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FOREWORD

The National Curriculum Framework (NCF), 2005, recommends that children’s.life
at school must be linked to their life outside the school. This principle marks a departure
from the legacy of bookish learning which continues to shape our system and causes
a gap between the school, home and community. The syllabi and textbooks developed
on the basis of NCF signify an attempt to implement this basic idea. They also
attempt to discourage rote learning and the maintenance of sharp boundaries between
different subject areas. We hope these measures will take us significantly further in
the direction of a child-centred:systemof education outlined in the national Policy on
Education (1986).

The success of this effort depends on the steps that school principals and teachers
will take to encourage children to reflect on their own learning and to pursue imaginative
activities and questions. We must recognize that, given space, time and freedom, children
generate new knowledge by engaging with the information passed on to them by adults.
Treating the prescribed textbook as the sole basis of ‘examination is one of the key
reasons why other resources and sites.of learning are ignored. Inculcating creativity
and initiative is possible if we perceive and treat children as participants in learning, not
as receivers of a fixed body of knowledge.

This aims imply considerable’'change is school routines and mode of functioning.
Flexibility in the daily time-table is as necessary as rigour in implementing the annual
calendar so that the required number of teaching days are actually devoted to teaching.
The methods used foriteaching and evaluation will also determine how effective this
textbook proves for making children’s life at school a happy experience, rather then a
source of stress or boredom. Syllabus designers have tried to address the problem of
curricular burden by restructuring and reorienting knowledge at different stages with
greater consideration for child psychology and the time available for teaching. The
textbook attempts to enhance this endeavour by giving higher priority and space to
opportunities for contemplation and wondering, discussion in small groups, and activities
requiring hands-on experience.

The National Council of Educational Research and Training (NCERT) appreciates
the hard work done by the textbook development committee responsible for this book.
We wish to thank the Chairperson of the advisory group in science and mathematics,
Professor J.V. Narlikar and the Chief Advisor for this book, Professor P. Sinclair of
IGNOU, New Delhi for guiding the work of this committee. Several teachers contributed
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to the development of this textbook; we are grateful to their principals for making this
possible. We are indebted to the institutions and organizations which have generously
permitted us to draw upon their resources, material and personnel. We are especially
grateful to the members of the National Monitoring Committee, appointed by the
Department of Secondary and Higher Education, Ministry of Human Resource
Development under the Chairpersonship of Professor Mrinal Miri and Professor G.P.
Deshpande, for their valuable time and contribution. As an organisation committed to
systemic reform and continuous improvement in the quality of its products, NCERT
welcomes comments and suggestions which will enable us to undertake further revision
and refinement.

Director
New Delhi National Council of Educational
20 December 2005 Research and Training
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CHAPTER 1

NUMBER SYSTEMS

1.1 Introduction

In your earlier classes, youhave learnt about the number line and how to represent
various types of numbers on it (see Fig. 1.1).

-3 -2 -1 1o
Fig. 1.1 : The number line

Just imagineyou start from zero and go on walking along this number line in the
positive direction. As far as your eyes can see, there are numbers, numbers and
numbers!

Fig. 1.2

Now suppose you start walking along the number line, and collecting some of the
numbers. Get a bag ready to store them!
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You might begin with picking up only natural
numbers like 1, 2, 3, and so on. You know that this list
goes on for ever. (Why is this true?) So, now your
bag contains infinitely many natural numbers! Recall
that we denote this collection by the symbol N.

Now turn and walk all the way back, pick up
zero and put it into the bag. You now have the
collection of whole numbers which is denoted by
the symbol W.

Now, stretching in.front of you are many, many negative integers. Put all the
negative integers into your bag, What is your new collection? Recall that it is the
collection of all integerssand it is denoted by the symbol Z.

Z comes from the

German word

“zahlen”, which means

“to count”.

Are there some numbers still left on the line? Of course! There are numbers like

1 3 -2005
57 oreven — 0 . If you put all such numbers also into the bag, it will now be the
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collection of rational numbers. The collection of rational numbers is denoted by Q.
‘Rational’ comes from the word ‘ratio’, and Q comes from the word ‘quotient’.

You may recall the definition of rational numbers:

A number ‘7’ is called a rational number, if it can be written in the form P

where p and ¢ are integers and g = 0. (Why do we insist that g = 0?)

