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Abstract

We analyze the dependence of future returns on past drawdowns
of the monthly time series of the S&P500 index, from 1967 to 2012.
From historical data, it appears that when the drawdown increases
in absolute value, future returns increase, both in mean as well as
in distributional values. We then run a Monte Carlo simulation on
three models used in asset pricing, namely the Black-Scholes model,
the CEV model and the exponential Ornstein-Uhlenbeck model, to as-
sess whether these models reproduce this drawdown effect. It turns
out that, while the first two do not exhibit a dependence of future
returns on past drawdowns, in the exponential Ornstein-Uhlenbeck fu-
ture returns increase when past drawdowns increase in absolute value,
consistently with the empirical findings on the S&P500 index.

1 Introduction

The research of the right model in asset pricing is perhaps as utopistic as
the research for the Holy Grail. Less ambitiously, much of the literature
concentrates on presenting models which reproduce some stylized facts, like
positivity of prices, independent increments, path continuity, or more subtle
probabilistic properties.

This paper follows this approach in starting from a stylized fact: the de-
pendence of future returns on past drawdowns. We then investigate whether
three of the most used models in asset pricing, i.e. Geometric Brownian
Motion (GBM), Constant Elasticity of Variance (CEV) and Exponential
Ornstein-Uhlenbeck (EOU) succeed in reproducing this stylized fact with a
reasonable choice of parameters.

The outline of the paper is the following. In Section 2, we present the
empirical facts on the drawdown from where we started, i.e. the positive
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dependence of future returns on past drawdowns. In Section 3 we intro-
duce a possible explanation of this drawdown effect that is the presence
of mean reversion, and we compare it to the traditional Efficient Markets
Hypothesis (EMH), done in financial markets and reflected in many asset
pricing models, like in the Black-Scholes one (to cite the most famous).
Section 4 briefly recalls the three well known asset pricing models we de-
cided to test for the drawdown effect (GBM, CEV, EOU) and Section 5
presents the results of our test, obtained with a Monte Carlo simulation,
to assess whether these models succeed in reproducing the drawdown effect
significantly. Section 6 concludes. Finally, Appendix A presents some asset
prices’ distributional properties under the exponential Ornstein-Uhlenbeck
model, while Appendix B shows how it is possible to make an exponential
Ornstein-Uhlenbeck model co-exist with EMH.

2 Empirical facts on the drawdown

It is well known that returns and volatilities are typically uncorrelated. For
an illustration, take the time series of the Standard&Poors 500 index, sam-
pled monthly from 1967 to 2012, and plot the k-periods return over the time
interval [t− k, t], defined as

Rk(t) =
P (t)

P (t− k)
− 1

versus the annualized volatility on the same period [t− k, t], defined as

V ol2k(t) = 12 · V ar[R(t− i)|i = 0, ..., k − l]

where V ar indicates the sample variance and P (t) are the price at time t
of the S&P500. The result can be seen in Figure 1, where it is evident that
returns and volatilities are uncorrelated.

Figure 1: S&P500 returns (on y axis) versus volatility (on x axis).
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A less commonly investigated dependence is instead the one between
returns and drawdowns, where the drawdown on the period [t − k, t] is
defined as

DDk(t) = min{Ru−v(u) | t− k < v < u < t} (1)

i.e. as the maximum loss on returns on the period [t − k, t]. The result
can now be seen in Figure 2, where it is evident that returns depend on
drawdowns.

Figure 2: S&P500 returns versus drawdown.

More in details, one can see that, when the drawdown increases in abso-
lute value, future returns tend to be more and more positive, both in mean
as well as in distributional values. A more quantitative description is given
in the following table.

% negative Mean Max. Min. Volatility How many
Returns Return Return Return Times?

