb{P}(\textit{B}_{2}) + \mathbb{P}(\textit{A}|\textit{B}_{3}).\mathbb{P}(\textit{B}_{3})}$$

- $\mathbb{P}(B_i) = \frac{1}{3}$, quel que soit i = 1, 2, 3.
- $\blacksquare \mathbb{P}(A|B_1) = 0$ Le présentateur ne dévoile jamais la voiture
- $\mathbb{P}(A|B_2) = 1$ Pas d'autres choix: voiture en 2 et candidat bloque 3.

- Le candidat a choisi la porte 3.
- Le présentateur a ouvert la porte 1 (où se trouve une chèvre).

A: Le présentateur ouvre la porte 1 B_i: La voiture est derrière la porte i

$$\mathbb{P}(B_2|A) = \frac{\mathbb{P}(A|B_2).\mathbb{P}(B_2)}{\mathbb{P}(A|B_1).\mathbb{P}(B_1) + \mathbb{P}(A|B_2).\mathbb{P}(B_2) + \mathbb{P}(A|B_3).\mathbb{P}(B_3)}$$

- $\mathbb{P}(B_i) = \frac{1}{3}$, quel que soit i = 1, 2, 3.
- $\blacksquare \mathbb{P}(A|B_1) = 0$ Le présentateur ne dévoile jamais la voiture
- $\mathbb{P}(A|B_2) = 1$ Pas d'autres choix: voiture en 2 et candidat bloque 3.
- $\mathbb{P}(A|B_3) = \frac{1}{2}$ Le présentateur choisit au hasard entre les portes 1 et 2.

- Le candidat a choisi la porte 3.
- Le présentateur a ouvert la porte 1 (où se trouve une chèvre).

A: Le présentateur ouvre la porte 1 B_i: La voiture est derrière la porte i

$$\mathbb{P}(B_2|A) = \frac{\mathbb{P}(A|B_2).\mathbb{P}(B_2)}{\mathbb{P}(A|B_1).\mathbb{P}(B_1) + \mathbb{P}(A|B_2).\mathbb{P}(B_2) + \mathbb{P}(A|B_3).\mathbb{P}(B_3)}$$

- $\mathbb{P}(B_i) = \frac{1}{3}$, quel que soit i = 1, 2, 3.
- $Arr P(A|B_1)=0$ Le présentateur ne dévoile jamais la voiture
- $\mathbb{P}(A|B_2) = 1$ Pas d'autres choix: voiture en 2 et candidat bloque 3.
- $\mathbb{P}(A|B_3) = \frac{1}{2}$ Le présentateur choisit au hasard entre les portes 1 et 2.

$$\mathbb{P}(B_2|A) = \frac{1 \cdot 1/3}{0 \cdot 1/3 + 1 \cdot 1/3 + 1/2 \cdot 1/3} = \frac{1/3}{1/2} = \frac{2}{3}$$

- Le candidat a choisi la porte 3.
- Le présentateur a ouvert la porte 1 (où se trouve une chèvre).

A: Le présentateur ouvre la porte 1 B_i: La voiture est derrière la porte i

$$\mathbb{P}(B_3|A) = \frac{\mathbb{P}(A|B_3).\mathbb{P}(B_3)}{\mathbb{P}(A|B_1).\mathbb{P}(B_1) + \mathbb{P}(A|B_2).\mathbb{P}(B_2) + \mathbb{P}(A|B_3).\mathbb{P}(B_3)}$$

- $\mathbb{P}(B_i) = \frac{1}{3}$, quel que soit i = 1, 2, 3.
- $\mathbb{P}(A|B_1) = 0$ Toujours une chèvre derrière la première porte!
- $\mathbb{P}(A|B_2) = 1$ Pas d'autres choix: voiture en 2 et candidat bloque 3.
- $\mathbb{P}(A|B_3) = \frac{1}{2}$ Le présentateur choisit au hasard entre les portes 1 et 2.

$$\mathbb{P}(B_3|A) = \frac{1/2 \cdot 1/3}{0 \cdot 1/3 + 1 \cdot 1/3 + 1/2 \cdot 1/3} = \frac{1/6}{1/2} = \frac{1}{3}$$

Applications

- Chercher des stratégies optimales pour le blackjack, le poker,...
- Applications en informatique, biologie, économie, politique,...