Notice that all the numbers now in the bag can be written in the form g , where p

225
and ¢ are integers and ¢ = 0. For example, —25 can be written as T; here p = -25

and g = 1. Therefore, the rational numbers also include the natural numbers, whole
numbers and integers.

You also know thatithe rational numbers do not have a unique representation in

the form £, where p and'g-are integers and g # 0. For example ! = 2 = 10 = »
q’ 2 4 20 50

47
= a , and so.on~These are equivalent rational numbers (or fractions). However,

when we say that P s a rational number, or when we represent 2 6n the number

line, we assume that ¢ # 0 and that p and ¢ have no common factors other than 1
(that is, p and ¢q are co-prime). So, on the number line, among the infinitely many

1 1
fractions equivalent to 5 , we will choose 5 to represent all of them.

Now, let us solve some examples about the different types of numbers, which you
have studied in earlier classes.

Example 1 : Are the following statements true or false? Give reasons for your answers.
(i) = Every whole number is a natural number.

(i), Every integer is a rational number.

(iii) Every rational number is an integer.

Solution : (i) False, because zero is a whole number but not a natural number.

m
(i) True, because every integer m can be expressed in the form T and so it is a
rational number.
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3
(iii) False, because 5 is not an integer.

Example 2 : Find five rational numbers between 1 and 2.
We can approach this problem in at least two ways.

Solution 1 : Recall that to find a rational number between » and s, you can add ».and

r+s 3
s and divide the sum by 2, that is lies between » and s. So, = is a number

2
between 1 and 2. You can proceed in this manner to find four more rational numbers
5 11 13 7
between 1 and 2. These four numbers are Nk E and s

Solution 2 : The other option.sto find all the five rational numbers in one step. Since
we want five numbers, weawrite 1 and 2 as rational numbers with denominator 5 + 1,

i 1—g d2—ETh h kth‘[7 § 2 E dE Il rational

ie., =% an Z en you can check tha e e 6 an P are all rationa
7 4 35 11

numbers between 1 and 2. So, the five numbers are g E 5 3 ndg.

Remark : Notice-that in Example 2, you were asked to find five rational numbers
between 1 and 2. But, you must have realised that in fact there are infinitely many
rational numbers between 1 and 2. In general, there are infinitely many rational
numbers between any two given rational numbers.

Let us take a look at the number line again. Have you picked up all the numbers?
Not, yet. The fact is that there are infinitely many more numbers left on the number
line! There are gaps in between the places of the numbers you picked up, and not just
one or two but infinitely many. The amazing thing is that there are infinitely many
numbers lying between any two of these gaps too!

So wesare left with the following questions:

1. What are the numbers, that are left on the number
line, called?

2. How do we recognise them? That is, how do we
distinguish them from the rationals (rational
numbers)?

These questions will be answered in the next section. ig‘
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EXERCISE 1.1
1. s zero arational number? Can you write it in the form I , where p and ¢ are integers
and g = 0? 1
2. Find six rational numbers between 3 and 4.
3. Find five rational numbers between % and %

4. State whether the following statements are true or false. Give reasons for your answers.
(i) Every natural number is a whole number.
(i) Every integer is a whole number.

(iii) Every rational number‘is a whole number.

1.2 Irrational Numbers

We saw, in the previous section, that there may be numbers on the number line that
are not rationals. In this'section, we are going to investigate these numbers. So far, all

the numbers you have come across, are of the form P , where p and ¢ are integers

and g # 0. So,.yowmay ask: are therenumbers which are not of this form? There are
indeed such numbers.

The Pythagoreans in/Greece, followers of the famous
mathematician and philosopher Pythagoras, were the first
to discover the numbers which were not rationals, around
400 BC. These numbers are called irrational numbers
(irrationals), because they cannot be written in the form of
a ratio of integers. There are many myths surrounding the
discovery of irrational numbers by the Pythagorean,
Hippacus of Croton. In all the myths, Hippacus has an

unfortunate end, either for discovering that V2 is irrational

or for disclosing the secret about V2 to people outside the Pythagoras

secret Pythagorean sect! (569 BCE —479 BCE)
Fig. 1.3

Let us formally define these numbers.

A number ‘s’ is called irrational, if it cannot be written in the form g , where p

and ¢ are integers and g # 0.
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You already know that there are infinitely many rationals. It turns out that there
are infinitely many irrational numbers too. Some examples are:

V2. 3. 15, m0.10110111011110..

