Deep Drawing: Spectra and Sound-Source Localization

Julie Zhu
University of Michigan
zhujulie@umich.edu

Zhiyu Zhang
University of Michigan
zhiyuzha@umich.edu

ABSTRACT

This paper introduces Deep Drawing, an intermedia Al co-
performer that creates a real-time artistic dialogue with
human artists on a shared web-based canvas. Our sys-
tem employs four contact microphones attached to a draw-
ing surface to capture the subtle sounds of pen strokes.
Upon predicting the path of the pen through custom ma-
chine learning surface sound source localization, the sys-
tem overlays its predictions onto a live video feed of the
human drawing. We contribute our findings on audio data
pre-processing techniques, such as normalization and high-
cut. We also discuss the potential differences between spec-
tra and spectrograms for computational efficiency and pre-
diction accuracy on this novel dataset for surface sound
source localization and new interface for human-computer
artistic interaction.

1. INTRODUCTION

Real-time audiovisual systems that respond to human ges-
tures have had a long history in the performing arts. Re-
cent advances in deep learning have further enabled new
forms of expressive feedback loops between humans and
machines. [1] In this paper, we focus on a drawing-based
co-creative system that captures the acoustic properties of
drawing on wood panels, and then interprets these signals
to generate predictive strokes.

Several prior projects have shaped our perspectives on
this research. From the fourth movement of Mark Apple-
baum’s Straitjacket [2] where four performers draw in syn-
chronous rhythm but their visual results are vastly differ-
ent, to the Deckle drawing interfaces that demonstrate var-
ious ways to convert drawing into musical sounds. [3] In
the domain of generative drawing, Google’s SketchRNN
notably models vector-based sketches and learns to pro-
duce new drawings from partial user inputs. [4] Mean-
while, large-scale datasets such as MNIST’s handwritten
numbers have provided a solid foundation for understand-
ing the creative potential of working with handwriting as
visual data. [5]

Our work also builds on sound source localization (SSL),
which has historically involved signal processing techniques
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for speech recognition and robotics applications. [6] In
performative contexts, these methods can be adapted to
turn raw acoustic data of pen-on-paper into streams of co-
ordinate predictions. A common method for SSL involves
time difference of arrival (TDOA), but in practical applica-
tions of surface SSL on wood, the speed of sound in wood
negates the usefulness of TDOA and instead, received sig-
nal strength, or the intensity of the acoustic signal as com-
pared between microphones is the method we have em-
ployed as it also does not require time synchronization. [7]

2. METHODS

Our system design of Deep Drawing consists of four pri-
mary components: (1) a real-time multichannel audio cap-
ture and preprocessing pipeline, (2) a residual neural net-
work for sound source localization, (3) a Kalman filter for
prediction refinement, and (4) a Web interface that over-
lays the network’s predictions onto a live video feed of the
human drawing. Figure 1 illustrates the complete system
design.

2.1 Data Processing

To process the audio signals, we extract both spectrogram

and spectral representations from a four-channel audio record-

ing sampled at 48 kHz. Though spectrograms are most
commonly used for audio data to take advantage of com-
puter vision models for images, we wanted to see if the
more lightweight spectrum snapshots would be sufficient
for our purposes. The audio data is synchronized with
video recordings at a frame rate of 30 frames per second
(FPS). Since the audio sampling rate is significantly higher
than the frame rate, each video frame is analyzed with fine-
grained temporal resolution.

2.1.1 Spectrogram Representation

For spectrogram-based processing, we compute spectro-
grams using the Librosa library. We apply a Short-Time
Fourier Transform (STFT) with an Fast Fourier Transform
(FFT) window size of 2048, a hop length of 512, and a
window size of 1600. These spectrograms capture time-
frequency representations of the audio signals and are gen-
erated at each video frame to preserve temporal and spec-
tral features.
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Figure 1. System design diagram of Deep Drawing.

2.1.2 Spectral Representation

For spectral analysis, we apply STFT-based spectral ex-
traction optimized for real-time performance. To capture
temporal dynamics within each frame, we divide every video
frame into three sub-segments, from which we extract mag-
nitude spectra using a 1024-point FFT.

