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Abstract—Sentiment  analysis,  also  called  as  option  mining,
refers to the use of natural language processing, analysing texts
and performing computational  linguistics  to  identify  and extract
subjective information in source materials. Sentiment analysis is a
popular  technique  for  summarising  and  analysing  consumers’
textual  reviews  about  products  and  services.Most  sentiment
prediction systems work by just looking at words in isolation, giving
positive points for positive words and negative points for negative
words and then summing up these points. But in that way, the order
of words is ignored and important information is lost. In contrast,
our  learning  model  actually  builds  up  representation  of  whole
sentences based on sentence structure by considering  a string of
words as a feature (N-gram applicationroach). Here we have used
Tri-gram (3-gram) wherein 3 words together are combined to get
sentiment of sentence and does not get fooled as easily as compared
to previous models. For example, our model learned that ‘enjoy’
and ‘nice’ are positive but the following sentence is still negative
overall  :  “The  application  UI  isn't  very  nice  and i  didn't  enjoy
using it much”. Beyond just positive and negative reviews, we have
also  identified  reviews which have bugs  in  them and given it  a
separate class called bug-related reviews so that applicationlication
developers  can  view those  first  and  try  to  fix  the  bugs  in  their
applicationlication.
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I.  INTRODUCTION 

Application  stores  provide  a  rich  source  of  information
about  applications  concerning  their  customer  business  and
technically  focused  attributes.  Customer  information  is
available concerning the ratings accorded to applications by the
users  who downloaded them.  This  provides  both  qualitative
and  quantitative  data  about  the  customer  perception  of  the
applications.  Business  information  is  available,  giving  the
number (or rank) of downloads and also price of applications.
Technical  information  is  available  in  the  descriptions  of
applications,  but  it  is  in  free  text  format,  so data  mining is
necessary to extract the technical details. 

Of course, this information may not be complete or fully
reliable: customers may, for various reasons, leave reviews that

do  not  reflect  their  true  opinion.  Either  intentionally  or
unintentionally,  developers  may  not  be  completely  truthful
about the technical claims made. It is not unreasonable to hope
that  broad  observations  about  whole  classes  of  applications
may still prove to be robust; the large number of applications
on  which  such  observations  are  based  tends  to  support
robustness. 

Software engineering researchers been able to access publicly
available data that links all of these important attributes:

• The customers’ opinions of software, in the form of the
reviews they leave;

• The popularity of software, in the form of its rank and/or
number of downloads.

Correlation  analysis  allows  us  to  address  fundamental
questions for any application store, such as: 

1)  Do applications that cost the customer more tend to get
a lower rating? 

2) Do free applications get higher rating? OR

3) Are high rated applications necessarily popular?

4)  Do  the  extracted  features  enjoy  any  of  the  above
correlations?

With the ever-increasing volume of text data from Internet,
databases,  and  archives,  text  categorization  or  classification
poses unique challenges due to the very high dimensionality of
text  data,  sparsity,  multi-class labels and unbalanced classes.
Many  classification  approaches  have  been  developed  for
categorizing text documents, such as random forests. Due to its
algorithmic  simplicity  and  prominent  classification
performance  for  high  dimensional  data,  Random Forest  has
become  one  the  most  commonly  used   methods  for  text
categorization.

II. METHOD

In  this  study,  we  extracted  two  thousand  five  hundred
textual  reviews  of  different  applications  from  Google  Play
(Android application Store) to be classified into as Positive or



Negative reviews. We extracted these from Heedzy tool. Using
the implementation of a random forest classifier, which uses an
ensemble of decision trees to classify text based on an averaged
value of multiple decision trees or forest of decision trees. This
algorithm  is  particularly  designed  for  analyzing  very  high
dimensional  data  with  multiple  classes  whose  well-known
representative data is text corpus. We have taken the help of the
python sci-kit library for this purpose. 

Sklearn is used for summarizing reviews and pulling out
features. We have set the max features to 5000 to limit the size
of algorithm expansion. The features of detecting bug related
reviews to add on top of the Positive/Negative reviews to help
developers  identify  and  make  the  changes  accordingly  thus
helping in establishing a relationship between Business and its
Technical Characteristics. 

A. Data Extraction

The data has been extracted using the tool Heedzy which is
a free open source tool to extract reviews from the Google Play
Store, and new reviews can keep getting appended to the csv
file using that online tool. 

B. Data Pre-processing

 Reviews  are  stored  in  CSV format  and  are  read  by
python code using the Pandas library which provides
functions for easy reading and writing to files.

 BeautifulSoup  is  another  library  used  for  data  pre-
processing that removes any HTML tags from reviews
so  we  have  clean  text  data  only.  NLTK  or  natural
language toolkit is used for data pre-processing as well
to  remove stop words  such as  'a',  'an',  'is',etc  which
doesn't carry much meaning towards sentiment and this
increases speed of the algorithm.

 We  have  also  removed  all  punctuations  from  the
reviews to make it faster and more efficient.

C. GUI and Front-End Processing

We have built a web based dashboard that displays the count of
positive and negative reviews as well as bug related reviews
using bar charts animated with the help of ChartIST javascript.

Business analyst also has option of viewing all the reviews and
checking which reviews had bugs and what they were on the
UI. The AJAX function call is used to read CSV output file and
check for changes and display that on graph.

We have built  the entire dashboard on HTML and bootstrap
which is a framework for HTML and CSS.