DD ≤ 0 24.8 23.70% 120.00% −43.40% 15.00% 500
DD ≤ 5% 23.8 18.70% 111.50% −42.60% 14.70% 277
DD ≤ 10% 17.8 20.10% 111.50% −42.60% 14.20% 213
DD ≤ 15% 12.3 22.60% 78.30% −42.60% 13.70% 155
DD ≤ 20% 4.2 27.40% 78.30% −19.70% 12.60% 96
DD ≤ 25% 1.9 28.90% 52.70% −2.60% 12.10% 54
DD ≤ 30% 0 33.20% 52.70% 6.60% 12.20% 30

One possible explanation for this stylized fact could be that markets (or
at least the S&P500 index) are mean-reverting, i.e. high and low prices are
temporary and that an index price will tend to move to its average price
over time. For this reason, after there has been a significant drawdown,
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there could be the moment when prices start to go up again. One practical
use of this is that, if an investor waits to invest in the S&P500 until the
drawdown reaches a threshold fixed in advance, then his/her return should
better than the one obtained by investing at a generic time.

3 Mean reversion in financial markets versus effi-
cient markets

Strictly speaking, mean reversion is not a mathematical concept, but rather
a stylized fact, which can be reproduced by many models for stock returns.
For example, in discrete time the easiest model to exhibit mean-reversion is
an AR(1) process, defined as

X(n+ 1) = X(n) + a(b−X(n)) +W (n+ 1), n = 0, 1, . . .

with (W (n))n≥0 i.i.d. random variables, and a > 0 is the speed of mean
reversion. The corresponding equivalent in continuous time is the Ornstein-
Uhlenbeck process, used for the first time in mathematical finance in the
Vasicek model for interest rates (1977), and more recently also by CONSOB
(2003) to detect market abuses. The process has a continuous-time dynamics
given by:

dX(t) = −a(b−X(t)) dt+ σ dW (t), t > 0

where W is a Brownian motion.
Conversely, a classical assumption on financial markets is that of market

efficiency, of which three definitions exist. The strongest version (Efficient
Markets Hypothesis, or EMH, by Fama, Samuelson, 1960s) is equivalent to
say that returns are random walks, with discrete time dynamics

X(n+ 1) = X(n) + b+W (n+ 1), n = 0, 1, . . .

with (W (n))n≥0 i.i.d. random variables, the equivalent continuous time
dynamics being now that of a Brownian motion with drift

dX(t) = b dt+ σ dW (t), t > 0 (2)

where W , as before, is a Brownian motion. The concept of market efficiency
received much criticism, mainly in the ’90s, by behavioural finance: this was
partially solved by Jung and Schiller (2005), which concluded that efficient
markets hypothesis is valid for stock prices, but not for the aggregate market
(e.g. indexes).

It is quite clear that mean reversion and efficient markets are two phe-
nomena which contradicts one another. In fact, in practical terms, with
mean reverting markets the rule of thumb ”buy low, sell high” should work.
Conversely, with efficient markets there is not ”high” or ”low” in the mar-
kets, as stock prices are random walks.

4



The relevant question is now: which one of the two behaviors above
does a model for asset prices have to satisfy, given its past observations? To
answer to this question, we plot in Figure 3 the monthly returns of S&P500,
from 1967 to 2012, to see whether it should be represented better by a
random walk or by a mean reverting process.

Figure 3: S&P500 historical returns, 1967–2012.

From Figure 3, it is quite clear that returns are not random walks but
rather tend to concentrate around 0 (or at least a value near 0), behaviour
typical of a mean-reverting process. An important consequence is that one
should be able to implement the strategy of Section 2, i.e. to enter the
market at the ”right” time, in order to maximize returns, for example by
waiting until a given drawdown is verified. Of course, to do this one must
postulate that future returns depend on past quantities. This is, again, in
contrast with EMH.

4 How do commonly used asset pricing models
cope with this?

The relevant question is now whether commonly used asset pricing models
succeed in reproducing the ”drawdown phenomenon” described in Section
2, more in details in Figure 2 and in the subsequent table. To answer
to this question, we select three commonly used models (Black- Scholes,
Constant Elasticity of Variance and exponential Ornstein-Uhlenbeck) and
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run a Monte Carlo simulation on them, to see whether waiting for a given
drawdown would increase the future returns as done in Section 2 with the
S&P500 historical data.