Plan de l'exposé

- 1 Zermelo et le jeu de Nim
 - Jeu de Nim
 - Théorème de Zermelo et applications
- Nash, son équilibre et ses applications
 - Une opportunité en or !!!
 - Tir au but (ou penalty)
 - Théorème de Nash et applications
- 3 Harsanyi et le problème de Monty Hall
 - Le problème de Monty Hall
 - Jeux à information imparfaite
 - Shapley et le lemme des mariages
 - Agence matrimoniale
 - Algorithme de Shapley
- 5 Pour conclure

Problème des mariages stables

Maintenant, nous allons devenir:

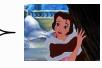
Responsable d'une agence

matrimoniale chez Disney!

Notre boulot:

- on rencontre *n* hommes et *n* femmes qui cherchent l'âme soeur,
- et nous devons les assortir "au mieux"...

Hommes	Femmes
Aladdin	Ja ≻ Bl ≻ Be



Hommes	Femmes
Aladdin	Ja ≻ Bl ≻ Be
Bê te	Be ≻ Bl ≻ Ja

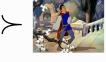


Hommes	Femmes
Aladdin	Ja ≻ Bl ≻ Be
Bê te	Be ≻ Bl ≻ Ja
Prince	Bl ≻ Ja ≻ Be



Hommes	Femmes
Aladdin	$Ja \succ Bl \succ Be$
Bê te	Be ≻ Bl ≻ Ja
Prince	Bl ≻ Ja ≻ Be

Femmes	Hommes
Ja smine	Al ≻ Pr ≻ Bê



Hommes	Femmes	
Al addin	Ja ≻ Bl ≻ Be	
Bê te	Be > Bl > Ja	
Prince	Bl ≻ Ja ≻ Be	

Femmes	Hommes
Ja smine	Al ≻ Pr ≻ Bê
Be lle	Bê ≻ Al ≻ Pr

Hommes	Femmes
Al addin	Ja ≻ Bl ≻ Be
Bê te	Be ≻ Bl ≻ Ja
Prince	Bl ≻ Ja ≻ Be

Femmes	Hommes
Ja smine	Al ≻ Pr ≻ Bê
Be lle	Bê ≻ Al ≻ Pr
Blanche neige	Pr ≻ Al ≻ Bê

Hommes	Femmes
Al addin	Ja ≻ Bl ≻ Be
Bê te	Be > Bl > Ja
Prince	Bl ≻ Ja ≻ Be

Femmes	Hommes
Ja smine	Al ≻ Pr ≻ Bê
Be lle	Bê ≻ Al ≻ Pr
Bl anche neige	Pr ≻ Al ≻ Bê

Tout le monde est avec son partenaire préféré!

Ça se complique...

Ça se complique...

Hommes	Femmes	
Al addin	Ja ≻ Bl ≻ Es	
Ga ston	Ja ≻ Es ≻ Bl	
Quasimodo	Es ≻ Ja ≻ Bl	

Femmes	Hommes
Blanche neige	Ga ≻ Al ≻ Qu
Es meralda	Ga ≻ Qu ≻ Al
Ja smine	Al ≻ Ga ≻ Qu

Pas de solution évidente...

Hommes	Femmes	Femmes	Hommes
Aladdin	Ja ≻ Bl ≻ Es	Blanche neige	Ga ≻ Al ≻ Qu
Ga ston	$Ja \succ Es \succ BI$	Es meralda	Ga ≻ Qu ≻ Al
Qu asimodo	Es ≻ Ja ≻ Bl	Ja smine	Al ≻ Ga ≻ Qu

	Blanche-neige	Esmeralda	Jasmine
Aladdin	2+2=4	1+1=2	3+3=6
Gaston	1+3=4	2+3=5	3+2=5
Quasimodo	1+1=2	3+2=5	2+1=3