We evaluate two configurations: (1) a full-spectrum ap-
proach, which retains all frequency bins, and (2) a high-cut
version, where only low-frequency bins up to 6400 Hz are
retained to focus on the most relevant spectral components
for localization. This allows us to compare the effect of
spectral bandwidth on model performance.

2.1.3 Silence Filtering

To exclude non-sound frames, we apply a loudness thresh-
old of root mean square (RMS) greater than 0.005. Frames
where the mean RMS amplitude across all channels falls
below this threshold are marked as silent and discarded.

2.1.4 Motion Tracking and Ground Truth Extraction

The ground truth motion tracking data is obtained by de-
tecting a pre-defined color marker on the pen tip in the
video frames. The tracking algorithm operates in Hue, Sat-
uration, and Value (HSV) color space, applying threshold-
ing to detect lighter and darker variations of the reference
color. The centroid of the largest detected contour provides
the (X, Y) position of the pen.

The video frames have a resolution of 936 x 936 pixels.
To ensure consistency in the training process, the extracted
coordinates are normalized to a fixed range of [0, 1] during
data preparation. This normalization helps improve con-
vergence during training and ensures that the model learns
a scale-invariant representation of spatial positioning. The
synchronized and normalized coordinates, along with their
corresponding detected sound frames, are stored in a CSV
file for supervised learning.

2.1.5 Dataset Size

For a dataset spanning 64.95 minutes, we extract a total of
350,730 data points from 116,910 video frames.

2.2 Neural Network Architecture

We adapt and fine-tune a pre-trained residual neural net-
work (ResNet) to localize the artist’s pen based on multi-
channel audio representations. Our approach involves train-

Figure 2. Visualization of the color tracking process. The red dot repre-
sents the detected pen tip position based on HSV color thresholding.

ing both ResNet34 and ResNet50 models on two distinct
input modalities: spectrograms and spectral features. While
ResNet34 provides a computationally lighter alternative suit-
able for real-time applications, ResNet50 offers deeper fea-
ture extraction, which may enhance localization accuracy
at the cost of increased complexity.

In both cases, we modify the first convolutional layer to
accommodate our specific input structure. For spectrogram-
based training, the input consists of spectrograms extracted
from four contact microphones, necessitating an update to
accept four input channels. For spectral-based training,
where we extract three spectral sub-segments per frame
and concatenate them into a single representation, the first
convolutional layer is adjusted to accept a single-channel
input.

To preserve the spatial relationships within the input rep-
resentations, we retain the standard ResNet kernel config-
uration, using 7 x 7 filters with a stride of 2 and padding
of 3. To prevent overfitting, we incorporate dropout reg-
ularization with p = 0.3 before the final fully connected
layer. The network’s final layer is replaced with a regres-



sion head that outputs the (x,y) coordinates of the pen on
the drawing surface.

By evaluating both ResNet34 and ResNet50 across spec-
trogram and spectral inputs, we aim to determine the op-
timal trade-off between model complexity, accuracy, and
real-time performance for interactive drawing applications.

2.3 Kalman Filter

We also integrate a Kalman filter that refines the predic-
tions of the residual neural network. We model drawing
motion as a constant velocity system and implement the
filter’s state-space model to track both position and veloc-
ity of the pen. The Kalman filter hence effectively smooths
the predicted path even when individual predictions ex-
hibit uncertainty to preserve the artistic intent of rapid di-
rectional changes. Subsequently, the system streams the
Kalman filter’s outputs to the Web interface through Web-
Socket.

2.4 Web Interface

‘We incorporate a React-based canvas application to present
Deep Drawing as an intermedia Al co-performer to audi-
ences. The system employs WebSocket communication
to receive coordinate streams from the Kalman filter and
renders them using the Perfect Freehand library to achieve
pressure-sensitive stroke aesthetics redolent of stroke vari-
ation in caligraphy. Finally, we overlay the Web interface
with a live video feed of the human drawing captured by a
Web camera.