We now present more in details the three tested models.

4.1 The Black-Scholes model

In the Black-Scholes model (1973), asset prices follow the dynamics

dS(t) = S(t)(µ dt+ σ dW (t)), t > 0 (3)

i.e. returns are (continuous time) random walks. This model is consistent
(and contemporary to) EMH: this is really not a case, as this model was
really used firstly by McKean and Samuelson (1965), but became famous
only after its use in Black and Scholes (1973) and Merton (1973).

4.2 The CEV model

In the Constant Elasticity of Variance (CEV) model, by Cox-Ross (1976),
asset prices follow the dynamics

dS(t) = S(t)µ dt+ σS(t)γdW (t), t > 0 (4)

with 0 < γ ≤ 1: this model exhibits a stochastic volatility, which depends
on the asset price, with a leverage effect: in fact, volatility is high when
prices are low. Returns here are no more random walks, and this model is
used for defaultable assets, as S can go to 0 with positive probability.

4.3 The exponential Ornstein-Uhlenbeck process

In the exponential Ornstein-Uhlenbeck (expOU) model, we define S(t) =
eX(t), where

dX(t) = a(b−X(t)) dt+ σ dW (t), t > 0 (5)

This is a stationary, Gaussian, and Markovian process, which over time
tends to drift towards its long-term mean b. This model is commonly used
for commodity prices, but also by CONSOB (2003), as already mentioned
in Section 2.

5 Monte Carlo simulation

We run a Monte Carlo simulation on the three models above to see whether
waiting for a given drawdown would increase the future returns, in the same
way that it would have done with the S&P500. Let us explain our Monte
Carlo experiments in details. Using Euler-Maruyama method, for every
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model we simulate 104 price paths, starting from S0 = 50 and simulating
500 time steps of length 1

12 (500 monthly observations for every path, cor-
responding to more or less 40 years).

With a given (and fixed) set of price simulations for every model, we fix
a DDR time window, i.e. the historical period on which we want to calculate
the DDR index. For instance, if the window has length 12, then for every
month the DDR index is calculated over the last 12 months. Then we fixed
also a DDR threshold which is used to implement our investment strategy:
for every month when the absolute DDR is above the threshold (remember
that the DDR is negative), we do a 36-months investment and calculate the
return of such investment. This is done for every simulated path.

Tables 1-9 below report the results of the experiments. For every DDR
threshold, spanning from 0 to 50%, we report:

• the total number of investments done on average on every path

• the number of positive and negative (and the percentage of negative)
investments done on average on every path

• the average return of all the investments done

• the min and max return of the investments done on average

• the standard deviation of the returns

We perform those analysis for different window lengths, with parameters
consistent with market values. In the caption of every table the first number
after the model name corresponds to the DRR window length used.

5.1 The Black-Scholes model

The model is the same of Section 4.1, with parameters µ = 0, σ = 0.3.
From Tables 1, 2 and 3, it is quite evident that future returns are in-

dependent of past drawdown. More in details, the percentage of negative
returns with our parameters is basically the same (around 60%) when we
condition it to any given drawdown level. The mean return exibits a slightly
positive dependence on the absolute value of the drawdown, but this trend
is well into the confidence interval of the Monte Carlo simulation: in fact,
the mean return ranges from 0.1% to about 4%, while its standard deviation
is around 50%, so nothing can be concluded from this slight trend.