Hommes	Femmes	_	Femmes
Aladdin	Ja ≻ Bl ≻ Es		Bl anche neig
Ga ston	$Ja \succ Es \succ BI$	-	Es meralda
Quasimodo	Es ≻ Ja ≻ Bl	-	Ja smine

Femmes	Hommes
Blanche neige	Ga ≻ Al ≻ Qu
Es meralda	Ga ≻ Qu ≻ Al
Ja smine	Al ≻ Ga ≻ Qu

	Blanche-neige	Esmeralda	Jasmine
Aladdin	4	2	6
Gaston	4	5	5
Quasimodo	2	5	3

Hommes	Femmes	Femmes	Hommes
Al addin	Ja ≻ Bl ≻ Es	Blanche neig	e Ga > Al > C
Ga ston	Ja ≻ Es ≻ Bl	Es meralda	Ga ≻ Qu ≻
Qu asimodo	Es ≻ Ja ≻ Bl	Ja smine	Al ≻ Ga ≻ C

	Blanche-neige	Esmeralda	Jasmine
Aladdin	4	2	6
Gaston	4	5	5
Quasimodo	2	5	3

(Aladdin, Jasmine)

Hommes	Femmes	Fen
Aladdin	Ja ≻ Bl ≻ Es	Blanch
Ga ston	Ja ≻ Es ≻ Bl	Esm
Quasimodo	Es ≻ Ja ≻ Bl	Ja s

Femmes	Hommes
Bl anche neige	Ga ≻ Al ≻ Qu
Es meralda	Ga ≻ Qu ≻ Al
Ja smine	Al ≻ Ga ≻ Qu

	Blanche-neige	Esmeralda	Jasmine
Aladdin	4	2	6
Gaston	4	5	5
Quasimodo	2	5	3

(Aladdin, Jasmine)

Hommes	Femmes
Aladdin	Ja ≻ Bl ≻ Es
Gaston	Ja ≻ Es ≻ Bl
Quasimodo	Es ≻ Ja ≻ Bl

Femmes	Hommes
Blanche neige	Ga ≻ Al ≻ Qu
Es meralda	Ga ≻ Qu ≻ Al
Ja smine	Al ≻ Ga ≻ Qu

	Blanche neige	Esmeralda	Jasmine
Aladdin	4	2	6
Gaston	4	5	5
Quasimodo	2	5	3

(Aladdin,Jasmine) (Gaston,Blanche-neige) (Quasimodo,Esmeralda)

Hommes	Femmes
Al addin	Ja ≻ Bl ≻ Es
Ga ston	Ja ≻ Es ≻ Bl
Quasimodo	Es ≻ Ja ≻ Bl

Femmes	Hommes
Blanche neige	Ga ≻ Al ≻ Qu
Es meralda	Ga ≻ Qu ≻ Al
Ja smine	Al ≻ Ga ≻ Qu

(Al,Ja)

(Ga,BI)

(Qu,Es)

Hommes	Femmes
Al addin	Ja ≻ Bl ≻ Es
Gaston	$Ja \succ Es \succ Bl$
Quasimodo	Es ≻ Ja ≻ Bl

Femmes	Hommes
Blanche neige	Ga ≻ Al ≻ Qu
Es meralda	Ga ≻ Qu ≻ Al
Ja smine	Al ≻ Ga ≻ Qu

(AI,Ja) (**Ga**,BI) (Qu,**Es**)

Hommes	Femmes	Femme
Al addin	Ja ≻ Bl ≻ Es	Blanche ne
Gaston	$Ja \succ Es \succ Bl$	Es merald
Quasimodo	Es ≻ Ja ≻ Bl	Ja smine

Femmes	Hommes
Blanche neige	Ga ≻ Al ≻ Qu
Es meralda	Ga ≻ Qu ≻ Al
Ja smine	Al ≻ Ga ≻ Qu

Un premier algo: maximiser le bonheur des couples

_	Hommes	Femmes	
_	Al addin	Ja ≻ Bl ≻ Es	
_	Ga ston	$Ja \succ Es \succ Bl$	
	Quasimodo	Es ≻ Ja ≻ Bl	