Remark : Recall that when we use the symbol \/_ , we assume that it is the
positive square root of the number. So /4 =2, though both 2 and -2 are square
roots of 4.

Some of the irrational numbers listed above are familiar to you. For example, you
have already come across many of the square roots listed above and the number 7.

The Pythagoreans proved that /2" is irrational. Later in approximately 425 BC,

Theodorus of Cyrene showed that \/3, \/5, V6, V7, V102411, V12, V13, V14,15
and /17 are also irrationals: Proofs of irrationality of /2, /3, /5, etc., shall be

discussed in Class X. As to @, it was known to various cultures for thousands of
years, it was proved to be irrational by Lambert and:l.egendre only in the late 1700s.
In the next section, we will discuss why 0.10110111011110... and = are irrational.

Let us returntothe questions raised at the end of
the previous section, Remember the bag of rational
numbers. If we now put all irrationalsnumbers into
the bag, will there-be any number left on the number
line? The answer is no! It turns out that the collection
of all rational numbers and irrational numbers together
make up what we call the collection of real numbers,
which is denoted by R. Therefore, a real number is either rational or irrational. So, we
can say that every real number is represented by a unique point on the number
line. Also, every point on the number line represents a unique real number.
This is why we call the number line, the real number line.

In the 1870s two German mathematicians,
Cantor and Dedekind, showed that :
Corresponding to every real number, there is a
point on the real number line, and corresponding
to every point on the number line, there exists a
unique real number.

R. Dedekind (1831-1916) G. Cantor (1845-1918)
Fig. 1.4 Fig. 1.5
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Let us see how we can locate some of the irrational numbers on the number line.

Example 3 : Locate J2 on the number line.
Solution : It is easy to see how the Greeks might have discovered

J2 . Consider a unit square OABC, with each side 1 unit in length
(see Fig. 1.6). Then you can see by the Pythagoras theorem that

OB = /17 + 1> = 2. How do we represent J2 on the number line? Fig. k6

This is easy. Transfer Fig. 1.6 onto the number line making sure that the vertex O
coincides with zero (see Fig. 1.7).

Fig. 1.7

We have just seen that OB = /2 . Using a compass with centre O and radius OB,

draw an arc intersecting the number line at the point P. Then P corresponds to /2 on
the number line:

Example 4 : Locate /3 on.the number line.

Solution : Let us return to Fig, 1.7.

Fig. 1.8
Construct BD of unit length perpendicular to OB (as in Fig. 1.8). Then using the

2
Pythagoras theorem, we see that OD = 1[(\/5 ) +12 =3, Using a compass, with

centre O and radius OD, draw an arc which intersects the number line at the point Q.
Then Q corresponds to /3 .
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In the same way, you can locate ./; for any positive integer n, after \/n — 1 has been

located.

EXERCISE 1.2

1. State whether the following statements are true or false. Justify your answers.

(i) Every irrational number is a real number.

(ii) Every point on the number line is of the form Jm , where m is a natural number.
(iii) Every real number is an irrationalnumber.

2. Are the square roots of all positive integers irrational? If not, give an-example of the
square root of a number that'is a rational number.

3. Show how /5 can betepresented on the number line.

4. Classroom activity (Constructing the ‘square root 1
spiral’) : Take a large sheetof paper and construct . P . 1
the ‘square root spiral’ in the following fashion. Start
with a point.O and draw a line segment OP, of unit
length. Draw a line’segment P P, perpendicular to
OP, of unit length (see Fig. 1.9). Now draw a line
segment P_P_perpendicular to OP,. Then draw a line
segment PP, perpendicular to OP,. Continuing in
this manner, you can get the line segment P_ P by
drawing a line segment.of'unitlength perpendicular to OP__ . In this manner, you will
have created the points P, P......, P .... ., and joined them to create a beautiful spiral

depicting 2, \/3, V4, <.