2.5 Implementation

We implement Deep Drawing’s neural network in PyTorch
and conducted all experiments on a machine equipped with
an NVIDIA RTX 4090 GPU (16 GB VRAM), an Intel
Core Ultra 9 185H CPU (16 cores, 22 threads), and 30
GB of RAM, running Linux with CUDA 12.4. Our opti-
mization strategy introduces a layer-specific learning rate
scheme. Specifically, we used the AdamW optimizer with
a weight decay of 1le — 2. The first convolutional layer,
the batch normalization layer, and the final fully connected
layer were trained with a base learning rate of le — 3. In-
termediate ResNet layers were trained with a lower learn-
ing rate of le — 4 to better preserve pre-trained features.
We adopted OneCycleLLR with cosine annealing to sched-
ule learning rates. We trained all models with a batch size
of 64 for up to 200 epochs to minimize the mean-absolute
error (MAE) on normalized pen-tip coordinates. Because
our surface is 60 x 60 centimeters, the average error in
centimeters is £ x 60. We also implemented early stop-
ping to terminate training if the validation loss plateaus for
10 consecutive epochs.

We configured Deep Drawing’s Kalman filter with a 4-
dimensional state space model that tracks both position
(z,y) and velocity (dzx,dy). Our state transition matrix
modeled constant velocity motion, and our measurement
matrix extracts only position components from predictions.
We empirically set measurement noise (R) to 1001, pro-
cess noise (@) to 0.17, and initial state covariance (P) to
1000I. We incorporated a warm-up period of 10 predic-
tions with relaxed filtering, followed by a distance thresh-
old of 13.02 cm to reject outliers. For temporal consis-

tency, we maintained a sliding window of size 5 and apply
linearly increasing weights from 0.2 to 1.0 for more recent
predictions.

3. EXPERIMENTS
3.1 Dataset

Four-channel WAV files were collected via four AKG 411
PP condenser contact microphones on 6mm thick 600 mm
square plywood boards routed through a Clarett+ audio
interface. Simultaneous pen positions were collected via
overhead video routed through OBS with ground-truth min-
imum and maximums. The pen used was the BIC Cristal,
with a sticker at the end for color-tracking, and another
sticker 50 mm down for angle correction.

3.2 Effect of High-Cut on Spectral Representations

To explore the impact of filtering high-frequency compo-
nents, we implemented a high-cut filter at 6400 Hz on the
spectra. This approach could reduce computational over-
head by focusing on low-frequency components, which
have higher energy. However, we also observe that high-
frequency components, though susceptible to noise and lower
energy, are typically more significant for localization tasks
due to high differentiation. Table 1 presents the perfor-
mance comparison of models trained with and without high-
cut filtering.

The inclusion of the high-cut filter resulted in a slight in-
crease in the final loss, particularly for ResNet34, as ex-
pected. However, it offers several advantages for real-time
applications. High-frequency components require finer tem-
poral resolution and higher computational resources dur-
ing both feature extraction and model inference. By lim-
iting the frequency range, the system processes fewer data
points, making it more efficient for real-time applications.

Although high-cut filtering may exclude some subtle high-
frequency information, the retained low-frequency features
could remain adequate for less noisy data. However, accu-
rately localizing the artist’s pen necessitates the inclusion
of high-frequencies, and our higher final test losses con-
firms this sanity check.

Spectra + Hi-Cut | Architecture | Final Loss | Best Epoch
Y ResNet50 0.0796 92
Y ResNet34 0.0850 77
N ResNet50 0.0733 99
N ResNet34 0.0748 90

Table 1. Performance comparison of spectra with and without high-cut,
evaluated on different architectures.

3.3 Comparison Across Data Types and
Normalization Strategies

Table 2 shows the performance of models across spectra
and spectrogram data types, with and without normaliza-
tion, using ResNet34 and ResNet50 architectures. Models
trained without normalization consistently achieve lower
final loss, such as the ResNet50 model trained on unnor-
malized spectrograms with a loss of 0.0580 compared to



0.0711 with normalization. This suggests that normaliza-
tion may reduce the model’s ability to capture essential fea-
tures for localization in this task.