Femmes	Hommes
Blanche neige	Ga ≻ Al ≻ Qu
Es meralda	Ga ≻ Qu ≻ Al
Ja smine	Al ≻ Ga ≻ Qu

Remarque importante

La notion de **stabilité** prime sur la notion d'**optimalité** !!! (éq. de Nash)

Hommes	Femmes
Al addin	Bl ≻ Be ≻ So
Ga ston	Be ≻ Bl ≻ So
Ja far	Bl ≻ Be ≻ So

Femmes	Hommes
Blanche neige	Ga ≻ Al ≻ Ja
Be lle	Al ≻ Ga ≻ Ja
Sorcière	Al ≻ Ga ≻ Ja

Hommes	Femmes
Aladdin	Bl ≻ Be ≻ So
Gaston	$Be \succ Bl \succ So$
Ja far	$BI \succ Be \succ So$

Femmes	Hommes
Blanche neige	Ga ≻ Al ≻ Ja
Be lle	Al ≻ Ga ≻ Ja
So rcière	Al ≻ Ga ≻ Ja

(Al,So)

(Ga,Be)

(Ja,BI)

Hommes	Femmes
Al addin	Bl ≻ Be ≻ So
Gaston	$Be \succ Bl \succ So$
Ja far	$BI \succ Be \succ So$

Femmes	Hommes
Blanche neige	Ga ≻ Al ≻ Ja
Be lle	Al ≻ Ga ≻ Ja
So rcière	Al ≻ Ga ≻ Ja

(AI,So) (Ga,Be)

(Ja,BI)

Hommes	Femmes
Aladdin	Bl ≻ Be ≻ So
Gaston	$Be \succ Bl \succ So$
Ja far	$BI \succ Be \succ So$

Femmes	Hommes
Blanche neige	Ga ≻ Al ≻ Ja
Be lle	Al ≻ Ga ≻ Ja
Sorcière	Al ≻ Ga ≻ Ja

$$\begin{array}{ccc} (\textbf{AI},\textbf{So}) & (\textbf{AI},\textbf{Be}) \\ (\textbf{Ga},\textbf{Be}) & & (\textbf{Ga},\textbf{So}) \\ (\textbf{Ja},\textbf{BI}) & & (\textbf{Ja},\textbf{BI}) \end{array}$$

Hommes	Femmes
Al addin	Bl ≻ Be ≻ So
Gaston	Be ≻ Bl ≻ So
Ja far	Bl ≻ Be ≻ So

Femmes	Hommes
Blanche neige	Ga ≻ Al ≻ Ja
Be lle	Al ≻ Ga ≻ Ja
Sorcière	Al ≻ Ga ≻ Ja

$$\begin{array}{ccc} (\textbf{AI}, \textbf{So}) & (\textbf{AI}, \textbf{Be}) \\ (\textbf{Ga}, \textbf{Be}) & & (\textbf{Ga}, \textbf{So}) \\ (\textbf{Ja}, \textbf{BI}) & (\textbf{Ja}, \textbf{BI}) \end{array}$$

Hommes	Femmes
Al addin	Bl ≻ Be ≻ So
Gaston	Be ≻ Bl ≻ So
Ja far	Bl ≻ Be ≻ So

Femmes	Hommes		
Blanche neige	Ga ≻ Al ≻ Ja		
Be lle	Al ≻ Ga ≻ Ja		
So rcière	Al ≻ Ga ≻ Ja		

Hommes	Femmes	
Al addin	Bl ≻ Be ≻ So	В
Gaston	$Be \succ Bl \succ So$	
Ja far	$BI \succ Be \succ So$	

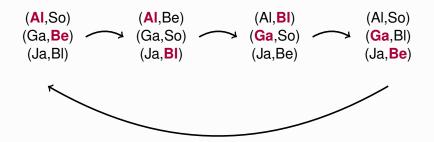
Femmes	Hommes		
Blanche neige	Ga ≻ Al ≻ Ja		
Be lle	Al ≻ Ga ≻ Ja		
So rcière	Al ≻ Ga ≻ Ja		

