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0. Background. S. Niki and H. Omori [13] – motivated by both, a philo-
sophical project whose roots can be found in the work of M. Dummett and
by some recent papers by M. De, e.g., [7] – took up the challenge of extend-
ing intuitionism from mathematical discourse to empirical discourse. In their
joint contribution, Niki and Omori proposed a system of intuitionistic proposi-
tional logic expanded via the addition of a so-called actuality operator, denoted
‘@A’ (for some formula A). Their logic, namely IPC@, is firstly introduced
in terms of possible words semantics and axiomatic system. In addition, the
authors introduced another proof system, namely a sequent calculus, called
LGJ, by modifying the characteristic rules of the sequent calculus of Titani
[14] and Aoyama [1] for the so-called global intuitionistic logic (GIPC). Un-
fortunately, as noticed in the final part of Omori and Niki’s paper, LGJ is not
Cut-free. Therefore, the authors proposed an open question, that is, whether
there is a Cut-free hypersequent calculus for IPC@ [13, p. 477]. This paper
aims at solving this problem.

1. Framework & preliminary results. In the first section, we will pro-
pose an alternative proof-theoretic characterization of IPC@ by employing
the well-established framework of hypersequents, i.e., a simple and natural
generalization of sequents to multisets of sequents (see, among others, [2,
3, 4], [12], [9, 209ff]). Formally, a hypersequent is a structure of the form:
Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n, where each Γi ⇒ ∆i (for i = 1, . . . , n) is an
ordinary sequent. Γi, ∆i are multisets of formulas and we call them internal
contexts. If ∆i contains at most one formula, then the sequent is said to be
single-succedent. ‘G’,‘H’, . . . , denote side hypersequents and we refer to them
as external contexts. Finally, each hypersequent G is a multiset of ordinary
sequents.1

1Note that the interpretation of a sequent, denoted I(Γ⇒ ∆), is defined as
∧

Γ→
∨

∆,
where

∧
Γ (

∨
∆) stands for the conjunction (disjunction) of formulas belonging to Γ (∆).

The interpretation of a hypersequent I(Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n) is defined as:
∧

Γ1 →∨
∆1 ∨ · · · ∨

∧
Γn →

∨
∆n. Finally,

∧
[ ] = > and

∨
[ ] = ⊥.
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Once all preliminary notions are fixed, we will introduce our intended hyper-
sequent system (called, HIPC@). Roughly, for the propositional connectives
(∧,∨,→) we just add hypersequent versions of Maehara’s sequent rules for
intuitionistic logic (see [11] and, e.g., [4]). For the actuality operator, instead,
we formulate a new group of inference rules (see Figure 1) to formalize its main
properties. In particular, to ensure completeness we add a rule specifically con-
structed to provide terminating derivations of two distinctive axiom schemas
of IPC@, namely, @(A ∨ B) → (@A ∨ @B) and @A ∨ (@A → B).2 The re-
sults contained in this section include proofs of soundness and completeness for
HIPC@, as well as a comparison to other related works. A particular atten-
tion will be paid in understanding, on the one hand, the relationship between
HIPC@ and LGJ, and on the other, the differences (and similarities) between
HIPC@ and a hypersequent-style formulation of GIPC (namely, HGI) due
to A. Ciabattoni [5].

2. Cut-elimination. The purpose of the second section is to provide a
systematic and uniform proof of Cut-elimination for HIPC@.
Hypsersequent calculi usually include, along with logical rules, internal and
external structural rules. Intuitively, the former group of rule act on formulas,
while the latter one act on whole sequents. Now, a crucial problem for Cut-
elimination proofs arises when one encounters a derivation where either the
external or the internal contraction rule was applied:

G | A, A, Γ⇒ ∆
ic, l

G | A, Γ⇒ ∆

G | Γ⇒ ∆ | Γ⇒ ∆
ec

G | Γ⇒ ∆

Roughly, in order to avoid problems with the contraction rules we will use
more general versions of Cut to perform multiple cuts in different sequents at
once, e.g.:

G | Γ1, [A]λ1 ⇒ ∆1 | · · · | Γn, [A]λn ⇒ ∆n H | Σ⇒ A, Π
cut1

G | H | Γ1, Σλ1 ⇒ ∆1, Πλ1 | · · · | Γn, Σλn ⇒ ∆n, Πλn

G | Γ, A⇒ ∆ H | Σ1 ⇒ [A]λ1 , Π1 | · · · | Σn ⇒ [A]λn , Πn
cut2

G | H | Γλ1 , Σ1 ⇒ ∆λ1 , Π1 | · · · | Γλn , Σn ⇒ ∆λn , Πn

2An early single-succedent formulation of the hypersequent calculus for IPC@ included
L@, R@ and split@, plus:

G | Γ ⇒ @A | Γ ⇒ @B
R@∨

G | Γ ⇒ @(A ∨ B)

G | @A, Γ ⇒ C G | @B, Γ ⇒ C
L@∨

G | @(A ∨ B), Γ ⇒ C

Unfortunately, such a formulation faces serious troubles with Cut-elimination. Indeed, the
formula @(>∧(A∨B))⇒ @A∨@B (where > is some tautology), provable by an application
of cut on the left with the sequent @(>∧ (A∨B))⇒ @(A∨B), has no cut-free proof. In
other words, the elimination strategy fails when the premises of cut are derived by L@∨
and L@, and R@∨ and R@, respectively.
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Special logical rules:

G | @Γ⇒ A
R@∗

G | @Γ⇒ @A

G | A, Γ⇒ ∆
L@

G | @A, Γ⇒ ∆

Special structural rule:

G | @Γ, Γ′ ⇒ ∆, ∆′
split@

G | @Γ⇒ ∆ | Γ′ ⇒ ∆′

∗R@ is single-succedent.

Figure 1: HIPC@

Note that [A]λi denotes a multiset with λi occurrences of the formula A, while
the notation Σλi (Γλi , ∆λi , Πλi) indicates the result of deleting λi occurrences
of A from Σ (Γ, ∆, Π).
Beside these considerations, we will introduce some auxiliary concepts, such
as the notions of marked rule instance and substitutive rule, and present the
proof of the Cut-elimination theorem by relying on two reduction lemmas. In-
tuitively, the proof strategy amounts to shift applications of Cut upwards in
derivations in order to reduce either the cut-rank (i.e., the maximal complexity
of the cut-formula) or the number of applications of Cut on formulas with a
specific cut-rank.3

3. Conclusion & further research. In conclusion, we will suggest how
the framework proposed throughout the talk can be accommodated to prove
results on logics in the vicinity of IPC@ by giving some concrete examples and
consider some methodological questions connected to hypersequent calculi.
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