Spectrogram-based models generally outperform spectra-
based ones, as spectrograms better capture temporal and

spatial characteristics. ResNet50 also outperforms ResNet34,

with lower final loss values across most configurations.
Overall, the combination of unnormalized spectrograms
and the deeper ResNet50 architecture proves to be the most
accurate. However, when considering live sound localiza-
tion applications, spectra may be more desirable due to
their potentially lower computational requirements, mak-
ing them better suited for real-time processing.

Data Type Norm | Architecture | Test Loss | Lossincm | Best Epoch
Spectra Y ResNet50 0.0807 4.842 64
Spectra Y ResNet34 0.0944 5.664 66
Spectra N ResNet50 0.0733 4.398 99
Spectra N ResNet34 0.0748 4.488 90
Spectrograms Y ResNet50 0.0711 4.266 20
Spectrograms Y ResNet34 0.0697 4.182 18
Spectrograms N ResNet50 0.0580 3.480 106
Spectrograms N ResNet34 0.0594 3.564 112

Table 2. Comparison of performance across data types, normalization
strategies, and architectures.

4. CONCLUSIONS

Our results revealed several key insights about the nature
of surface sound source localization (SSL) in creative con-
texts. While human auditory perception may not be able to
distinguish high-frequency spectral information, this infor-
mation is indispensable for machine learning-based SSL.
Notably, our experiments showed that normalization, which
typically improve neural network training, did not improve
model performance in our specific application. This sug-
gests that the raw intensity relationships between micro-
phone signals contain important relative spatial informa-
tion that normalization may have obscured or skewed.

These technical insights inform not just the implementa-
tion of Deep Drawing, but also our understanding of human-
Al co-creation through sound. The machine’s reliance on
typically imperceptible acoustic features highlights an in-
teresting parallel to how human artists develop an intu-
itive understanding of their craft through extended prac-
tice. As we continue to refine our system for real-time
performance, these findings will guide our optimization of
the balance between prediction accuracy and latency. Our
future work will evaluate how these design decisions influ-
ence the quality of interaction between human artists and
the Al co-performer in live drawing sessions.

5. DISCUSSION AND FUTURE WORK

Surface sound source localization has seen notable appli-
cations in fields such as seismology, particularly for earth-
quake detection. In these contexts, arrays of sensors—
seismometers—are deployed to detect and locate seismic
events based on wave propagation across the Earth’s crust.
[8] Although the underlying principles of wave-based lo-
calization parallel those in our setup with contact micro-
phones on a wooden surface, there has been relatively lim-
ited exploration of surface SSL in creative domains. Lever-
aging recent advances in deep learning for real-time signal

processing, our system brings SSL beyond its traditional
use cases. This shift from geophysical monitoring to in-
termedia human-AlI co-creation raises intriguing questions
about how seemingly noisy signals can become rich con-
duits for creative expression.

More data is needed for a robust model, and in a few di-
rections. The type of drawing utensil can be varied, so
that the model can accommodate any spectral signature of
a writing gesture. We have begun this data collection to
include pencil, charcoal, and graphite stick.

In addition, the human making the drawing should be var-
ied as much as possible. Each person has a unique way
of drawing, and while the model may be fine-tuned to an
individual, the hope is that it can be applicable to any per-
former.

Currently, the model architecture utilizes the well-known
convolutional neural network (CNN) ResNet. While we
expect CNNs to remain the fastest solution for real-time
surface SSL, we plan to investigate the equally promis-
ing alternatives in our future work: FCNNs, LSTMs, and
transformers applied to 1D spectral data [9].

For this type of model, a faithful reproduction of some-
one’s signature from just its surface aural signal, say, is
worth the wait.

Certainly, the purpose of this model is not to steal peo-
ple’s signatures, but rather to understand how to process a
very noisy signal. Our current application is performance-
based, with the goal of understanding the human writing
and drawing gesture through trying to teach a machine to
do the same and watching the machine generally fail.
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