Hommes	Femmes
Aladdin	Bl ≻ Be ≻ So
Gaston	Be ≻ Bl ≻ So
Ja far	Bl ≻ Be ≻ So

Femmes	Hommes		
Blanche neige	Ga ≻ Al ≻ Ja		
Be lle	Al ≻ Ga ≻ Ja		
Sorcière	Al ≻ Ga ≻ Ja		

Hommes	Femmes	
Al addin	Bl ≻ Be ≻ So	
Ga ston	Be ≻ Bl ≻ So	
Ja far	$BI \succ Be \succ So$	

Femmes	Hommes		
Blanche neige	Ga ≻ Al ≻ Ja		
Be lle	Al ≻ Ga ≻ Ja		
Sorcière	Al ≻ Ga ≻ Ja		



L'algorithme ne s'arrête pas... Existe-t-il une solution stable ?

Existe-t-il toujours une solution stable?

Plan de l'exposé

- 1 Zermelo et le jeu de Nim
 - Jeu de Nim
 - Théorème de Zermelo et applications
- Nash, son équilibre et ses applications
 - Une opportunité en or !!!
 - Tir au but (ou penalty)
 - Théorème de Nash et applications
- 3 Harsanyi et le problème de Monty Hall
 - Le problème de Monty Hall
 - Jeux à information imparfaite
 - Shapley et le lemme des mariages
 - Agence matrimoniale
 - Algorithme de Shapley
- 5 Pour conclure

Réponse de Gale et Shapley

Algorithme [Gale, Shapley 1962]

Le problème des mariages admet toujours une solution stable. De plus cette solution peut être calculée algorithmiquement.

Réponse de Gale et Shapley

Algorithme [Gale, Shapley 1962]

Le problème des mariages admet toujours une solution stable. De plus cette solution peut être calculée algorithmiquement.

Prix Nobel d'économie 2012: Alvin Roth and Lloyd Shapley

Algorithme de Gale et Shapley

Tant que nécessaire:

- Chaque matin, chaque homme fait sa demande à la femme qu'il préfère de sa liste actuelle.
- Chaque après-midi, chaque femme répond:
 - "Peut-être" au préféré de ses prétendants du matin
 - "Non" aux autres prétendants du matin
- Chaque soir, chaque homme, qui a été rejeté aujourd'hui, barre de sa liste actuelle la femme qui l'a éconduit.

L'algorithme s'arrête le jour où aucun homme n'a été éconduit.

Ce jour-là, chaque femme dit "Oui" à son (unique) prétendant du jour!

Hommes	nes Femmes		Femmes	Hommes
Al addin	Bl ≻ Be ≻ So		Bl anche neige	Ga ≻ Al ≻ Ja
Ga ston	Be ≻ Bl ≻ So		Be lle	Al ≻ Ga ≻ Ja
Ja far	Bl ≻ Be ≻ So		So rcière	Al ≻ Ga ≻ Ja
,	•		'	

Hommes	Femmes	Femmes	Hommes
Al addin	Bl ≻ Be ≻ So	Bl anche neige	Ga ≻ Al ≻ Ja
Gaston	Be ≻ Bl ≻ So	Be lle	Al ≻ Ga ≻ Ja
Ja far	BI ≻ Be ≻ So	So rcière	Al ≻ Ga ≻ Ja

Matin 1: chaque homme fait sa demande à sa préférée

Jours Femmes		Prétendants	
1	Blanche-neige	Aladdin, Jafar	
	Belle	Gaston	
	Sorcière	/	

lommes	Femmes	Femn	nes	Hommes	
Al addin	Bl ≻ Be ≻ So	Bl anche	neige	Ga ≻ Al ≻ d	Ja
Ga ston	Be ≻ Bl ≻ So	Bel	le	Al ≻ Ga ≻ d	Ja
Ja far	Bl ≻ Be ≻ So	So rci	ière	Al ≻ Ga ≻ d	Ja

Après-midi 1: Blanche-neige dit "Non" à Jafar

J	lours	Femmes	Prétendants
	1	Blanche-neige	Aladdin, Jafar
		Belle	Gaston
		Sorcière	/