Fig. 1.9 : Constructing
square root spiral

1.3 Real Numbers and their Decimal Expansions

In this section, we are going to study rational and irrational numbers from a different
point of view./'We will look at the decimal expansions of real numbers and see if we
can use the expansions to distinguish between rationals and irrationals. We will also
explain how to visualise the representation of real numbers on the number line using
their decimal expansions. Since rationals are more familiar to us, let us start with

S| =

10 7
them. Let us take three examples : 3

Pay special attention to the remainders and see if you can find any pattern.
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Example S : Find the decimal expansions of ?, % and %
Solution :
[3-333... 0.875 0.142857...
3110 817.0 711.0
9 64 7
10 60 30
| 9 56 28
10 40 20
9 40 14
10 0 60
56
B 40
35
50
49
1
Remainders: 1,1,1,1, 1... Remainders : 6,4, 0 Remainders: 3,2,6,4, 5,1,
Divisor: 3 Divisor: 8 3,2,6,4,5,1,...
Divisor: 7

What have you noticed? You should have noticed at least three things:

(i) The remainders either become 0 after a certain stage, or start repeating themselves.

(i) Thenumber of entries in the repeating string of remainders is less than the divisor
(in 3 one number repeats itself and the divisor is 3, in 7 there are six entries
326451 in the repeating string of remainders and 7 is the divisor).

(iii) If the remainders repeat, then we get a repeating block of digits in the quotient

1 1
(for 3> 3 repeats in the quotient and for 7, we get the repeating block 142857 in

the quotient).
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Although we have noticed this pattern using only the examples above, it is true for all

rationals of the form g (g#0). On division of p by ¢, two main things happen — either

the remainder becomes zero or never becomes zero and we get a repeating string of
remainders. Let us look at each case separately.

Case (i) : The remainder becomes zero

7
In the example of g Ve found that the remainder becomes zero after,some steps and

7 1
the decimal expansion of i 0.875. Other examples are 3.7 0.5, 550 ~ 2.556. Inall

these cases, the decimal expansion terminates or ends after a finite number of steps.
We call the decimal expansion of such numbers terminating.

Case (ii) : The remainder never becomes zero

1 1
In the examples-of 3 and 7> We notice that the remainders repeat after a certain

stage forcing the.decimal expansionto go on for ever. In other words, we have a
repeating block of digits in the quotient. We say that this expansion is non-terminating

1 1
recurring. For example, 37 0.3333... and 7= 0.142857142857142857...

1 _
The usual way of showing that 3 repeats in the quotient of 3 is to write it as (3.

1 1
Similarly, since the block of digits 142857 repeats in the quotient of 7, we write 7 as

0.142857 > where the bar above the digits indicates the block of digits that repeats.

Als03.57272.... can be written as 3.572 . So, all these examples give us non-terminating
recurring (repeating) decimal expansions.

Thus, we see that the decimal expansion of rational numbers have only two choices:
either they are terminating or non-terminating recurring.

Now suppose, on the other hand, on your walk on the number line, you come across a
number like 3.142678 whose decimal expansion is terminating or a number like
1.272727... that is, 1.27 , whose decimal expansion is non-terminating recurring, can
you conclude that it is a rational number? The answer is yes!
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We will not prove it but illustrate this fact with a few examples. The terminating cases
are easy.

Example 6 : Show that 3.142678 is a rational number. In other words, express 3.142678

in the form g, where p and ¢ are integers and g = 0.

142
Solution : We have 3.142678 = ﬂ > and hence is a rational number.
1000000

Now, let us consider the case when the decimal expansion is non-terminating recurring.

Example 7 : Show that 0.3333.. = 0.3"can'be expressed in the form g , where p and

q are integers and g # 0:

Solution : Since we do not know what 0.3 is , letus call it “x” and so
x=0.3333...
Now here is where the trick comes in. Look at
10x= 10 x(0.333...) =3.333...
Now, 3.3333...= 3 +x, since x = 0.3333...
Therefore, 10x=3+x

Solving for x, we get

. 1
9x = 3,1.e,x= 3

Example 8 : Show that 1.272727... = 1.27 can be expressed in the form g , where p

and, g are integers and g # 0.

Solution : Let x=1.272727... Since two digits are repeating, we multiply x by 100 to
get

100 x= 127.2727...
So, 100 x= 126+ 1.272727...= 126 + x
Therefore, 100 x —x = 126, i.e., 99x=126
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126 14

1.€., X = E:ﬁ

14 _
You can check the reverse that ﬁ =1.27.

Example 9 : Show that 0.2353535... = 0.235 can be expressed in the form g,

where p and ¢ are integers and g # 0.

Solution : Let x = 0.235 . Over here, note that 2 does not repeat; but the block 35
repeats. Since two digits are repeating, we multiply x by 100 to get

100°x= 23.53535...