This non-dependence of the returns on the drawdown in the Black-
Scholes model is not a surprise, as basically this model is the exponential of
a drifted random walk.
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DDR Number of investments Return
thr. tot pos neg % neg avg max min std
0% 452.00 180.97 271.03 60% 0.1% 203.5% -73.5% 51.5%
5% 444.64 178.02 266.61 60% 0.2% 203.4% -73.4% 51.6%

10% 408.98 163.77 245.21 60% 0.5% 202.5% -73.0% 51.8%
15% 341.97 137.07 204.90 59% 0.9% 199.2% -72.0% 52.0%
20% 264.40 106.13 158.27 59% 1.4% 192.1% -70.6% 52.0%
25% 191.45 76.91 114.55 59% 1.9% 180.7% -68.6% 51.7%
30% 130.20 52.29 77.92 58% 2.4% 165.2% -65.9% 50.9%
35% 82.22 32.99 49.23 58% 2.8% 144.8% -62.1% 49.4%
40% 47.26 18.95 28.31 58% 3.3% 118.5% -56.5% 46.5%
45% 24.43 9.75 14.68 57% 3.5% 86.5% -47.0% 40.4%
50% 11.81 4.73 7.08 57% 4.0% 54.3% -32.5% 30.3%

Table 1: GBM 12-36

DDR Number of investments Return
thr. tot pos neg % neg avg max min std
0% 440.00 176.26 263.74 60% 0.1% 201.7% -73.3% 51.4%
5% 439.93 176.23 263.69 60% 0.1% 201.7% -73.3% 51.4%

10% 437.12 175.12 262.01 60% 0.2% 201.7% -73.3% 51.4%
15% 420.94 168.60 252.34 60% 0.4% 201.2% -73.0% 51.6%
20% 383.88 153.94 229.94 59% 0.9% 199.0% -72.5% 51.8%
25% 330.90 132.77 198.13 59% 1.3% 194.2% -71.6% 51.7%
30% 271.85 109.03 162.82 59% 1.8% 186.8% -70.1% 51.5%
35% 213.61 85.61 128.00 58% 2.3% 175.3% -68.2% 50.8%
40% 159.53 64.00 95.52 58% 2.8% 160.5% -65.6% 49.7%
45% 112.32 45.01 67.31 57% 3.4% 142.8% -61.9% 48.0%
50% 73.63 29.55 44.08 57% 3.9% 121.0% -56.5% 44.7%

Table 2: GBM 24-36

5.2 CEV model

The model is the same as in Section 4.2, with parameters µ = 0, σ = 0.3,
γ = 0.5.

From Tables 4, 5 and 6, it appears that also here future returns are
independent of past drawdown. More in details, the percentage of negative
returns with our parameters is basically the same (around 45-55%) when we
condition it to any given drawdown level, exibiting a slight nonlinear and
non-monotone trend, which is however too small to be exploited in practice
for investment purposes. An exception seems to be the last 1-2 rows of
each table, which however contain a number of paths so small that it seems
difficult to infer anything with some sense from them. The mean return does
not exibits a defined dependence on the absolute value of the drawdown,
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DDR Number of investments Return
thr. tot pos neg % neg avg max min std
0% 428.00 171.48 256.52 60% 0.1% 199.8% -73.1% 51.3%
5% 428.00 171.48 256.52 60% 0.1% 199.8% -73.1% 51.3%

10% 427.80 171.41 256.39 60% 0.1% 199.8% -73.1% 51.3%
15% 424.69 170.14 254.55 60% 0.2% 199.7% -73.0% 51.3%
20% 411.27 164.86 246.41 60% 0.5% 199.0% -72.8% 51.5%
25% 382.55 153.39 229.16 59% 0.9% 196.9% -72.4% 51.6%
30% 340.71 136.63 204.08 59% 1.4% 192.6% -71.5% 51.5%
35% 291.82 116.91 174.91 59% 1.8% 185.2% -70.3% 51.1%
40% 239.84 96.16 143.68 58% 2.4% 175.4% -68.5% 50.4%
45% 189.13 75.78 113.35 58% 3.0% 162.8% -66.1% 49.4%
50% 142.02 56.98 85.03 57% 3.7% 147.4% -62.8% 47.8%

Table 3: GBM 36-36

DDR Number of investments Return
thr. tot pos neg % neg avg max min std
0% 452.00 221.94 230.06 51% 0.0% 18.9% -16.2% 7.1%
5% 110.13 53.84 56.29 47% 0.6% 16.3% -12.8% 6.9%

10% 9.08 4.39 4.69 46% 1.1% 6.4% -4.0% 3.8%
15% 2.98 1.29 1.69 54% -0.1% 1.5% -1.9% 1.6%
20% 4.00 1.67 2.33 57% -2.3% 1.3% -6.3% 3.1%
25%
30%
35%
40%
45%
50%

Table 4: CEV 12-36

having also here a nonlinear and non-monotone dependence. Again, also
here nothing can be concluded from this.