Hommes	Femmes	_	Femmes	Hommes
Al addin	Bl ≻ Be ≻ So	_	Blanche neige	Ga ≻ Al ≻ Ja
Ga ston	Be ≻ Bl ≻ So		Be lle	Al ≻ Ga ≻ Ja
Ja far	\triangleright Be \succ So		So rcière	Al ≻ Ga ≻ Ja

Soir 1: Jafar barre Blanche-neige de sa liste

Jours	Femmes	Prétendants
1	Blanche-neige	Aladdin, Jafar
	Belle	Gaston
	Sorcière	/

	nmes	iomme
Al addin \parallel Bl \succ Be \succ So	addin	Al addir
Gaston Be ≻ Bl ≻ So	ston	Ga ston
Ja far B ≻ Be ≻ So	a far	Ja far

Femmes	Hommes
Bl anche neige	Ga ≻ Al ≻ Ja
Be lle	Al ≻ Ga ≻ Ja
So rcière	Al ≻ Ga ≻ Ja

Matin 2: chaque homme fait sa demande à sa (nouvelle) préférée

Jours	Femmes	Prétendants
1	Blanche-neige	Aladdin, Jafar
	Belle	Gaston
	Sorcière	/
2	Blanche-neige	Aladdin
	Belle	Gaston, Jafar
	Sorcière	/
	Jours 1 2	1 Blanche-neige Belle Sorcière 2 Blanche-neige Belle

$BI \succ Be \succ So$
Be ≻ Bl ≻ So
\bowtie \succ Be \succ So

Hommes | Femmes

Femmes	Hommes
Blanche neige	Ga ≻ Al ≻ Ja
Be lle	Al ≻ Ga ≻ Ja
So rcière	Al ≻ Ga ≻ Ja

Après-midi 2: Belle dit "Non" à Jafar

Jours	Femmes	Prétendants
1	Blanche-neige	Aladdin, Jafar
	Belle	Gaston
	Sorcière	/
2	Blanche-neige	Aladdin
	Belle	Gaston, Jafar
	Sorcière	/

Hommes	Femmes		Femmes	Hommes
Al addin	Bl ≻ Be ≻ So	•	Bl anche neige	Ga ≻ Al ≻ Ja
Gaston	Be ≻ Bl ≻ So		Be lle	Al ≻ Ga ≻ Ja
Ja far	Bí≻ Bé≻ So		So rcière	Al ≻ Ga ≻ Ja

Soir 2: Jafar barre Belle de sa liste

Jours	Femmes	Prétendants	
1	Blanche-neige	Aladdin, Jafar	
	Belle	Gaston	
	Sorcière	/	
2	Blanche-neige	Aladdin	
	Belle	Gaston, Jafar	
	Sorcière	/	

Hommes	Femmes
Al addin	Bl ≻ Be ≻ So
Gaston	Be ≻ Bl ≻ So
Ja far	Bí≻ Bé≻ So

Femmes	Hommes
Blanche neige	Ga ≻ Al ≻ Ja
Be lle	Al ≻ Ga ≻ Ja
So rcière	Al ≻ Ga ≻ Ja

Matin 3: chaque homme fait sa demande à sa (nouvelle) préférée

Jours	Femmes	Prétendants
1	Blanche-neige	Aladdin, Jafar
	Belle	Gaston
	Sorcière	/
2	Blanche-neige	Aladdin
	Belle	Gaston, Jafar
	Sorcière	/
3	Blanche-neige	Aladdin
	Belle	Gaston
	Sorcière	Jafar
	ı	

Hommes	Femmes
Al addin	$BI \succ Be \succ So$
Gaston	Be ≻ Bl ≻ So
Ja far	Bí≻ Bé≻ So

Femmes	Hommes
Bl anche neige	Ga ≻ Al ≻ Ja
Be lle	Al ≻ Ga ≻ Ja
So rcière	Al ≻ Ga ≻ Ja

Après-midi 3: Personne n'est éconduit

Jours	Femmes	Prétendants
1	Blanche-neige	Aladdin, Jafar
	Belle	Gaston
	Sorcière	/
2	Blanche-neige	Aladdin
	Belle	Gaston, Jafar
	Sorcière	/
3	Blanche-neige	Aladdin
	Belle	Gaston
	Sorcière	Jafar
		1

