
Google Play Store Review: Mining Application Store to Interpret

User Experience, relationship between Business and Technical

Characteristics through Sentimental Analysis

Eshaan Kaul1, Aditya Kaustubhan2, Yudhveer Singh3

1(Department of Computer Engineering, Pune Institute of Computer Technology, Pune, India)

Abstract—Sentiment analysis, also called as option mining,
refers to the use of natural language processing, analysing texts
and performing computational linguistics to identify and extract
subjective information in source materials. Sentiment analysis is a
popular technique for summarising and analysing consumers’
textual reviews about products and services.Most sentiment
prediction systems work by just looking at words in isolation, giving
positive points for positive words and negative points for negative
words and then summing up these points. But in that way, the order
of words is ignored and important information is lost. In contrast,
our learning model actually builds up representation of whole
sentences based on sentence structure by considering a string of
words as a feature (N-gram applicationroach). Here we have used
Tri-gram (3-gram) wherein 3 words together are combined to get
sentiment of sentence and does not get fooled as easily as compared
to previous models. For example, our model learned that ‘enjoy’
and ‘nice’ are positive but the following sentence is still negative
overall : “The application UI isn't very nice and i didn't enjoy
using it much”. Beyond just positive and negative reviews, we have
also identified reviews which have bugs in them and given it a
separate class called bug-related reviews so that applicationlication
developers can view those first and try to fix the bugs in their
applicationlication.

Keywords—Sentimental Analysis, Natural Language
Processing (NLP), Text Classification, Android
applicationlications.

I. INTRODUCTION

Application stores provide a rich source of information
about applications concerning their customer business and
technically focused attributes. Customer information is
available concerning the ratings accorded to applications by the
users who downloaded them. This provides both qualitative
and quantitative data about the customer perception of the
applications. Business information is available, giving the
number (or rank) of downloads and also price of applications.
Technical information is available in the descriptions of
applications, but it is in free text format, so data mining is
necessary to extract the technical details.

Of course, this information may not be complete or fully
reliable: customers may, for various reasons, leave reviews that

do not reflect their true opinion. Either intentionally or
unintentionally, developers may not be completely truthful
about the technical claims made. It is not unreasonable to hope
that broad observations about whole classes of applications
may still prove to be robust; the large number of applications
on which such observations are based tends to support
robustness.

Software engineering researchers been able to access publicly
available data that links all of these important attributes:

• The customers’ opinions of software, in the form of the
reviews they leave;

• The popularity of software, in the form of its rank and/or
number of downloads.

Correlation analysis allows us to address fundamental
questions for any application store, such as:

1) Do applications that cost the customer more tend to get
a lower rating?

2) Do free applications get higher rating? OR

3) Are high rated applications necessarily popular?

4) Do the extracted features enjoy any of the above
correlations?

With the ever-increasing volume of text data from Internet,
databases, and archives, text categorization or classification
poses unique challenges due to the very high dimensionality of
text data, sparsity, multi-class labels and unbalanced classes.
Many classification approaches have been developed for
categorizing text documents, such as random forests. Due to its
algorithmic simplicity and prominent classification
performance for high dimensional data, Random Forest has
become one the most commonly used methods for text
categorization.

II. METHOD

In this study, we extracted two thousand five hundred
textual reviews of different applications from Google Play
(Android application Store) to be classified into as Positive or

Negative reviews. We extracted these from Heedzy tool. Using
the implementation of a random forest classifier, which uses an
ensemble of decision trees to classify text based on an averaged
value of multiple decision trees or forest of decision trees. This
algorithm is particularly designed for analyzing very high
dimensional data with multiple classes whose well-known
representative data is text corpus. We have taken the help of the
python sci-kit library for this purpose.

Sklearn is used for summarizing reviews and pulling out
features. We have set the max features to 5000 to limit the size
of algorithm expansion. The features of detecting bug related
reviews to add on top of the Positive/Negative reviews to help
developers identify and make the changes accordingly thus
helping in establishing a relationship between Business and its
Technical Characteristics.

A. Data Extraction

The data has been extracted using the tool Heedzy which is
a free open source tool to extract reviews from the Google Play
Store, and new reviews can keep getting appended to the csv
file using that online tool.

B. Data Pre-processing

 Reviews are stored in CSV format and are read by
python code using the Pandas library which provides
functions for easy reading and writing to files.

 BeautifulSoup is another library used for data pre-
processing that removes any HTML tags from reviews
so we have clean text data only. NLTK or natural
language toolkit is used for data pre-processing as well
to remove stop words such as 'a', 'an', 'is',etc which
doesn't carry much meaning towards sentiment and this
increases speed of the algorithm.

 We have also removed all punctuations from the
reviews to make it faster and more efficient.

C. GUI and Front-End Processing

We have built a web based dashboard that displays the count of
positive and negative reviews as well as bug related reviews
using bar charts animated with the help of ChartIST javascript.

Business analyst also has option of viewing all the reviews and
checking which reviews had bugs and what they were on the
UI. The AJAX function call is used to read CSV output file and
check for changes and display that on graph.

We have built the entire dashboard on HTML and bootstrap
which is a framework for HTML and CSS.

III. PROPOSED SYSTEM

So far we were finding the sentiment analysis using N-
Gram. The only issue with the N-gram model was that to pre-
determine the hyperparameters. Hyperparameters are basically
the number of decision trees, max number of features, etc. So,
thus far we were hard coding these parameters. Through our
analysis, we understood the behavior of the system. The
accuracy ratio was scaling up/down approximately

logarithmically until a certain threshold value. Then it became
stagnant for the remainder of the time. This brings us to two
conditions namely :

1) Less Random : This states that the number of decision
trees extracted from the sub-matrix are less in number and the
proper sentiment of the sentence cannot be derived. It might
give an invalid result.