5.3 Exponential Ornstein Uhlenbeck

The model is the same as in Subsection 4.2, with parameters µ = log(30),
θ = 0.3, σ = 0.3.

From Tables 7, 8 and 9, here finally a dependence on past drawdowns ap-
pears for future returns. More in details, the percentage of negative returns
with our parameters is decreasing monotonically with the absolute value of
the drawdown, ranging from 51% to about 35% with all the time horizons.
Also the mean return exibits a positive dependence on the absolute value
of the drawdown, ranging from about 8% to about 25-30%: this time these
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DDR Number of investments Return
thr. tot pos neg % neg avg max min std
0% 440.00 215.94 224.06 51% 0.0% 18.7% -16.1% 7.1%
5% 240.47 117.83 122.64 49% 0.4% 17.7% -14.5% 7.0%

10% 48.64 23.77 24.87 45% 1.2% 11.9% -8.6% 5.6%
15% 12.48 6.06 6.42 45% 1.2% 6.3% -3.8% 3.3%
20% 6.46 2.90 3.56 50% 0.6% 3.6% -2.4% 2.3%
25% 5.07 1.75 3.32 66% -2.1% 0.7% -4.8% 2.2%
30% 0.37 0.37 0.37 37% 37.1% 37.1% 37.1% 37.1%
35%
40%
45%
50%

Table 5: CEV 24-36

DDR Number of investments Return
thr. tot pos neg % neg avg max min std
0% 428.00 210.00 218.00 51% 0.0% 18.6% -16.1% 7.1%
5% 310.62 152.32 158.29 49% 0.3% 18.1% -15.2% 7.1%

10% 97.26 47.60 49.66 45% 1.0% 14.0% -10.7% 6.1%
15% 30.06 14.68 15.38 45% 1.3% 9.1% -6.1% 4.4%
20% 14.10 6.82 7.28 47% 1.0% 6.1% -4.1% 3.3%
25% 8.87 3.96 4.92 50% 0.8% 4.6% -3.0% 2.7%
30% 6.23 2.64 3.59 60% -1.0% 1.6% -3.9% 2.2%
35% 7.00 4.00 3.00 25% 2.6% 5.6% -1.8% 3.2%
40% 0.62 0.62 0.62 62% 62.2% 62.2% 62.2% 62.2%
45%
50%

Table 6: CEV 36-36

percentages have the same magnitude order of the standard deviation, thus
the increase of the average return in dependence of the drawdown is this
time significant.

6 Conclusions

We analyzed the dependence of future returns on past drawdowns of the
monthly time series of the S&P500 index, from 1967 to 2012. From histor-
ical data, it appears that when the drawdown increases in absolute value,
future returns increase, both in mean as well as in distributional values. On
a theoretical basis, this stylized fact could be caused by the presence of mean
reversion in the index prices. We then run a Monte Carlo simulation on three
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DDR Number of investments Return
thr. tot pos neg % neg avg max min std
0% 452.00 218.45 233.55 52% 7.5% 190.7% -66.2% 46.9%
5% 444.74 215.91 228.83 51% 7.8% 190.6% -66.0% 47.0%

10% 407.65 201.28 206.37 51% 8.7% 190.1% -65.4% 47.3%
15% 335.92 170.68 165.24 49% 10.4% 188.1% -63.9% 47.8%
20% 252.83 133.10 119.73 47% 12.5% 183.6% -61.6% 48.3%
25% 176.46 96.36 80.10 45% 14.8% 175.9% -58.7% 48.6%
30% 114.27 64.90 49.37 43% 17.3% 164.3% -54.7% 48.6%
35% 67.75 39.91 27.84 41% 19.8% 147.8% -49.0% 47.9%
40% 36.12 22.24 13.88 38% 22.8% 125.9% -40.0% 45.4%
45% 17.19 11.00 6.19 36% 25.7% 97.3% -24.8% 38.7%
50% 8.06 5.36 2.70 34% 29.3% 69.6% -4.0% 27.3%