Hommes	Femmes
Al addin	Bl ≻ Be ≻ So
Gaston	Be ≻ Bl ≻ So
Ja far	Bí≻ Bé≻ So

Femmes	Hommes
Bl anche neige	Ga ≻ Al ≻ Ja
Be lle	Al ≻ Ga ≻ Ja
So rcière	Al ≻ Ga ≻ Ja

Soir 3: Toutes les femmes disent "Oui" à leurs prétendants.

Jours	Femmes	Prétendants
1	Blanche-neige	Aladdin, Jafar
	Belle	Gaston
	Sorcière	/
2	Blanche-neige	Aladdin
	Belle	Gaston, Jafar
	Sorcière	/
3	Blanche-neige	Aladdin
	Belle	Gaston
	Sorcière	Jafar
	!	!

Hommes	Femmes
Al addin	$BI \succ Be \succ So$
Ga ston	Be ≻ Bl ≻ So
Ja far	Bí≻ Bé≻ So

Femmes	Hommes
Bl anche neige	Ga ≻ Al ≻ Ja
Be lle	Al ≻ Ga ≻ Ja
So rcière	Al ≻ Ga ≻ Ja
Outclote	Al & Ga & Ga

Soir 3: Toutes les femmes disent "Oui" à leurs prétendants.

Jours	Femmes	Prétendants
1	Blanche-neige	Aladdin, Jafar
	Belle	Gaston
	Sorcière	/
2	Blanche-neige	Aladdin
	Belle	Gaston, Jafar
	Sorcière	/
3	Blanche-neige	Aladdin
	Belle	Gaston
	Sorcière	Jafar

Cette solution est stable !!!

Résultats concernant l'algorithme de Gale-Shapley

Théorème

L'algorithme de Gale-Shapley appliqué à *n* hommes et *n* femmes

- termine toujours (après au pire n^2 étapes),
- retourne une solution stable.

Résultats concernant l'algorithme de Gale-Shapley

Théorème

L'algorithme de Gale-Shapley appliqué à *n* hommes et *n* femmes

- termine toujours (après au pire n^2 étapes),
- retourne une solution stable.

Est-il "optimal"?

Hommes	Femmes
Α	$Y \succ X \succ Z$
В	$Z \succ Y \succ X$
С	$X \succ Z \succ Y$

Femmes	Hommes
X	$B \succ A \succ C$
Υ	$C \succ B \succ A$
Z	$A \succ C \succ B$

On peut montrer qu'il existe trois solutions stables:

$$(A,Y)$$
 (A,X) (A,Z) (B,Z) (B,X) (C,X) (C,Z)

Homme-optimale

Hommes	Femmes
Α	$Y \succ X \succ Z$
В	$Z \succ Y \succ X$
С	$X \succ Z \succ Y$

Femmes	Hommes
X	$B \succ A \succ C$
Υ	$C \succ B \succ A$
Z	$A \succ C \succ B$

On peut montrer qu'il existe trois solutions stables:

$$(A,Y)$$
 (A,X) (A,Z) (B,Z) (B,X) (C,X) (C,Z)

Homme-optimale

Femme-optimale

Hommes	Femmes
Α	$Y \succ X \succ Z$
В	$Z \succ Y \succ X$
С	$X \succ Z \succ Y$

Femmes	Hommes
X	$B \succ A \succ C$
Υ	$C \succ B \succ A$
Z	$A \succ C \succ B$

On peut montrer qu'il existe trois solutions stables:

(A,Y) (B,Z)	(A,X) (B,Y)	(A,Z) (B,X)
(C,X) Homme-optimale	(C,Z)	(C,Y) Femme-optimale
· · · · · · · · · · · · · · · · · · ·	Fauitable	

Hommes	Femmes	
Α	$Y \succ X \succ Z$	
В	$Z \succ Y \succ X$	
С	$X \succ Z \succ Y$	

Femmes	Hommes
X	$B \succ A \succ C$
Υ	$C \succ B \succ A$
Z	$A \succ C \succ B$

On peut montrer qu'il existe trois solutions stables:

(A,Y)	(A,X)	(A,Z)
(B,Z)	(B,Y)	(B,X)
(C,X)	(C,Z)	(C,Y)
Homme-optimale	Equitable	Femme-optimale

Femme-pessimale

Homme-pessimale

A propos d'optimalité...