III. PROPOSED SYSTEM

So far  we were  finding  the  sentiment  analysis  using N-
Gram. The only issue with the N-gram model was that to pre-
determine the hyperparameters. Hyperparameters are basically
the number of decision trees, max number of features, etc. So,
thus far we were hard coding these parameters. Through our
analysis,  we  understood  the  behavior  of  the  system.  The
accuracy  ratio  was  scaling  up/down  approximately

logarithmically until a certain threshold value. Then it became
stagnant for the remainder of the time. This brings us to two
conditions namely :

1) Less Random : This states that the number of decision
trees extracted from the sub-matrix are less in number and the
proper sentiment of the sentence cannot be derived. It  might
give an invalid result.

2)  More  Random :  This  gives  us  the  result  with  proper
accuracy. But the only drawback to this is that the complexity
of  of  the  program will  increase  drastically.  More  space  and
time will be needed (for the system).

So, to overcome the first problem, we can add more and
more number of training data to the system manually. And to
overcome  the  second  problem,  we  can  use  the  following
approach : Instead of executing all the decision trees we can
setup a threshold level. After this level the accuracy ratio will
always  remain  constant  i.e.  it  won't  have  any  affect  on  the
system (No matter how many decision trees you execute).We
have also divided the untrained sentence into number of words.
First we start from 1 word (of a sentence, i.e. 1-Gram). We've
have set a threshold of 'x' for that 1 word. Again we have to
take into consideration that  the trained data set  can generate
equal to or more than 'x' decision trees(so as to not make it
Less Random). We record the classification as '0' or '1'(say A1).
On the basis of all the 'x' decision trees. Then we go on to find
the  sentiments  of  the  combination  of  two words  using  'x/2'
decision trees. We store the result again (say A2).We will then
compare  the  two  results.  If  both  of  them  give  the  same(or
almost) results,  then we can stop the execution. Or else,  we
would have to go forward (A3,A4,..). 

We  will  continue  with  the  iteration  till  the  entire
sentence(after removing stop words,etc) becomes an individual
token  for  classification.  And  the  result(say  An)  will  be  our
desired output by flooring or ceiling it. If the result is 0.5, then
our either our training data set is not large enough or the user
has put in a neutral comment. But this will only happen in the
rarest or rare cases. We will stop the iterations at a step if our
value is in a complete discrete form i.e. '0' or '1' only. Note that
in our first step we will select those decision trees only that
have a match with the tokens in the untrained data set and the
features  in  the  matrix  using  an  efficient  string  matching
algorithm (preferably KMP).Consider  the following example
of the untrained data : This application is not bad and useful.
After removing the stop words : application not bad useful. So,
our tokens will be formed of application, bad and useless in the
first iteration. So from our feature extraction consider we get
the classifier of the various tokens as :

1) application : 0

2) not : 1

3) bad : 1

4) useful : 0

Note that we have taken positive sentiment as 0 and negative
sentiment as 1. Our result will be 0.50 (A1) with the help of 'x'
decision trees. Thus it is pretty unclear what the result is going
to be.In our next iteration, we will be going through two words



at a time using 'x/2' decision trees (because 'x' trees won't be
required  because  of  too  much  overhead).  Possible
combinations :

1) application not : 1

2) not bad : 0

3) bad useful : 0

At  this  step  our  value  of  A2 will  be  0.33,  thus  leading
toward a positive review. But still there is a huge difference
b/w A1 and A2.

So  we  go  towards  the  next  iteration  i.e  A3(using  'x/4'
decision trees). We get two combinations : 

1) application not bad : 0 

2) not bad useful : 0

So A3 gives  a  value  of  '0'.  Thus  we  will  end  with  our
computation.  And  classify  the  untrained  data  as  a  positive
review. After this step we will use this result for training future
untrained data as well.

IV. ARCHITECTURE DIAGRAM

In this 3-tiered architecture (FIG 4.1), we use MongoDB as our
database to store the CSV file. This file to be labelled is read by
Random  Forest  module  along  with  training  data  CSV file.
Output is saved in a CSV file which is read by AJAX function
call and results are displayed on a graph using ChartIST.

V. RESULTS

After  performing tests on our data set  using Random Forest
Algorithm,  we found it  to  have  a  classification  accuracy  of
94.75% . ( Refer FIG 5.1)

We can also see from Figure 5.2 the scatter plot graph that all
bug  related  reviews  have  come  under  negative  sentiment
reviews which shows a deep analysis into sentiment of user. 

VI. CONCLUSION AND FUTURE SCOPE

Application stores provide a software development space and
market  place  that  are  fundamentally  different  from those  to
which  we  have  become accustomed  for  traditional  software
development: the granularity is finer and there is a far greater
source  of  information  available  for  research  and  analysis.
Information is available on price, customer rating and, through
the data mining approach presented in this paper, the features
claimed by application developers. 

We have introduced a method to extract, from application store
descriptions,  usable  information  about  the  features  of
applications that captures some of the technical aspects of the
applications in the store. We evaluated our approach on both
the  free  and  the  non-free  applications  in  the  Blackberry
application Store. 

FIG: 4.1

FIG: 5.1

FIG: 5.2



The degree of correlation between rating, price and popularity
is different for different  application categories,  as one might
expect  and as we report  in detail  in the paper.  Our analysis
indicates that there is a strong overall correlation between the
ratings given to applications by their users and their popularity 

In  future,  we also intend to investigate predictive models of
customer evaluations, and the interplay between functional and
non-functional properties of applications, and the data available
in application stores.
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