Table 7: expOU 12-36

DDR Number of investments Return
thr. tot pos neg % neg avg max min std
0% 440.00 214.61 225.39 51% 8.0% 190.4% -65.8% 47.0%
5% 439.96 214.60 225.36 51% 8.0% 190.4% -65.8% 47.0%

10% 437.69 213.92 223.77 51% 8.1% 190.4% -65.7% 47.1%
15% 421.48 208.33 213.15 51% 8.8% 190.2% -65.4% 47.3%
20% 381.05 192.94 188.11 49% 10.2% 189.2% -64.4% 47.6%
25% 321.58 168.09 153.49 48% 12.1% 186.7% -62.8% 48.0%
30% 254.30 137.81 116.49 46% 14.3% 181.8% -60.4% 48.3%
35% 188.97 106.44 82.53 43% 16.8% 174.6% -57.1% 48.4%
40% 131.15 77.09 54.06 41% 19.5% 163.6% -52.7% 48.0%
45% 84.15 51.51 32.64 39% 22.5% 149.0% -46.5% 46.8%
50% 48.92 31.37 17.55 36% 25.9% 128.6% -36.8% 43.5%

Table 8: expOU 24-36

models used in asset pricing, namely the Black-Scholes model, the CEV
model and the exponential Ornstein-Uhlenbeck model, to assess whether
these models reproduce this drawdown effect. From the Monte Carlo simu-
lations it turned out that, while the first two does not exhibit a dependence
of future returns on past drawdowns, in the exponential Ornstein-Uhlenbeck
future returns increase when past drawdowns increase in absolute value, con-
sistently with the empirical findings on the S&P500 index. In effects, of the
three models this was the only one with mean reversion. Also, notice that we
used parameters for the exponential Ornstein-Uhlenbeck process that, apart
from the drift part, are exactly the same as those used in the Black-Scholes
model, with dramatically different results.

The conclusion seems thus to be that, if we wish to use the drawdown
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DDR Number of investments Return
thr. tot pos neg % neg avg max min std
0% 428.00 210.15 217.86 51% 8.4% 189.9% -65.5% 47.1%
5% 428.00 210.15 217.86 51% 8.4% 189.9% -65.5% 47.1%

10% 427.92 210.13 217.79 51% 8.4% 189.9% -65.5% 47.1%
15% 425.49 209.46 216.03 51% 8.5% 189.9% -65.4% 47.2%
20% 412.29 205.20 207.09 50% 9.2% 189.7% -65.0% 47.3%
25% 380.76 193.71 187.05 49% 10.4% 188.8% -64.1% 47.6%
30% 331.61 173.94 157.67 47% 12.3% 186.6% -62.7% 47.9%
35% 272.30 148.01 124.29 45% 14.5% 182.6% -60.5% 48.2%
40% 210.58 119.17 91.41 43% 17.1% 176.3% -57.4% 48.2%
45% 152.52 89.95 62.57 41% 19.9% 166.7% -53.2% 47.8%
50% 102.01 63.05 38.96 38% 23.2% 153.1% -47.0% 46.5%

Table 9: expOU 36-36

effect to invest, i.e. to wait for a given drawdown threshold in order to
increase future returns, the mathematical model that we use should incor-
porate mean reversion in order to reproduce significantly this effect.