Hommes	Femmes
Α	$Y \succ X \succ Z$
В	$Z \succ Y \succ X$
С	$X \succ Z \succ Y$

Femmes	Hommes
Х	$B \succ A \succ C$
Υ	$C \succ B \succ A$
Z	$A \succ C \succ B$

On peut montrer qu'il existe trois solutions stables:

(A,Y)	(A,X)	(A,Z)
(B,Z)	(B,Y)	(B,X)
(C,X)	(C,Z)	(C,Y)
Homme-optimale	Equitoble	Femme-optimale
Femme-pessimale	Equitable	Homme-pessimale

Quelle solution retourne l'algorithme de Gale-Shapley?

Application de l'algorithme de Gale-Shapley

Hommes	Femmes	Femmes	Hommes
Α	$Y \succ X \succ Z$	Х	$B \succ A \succ C$
В	$Z \succ Y \succ X$	Υ	$C \succ B \succ A$
С	$X \succ Z \succ Y$	Z	$A \succ C \succ B$

Jours	Femmes	Prétendants
1	X	С
	Y	Α
	Z	В
	_	-

Application de l'algorithme de Gale-Shapley

Hommes	Femmes
Α	$Y \succ X \succ Z$
В	$Z \succ Y \succ X$
С	$X \succ Z \succ Y$

Femmes	Hommes
X	$B \succ A \succ C$
Υ	$C \succ B \succ A$
Z	$A \succ C \succ B$

Jours	Femmes	Prétendants
1	X	С
	Y	Α
	Z	В

Théorème

L'algorithme de Gale-Shapley appliqué à n hommes et n femmes

- \blacksquare termine toujours (après au pire n^2 étapes),
- retourne une solution stable,
- qui est Homme-optimale et Femme-pessimale.

C'est rigolo...

... mais ça sert à quoi ???

Application

Aux Etats-Unis et au Canada, l'algorithme de Gale-Shappley est utilisé pour décider de l'affectation des internes en tenant compte de leurs préférences et de celles des hôpitaux.

Plan de l'exposé

- 1 Zermelo et le jeu de Nim
 - Jeu de Nim
 - Théorème de Zermelo et applications
 - Nasii, soii equilibre et ses application
 - Une opportunité en or !!!
 - Tir au but (ou penalty)
 - Théorème de Nash et applications
 - Harsanyi et le probleme de Monty Hall
 - Le problème de Monty Hall
 - Jeux à information imparfaite
 - Shapley et le lemme des mariages
 - Agence matrimoniale
 - Algorithme de Shapley
- 5 Pour conclure

Prix Nobel en théorie des jeux

- In 2014: Jean Tirole
- In 2012: Alvin Roth, Lloyd Shapley
- In 2007: Roger B. Myerson, Leonid Hurwicz, Eric S. Maskin
- In 2005: Robert J. Aumann, Thomas C. Schelling
- In 1996: William Vickrey
- In 1995: Robert E. Lucas Jr.
- In 1994: John C. Harsanyi, John F. Nash Jr., Reinhard Selten
- In 1972: Kenneth J. Arrow
- In 1970: Paul A. Samuelson

Prix Nobel en théorie des jeux

Théorie des jeux à l'UMONS

De nombreux chercheurs travaillent sur des problèmes liés à la théorie des jeux et à ses applications à l'informatique, à la microfinance,...

Aaron Bohy, Thomas Brihaye, Véronique Bruyère, Julie De Pril, Marc Ducobu, Morgane Estiévenart, Noémie Meunier, Mickael Randour, Cédric Rivière,...

 Un cours de théorie des jeux est organisé en Master 1 en sciences mathématiques.

Théorie des jeux à l'UMONS

Merci!