2) More Random : This gives us the result with proper
accuracy. But the only drawback to this is that the complexity
of of the program will increase drastically. More space and
time will be needed (for the system).

So, to overcome the first problem, we can add more and
more number of training data to the system manually. And to
overcome the second problem, we can use the following
approach : Instead of executing all the decision trees we can
setup a threshold level. After this level the accuracy ratio will
always remain constant i.e. it won't have any affect on the
system (No matter how many decision trees you execute).We
have also divided the untrained sentence into number of words.
First we start from 1 word (of a sentence, i.e. 1-Gram). We've
have set a threshold of 'x' for that 1 word. Again we have to
take into consideration that the trained data set can generate
equal to or more than 'x' decision trees(so as to not make it
Less Random). We record the classification as '0' or '1'(say A1).
On the basis of all the 'x' decision trees. Then we go on to find
the sentiments of the combination of two words using 'x/2'
decision trees. We store the result again (say A2).We will then
compare the two results. If both of them give the same(or
almost) results, then we can stop the execution. Or else, we
would have to go forward (A3,A4,..).

We will continue with the iteration till the entire
sentence(after removing stop words,etc) becomes an individual
token for classification. And the result(say An) will be our
desired output by flooring or ceiling it. If the result is 0.5, then
our either our training data set is not large enough or the user
has put in a neutral comment. But this will only happen in the
rarest or rare cases. We will stop the iterations at a step if our
value is in a complete discrete form i.e. '0' or '1' only. Note that
in our first step we will select those decision trees only that
have a match with the tokens in the untrained data set and the
features in the matrix using an efficient string matching
algorithm (preferably KMP).Consider the following example
of the untrained data : This application is not bad and useful.
After removing the stop words : application not bad useful. So,
our tokens will be formed of application, bad and useless in the
first iteration. So from our feature extraction consider we get
the classifier of the various tokens as :

1) application : 0

2) not : 1

3) bad : 1

4) useful : 0

Note that we have taken positive sentiment as 0 and negative
sentiment as 1. Our result will be 0.50 (A1) with the help of 'x'
decision trees. Thus it is pretty unclear what the result is going
to be.In our next iteration, we will be going through two words

at a time using 'x/2' decision trees (because 'x' trees won't be
required because of too much overhead). Possible
combinations :

1) application not : 1

2) not bad : 0

3) bad useful : 0

At this step our value of A2 will be 0.33, thus leading
toward a positive review. But still there is a huge difference
b/w A1 and A2.

So we go towards the next iteration i.e A3(using 'x/4'
decision trees). We get two combinations :

1) application not bad : 0

2) not bad useful : 0

So A3 gives a value of '0'. Thus we will end with our
computation. And classify the untrained data as a positive
review. After this step we will use this result for training future
untrained data as well.

IV. ARCHITECTURE DIAGRAM

In this 3-tiered architecture (FIG 4.1), we use MongoDB as our
database to store the CSV file. This file to be labelled is read by
Random Forest module along with training data CSV file.
Output is saved in a CSV file which is read by AJAX function
call and results are displayed on a graph using ChartIST.

V. RESULTS

After performing tests on our data set using Random Forest
Algorithm, we found it to have a classification accuracy of
94.75% . (Refer FIG 5.1)

We can also see from Figure 5.2 the scatter plot graph that all
bug related reviews have come under negative sentiment
reviews which shows a deep analysis into sentiment of user.

VI. CONCLUSION AND FUTURE SCOPE

Application stores provide a software development space and
market place that are fundamentally different from those to
which we have become accustomed for traditional software
development: the granularity is finer and there is a far greater
source of information available for research and analysis.
Information is available on price, customer rating and, through
the data mining approach presented in this paper, the features
claimed by application developers.

We have introduced a method to extract, from application store
descriptions, usable information about the features of
applications that captures some of the technical aspects of the
applications in the store. We evaluated our approach on both
the free and the non-free applications in the Blackberry
application Store.

FIG: 4.1

FIG: 5.1

FIG: 5.2

The degree of correlation between rating, price and popularity
is different for different application categories, as one might
expect and as we report in detail in the paper. Our analysis
indicates that there is a strong overall correlation between the
ratings given to applications by their users and their popularity

In future, we also intend to investigate predictive models of
customer evaluations, and the interplay between functional and
non-functional properties of applications, and the data available
in application stores.

VII. REFERENCES

[1] Kincaid, Jason. “Android Market: 10 Billion applications Served So
Far, And Another 1 Billion Each Month”. Techcrunch. Dec, 2011.

http://techcrunch.com/2011/12/06/android-market-10-billion-
applications-served-so-far-and-another-1-billion- each-month/

[2] Baoxun Xu, Yunming Ye, Xiufeng Guo and Jiefeng Cheng, An Improved
Random Forest Classifier for Text Categorisation, Journal of
Computers, VOL. 7, December 2012.

[3] Anthony Finkelstein, Mark Harman, Yue Jia, William Martin, Federica
Sarro and Yuanyuan Zhang, application Store Analysis: Mining
application Stores, UCL Department of Computer Science, 5th
September, 2014.

[4] Jiawen Liu, Mantosh Kumar Sarkar and Goutam Chakraborty,
Oklahoma State University, Stillwater, OK, USA, Feature-based
Sentiment Analysis on Android application Reviews Using SAS® Text
Miner and SAS® Sentiment Analysis Studio, SAS Global Forum 2013.

	I. Introduction
	II. method
	A. Data Extraction
	B. Data Pre-processing
	C. GUI and Front-End Processing

	III. Proposed system
	IV. Architecture diagram
	V. Results
	VI. Conclusion and Future scope
	VII. References