A More on Exponential Ornstein Uhlenbeck pro-
cess

It is worth study some properties of the price process in Equation (5). Let
us start with the solution of (5)

Xt = x0e
−θt + µ(1− e−θt) +

∫ t

0
σeθ(s−t)dWs

We know that, for all t > 0, Xt is Gaussian, with mean

X̄t := E[Xt] = x0e
−θt + µ(1− e−θt)

and variance

σ̄2
t := Var[Xt] =

σ2

2θ
(1− e−2θt)

Using the properties of the log-normal process (5) we find:

E[St] = exp
{
X̄t +

1
2
σt

2

}
=

= exp
{
x0e
−θt + µ(1− e−θt) +

σ2

4θ
(1− e−2θt)

}
Var[St] = exp{2X̄t + σt

2}(exp{σt2} − 1) =

= exp
{

2x0e
−θt + 2µ(1− e−θt) +

σ2

2θ
(1− e−2θt)

}(
exp

{
σ2

2θ
(1− e−2θt)

}
− 1
)
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B Reconciling market efficiency with mean rever-
sion

From what we described in this paper, a mathematical curiosity arises. The
empirical evidence here is that, under the real world probability measure
P, a model which describes in a suitable way the drawdown effect seems to
be the exponential Ornstein-Uhlenbeck model, where the log-price evolves
as in Equation (5). However, the Black-Scholes model is widely used in
option pricing, and under it the log-price evolves as in Equation (2), with
b = r− 1

2σ
2, with r being the risk-free rate, but under a different probability

measure Q, which should be equivalent to P to prevent arbitrages.
The mathematical question is then: it is possible that the two models

are consistent with each other? In other words: given the dynamics in
Equation (5) for the log-price X under a probability P, it is possible to find
an equivalent probability Q such that the dynamics of X under Q are of the
form in Equation (2), with of course now W being a Q-Brownian motion
driving Equation (2), different from the original P-Brownian motion?

This question boils down to find a ”double” dynamics for X of the form

dXt = σ dWt (under Q)

= −aXt dt+ σ dW̃t (under P)

In fact, it is well known that Girsanov transformations with constant kernel
θ (which in these cases is b/σ or ab/σ) give rise to Girsanov densities which
are proper martingales. The residual Girsanov transformation from P to
Q, or equivalently from Q to P, is done with a density which is a proper
martingale if, in the expression

dW̃t = dWt + θt dt

the Girsanov kernel
θt :=

a

σ
Xt = aWt +

ax0

σ

gives rise to a Girsanov density which is a proper martingale. In order to
see that this is true, we use [1, Proposition 7.23(b)], which says that the
Girsanov density dP

dQ is a proper martingale on an interval [0, T ] if there
exist C ∈ (0,+∞), µ > 0 such that

EQ[eµθ
2
t ] < C for all t ∈ [0, T ] (6)

Now we verify that Equation (6) holds for some constant C and µ. For
t ∈ [0, T ] and µ > 0, we have that

µθ2
t = µ

(
aWt +

ax0

σ

)2
≤ 2µa2W 2

t + 2
µa2x2

0

σ2
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so that

EQ[eµθ
2
t ] ≤ EQ

[
e2µa

2W 2
t +2

µa2x20
σ2

]
=

= e
2µa2x20
σ2

∫ +∞

−∞

1√
2πt

e2µa
2x2−x

2

2t dx

which is finite if and only if 2µa2 − 1
2t < 0, or t < 1

4µa2 . By imposing this
for all t ∈ [0, T ], the conclusion is that, if we choose µ < 1

4a2T
, then t < 1

4a2µ

for all t ∈ [0, T ], and we can conclude that

EQ[eµθ
2
t ] ≤ e

2µa2x20
σ2

∫ +∞

−∞

1√
2πt

e2µa
2x2−x

2

2t dx =

=

√
2π
(

1
t − 4µa2

)−1

2πt
=
(
1− 4µa2t

)−1/2

Now, if µ < 1
4a2T

, then this quantity is less than (1−4µa2T )−1/2 =: C, which
is finite. By virtue of Equation (6), we have that P and Q are equivalent,
i.e. an exponential Ornstein-Uhlenbeck process under the real world prob-
ability measure P can have a Black-Scholes dynamics under an equivalent
martingale measure Q.
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