Löwenheim-Skolem-Tarski numbers for regularity quantifiers

Christopher Turner

University of Bristol

July 27, 2022

Let P_0, \ldots, P_n be symbols of second order logic, with some canonical interpretation for every first order structure. The *Löwenheim-Skolem-Tarski* number $\text{LST}(P_0, \ldots, P_n)$ is defined to be the least cardinal κ such that for every first order language \mathcal{L} of cardinality less than κ , and for every \mathcal{L} structure \mathcal{A} , there is some $\mathcal{L} \cup \{P_0, \ldots, P_n\}$ elementary substructure of $B \prec \mathcal{A}$ of cardinality $<\kappa$.

In [1], Magidor and Väänänen examine the LST numbers of two logical symbols I and Q^{ec} . I (known as the Härtig quantifier) takes two subsets of a structure as parameters, and returns true if they have the same cardinality in the background universe V. Q^{ec} takes in two ordered subsets of a structure as its parameters, and returns true if the orders have the same cofinality. They show that LST(I) is at least the first inaccessible, that $\text{LST}(I, Q^{\text{ec}})$ is at least the first Mahlo cardinal, and that modulo the consistency of a supercompact the LST numbers can exactly equal these lower bounds.

We expand this with a series of results for intermediate logics between these two extremes. We will begin by developing two new schemes of second order logical symbols R^{ϵ} and Q^{ϵ} (for ϵ an ordinal or $\epsilon = \infty$).

The idea behind R^{ϵ} is that it should take as its parameters a single subset S of a structure, plus some auxiliary information, and return true if the cardinality of S is regular and has Cantor-Bendixson rank $<\epsilon$ in the class of regular cardinals. Meanwhile, Q^{ϵ} should take two ordered sets (and some auxiliary information) and return true if the two orders have the same cofinality, and that cofinality has C-B rank $<\epsilon$ in the regulars. R^{ϵ} and Q^{ϵ} are intuitively similar to I and Q^{ec} respectively, but only apply on those elements of the class Reg of regular cardinals whose Cantor-Bendixson rank is $<\epsilon$.

A more formal definition of R^{ϵ} is as follows. It has two parameters: a set S and an auxiliary well-order X. It returns true if the order type of X is some ordinal $\delta < \epsilon$, and the cardinality of S has C-B rank precisely δ in the regular cardinals. (So for R^{ϵ} to be true about S, we it's not quite sufficient for S be

regular and of rank below ϵ ; we must also have "guessed" that rank using X. This useful restriction turns out not to be a major limitation to the strength of the symbol when working with LST numbers.) The formal definition of Q^{ϵ} is similar.

We will see that, with the exception of certain large (but set-size) choices of ϵ , the LST (I, Q^{ϵ}) and LST (I, R^{ϵ}) all fit in the interval between LST(I) and LST (I, Q^{ec}) , and order themselves neatly via a series of inequalities provable in ZFC. In particular, LST $(I, R^1) = \text{LST}(I, R^0) = \text{LST}(I)$ and LST $(I, Q^{\infty}) =$ LST (I, Q^{ec}) .

We will then establish an optimal lower bound for any $LST(I, Q^{\epsilon})$ and $LST(I, R^{\epsilon})$, given the consistency of a large enough supercompact. In all cases, that lower bound turns out to be the least regular cardinal which is not discussed by Q^{ϵ} and R^{ϵ} , i.e. the least regular cardinal whose Cantor-Bendixson rank in Reg is precisely ϵ .

Keywords. Löwenheim-Skolem-Tarski numbers, LST, regular cardinals, Härtig quantifier, set theory, model theory

References

 Menachem Magidor and Jouko Väänänen. "On Löwenheim–Skolem–Tarski numbers for extensions of first order logic". In: *Journal of Mathematical Logic* 11.01 (2011), pp. 87–113.