So, 100x= 23.3 +0.23535... =233 +x
Therefore, 99 x = 233

i 99 x = —— which gi _ 233
ie., x= 10 > which gives x = 990

233 —
You can also checkthe reverse that % = (0.235.

So, every number with a non-terminating recurring decimal expansion can be expressed

in the form g (g #0), where p and g are integers. Let us summarise our results in the

following form ;

The decimal expansion of a rational number is either terminating or non-
terminating recurring. Moreover, a number whose decimal expansion is
terminating or non-terminating recurring is rational.

So, now we know what the decimal expansion of a rational number can be. What
about the'decimal expansion of irrational numbers? Because of the property above,
we can conclude that their decimal expansions are non-terminating non-recurring.

So, the property for irrational numbers, similar to the property stated above for rational
numbers, is

The decimal expansion of an irrational number is non-terminating non-recurring.
Moreover, a number whose decimal expansion is non-terminating non-recurring
is irrational.
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Recall s = 0.10110111011110... from the previous section. Notice that it is non-
terminating and non-recurring. Therefore, from the property above, it is irrational.
Moreover, notice that you can generate infinitely many irrationals similar to s.

What about the famous irrationals /2 and n? Here are their decimal expansions up
to a certain stage.

J2 =1.4142135623730950488016887242096...
m =3.14159265358979323846264338327950...

22 2
(Note that, we often take — asan approximate value for 7, but'm # - )

Over the years, mathematicians have developed various techniques to' produce more
and more digits in the decimal expansions-of irrational numbers. For example, you
might have learnt to find digits in the decimal expansion of /2. by the division method.
Interestingly, in the Sulbasutras (rules of chord), a mathematical treatise of the Vedic

period (800 BC - 500 BC), you find an approximation of /2 as follows:
11 11

N :1+§+[ng)—(ﬁxzx%j=1.4l42156

Notice that it is the'same as the one given above for the first five decimal places. The
history of the hunt for digits in the decimal expansion of 7 is very interesting.

The Greek genius Archimedes was the first to compute
digits in the decimal expansion of t. He showed 3.140845
<7 <3.142857. Aryabhatta (476 — 550 C.E.), the great
Indian mathematician and astronomer, found the value
of m correct to four decimal places (3.1416). Using high
speed computers and-advanced algorithms, © has been
computed to over 1.24 trillion decimal places!

Archimedes (287 BCE —212 BCE)
Fig. 1.10

Now, let-us see how to obtain irrational numbers.

1 2
Example 10 : Find an irrational number between 7 and 7

1 N —
Solution : We saw that 7= 0.142857 . So, you can easily calculate % =0.285714.

1
To find an irrational number between 7 and 7, we find a number which is



14 MATHEMATICS

non-terminating non-recurring lying between them. Of course, you can find infinitely
many such numbers.

An example of such a number is 0.150150015000150000...

EXERCISE 1.3
1. Write the following in decimal form and say what kind of decimal expansion each
has :
36 1 !
D 00 Y ) °%
v 2 2 . 329
™) 73 Ay . J00

23
707

1
2. Youknow that 7= 0142857 . Canyou predict what the decimal expansions of

4 5 6

7707 are, without actually doing the long division? If so, how?

1
[Hint : Study the remainders while finding the value of 7 carefully.]

3. Express the following in the form g , where p and ¢ are integers and g # 0.

@ 06 (i) 0.47 (iiiy 0.001

4. Express 0.99999 .... in the form 5 . Are you surprised by your answer? With your

teacher and classmates discuss why the answer makes sense.

5. What can the maximum number of digits be in the repeating block of digits in the

1
decimal expansion of 7 ? Perform the division to check your answer.

6. Look at several examples of rational numbers in the form g (g#0), where p and g are

integers with no common factors other than 1 and having terminating decimal
representations (expansions). Can you guess what property g must satisfy?

7. Write three numbers whose decimal expansions are non-terminating non-recurring.

5 9
8. Find three different irrational numbers between the rational numbers 7 and ﬁ .

9. Classify the following numbers as rational or irrational :
O 23 (@) 225 (i) 0.3796
(iv) 7.478478... (v) 1.101001000100001...
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1.4 Representing Real Numbers on the Number Line

In the previous section, you have seen that any
real number has a decimal expansion. This helps
us to represent it on the number line. Let us see
how.

Suppose we want to locate 2.665 on the
number line. We know that this lies between 2
and 3.

So, let us look closely at the portion of the
number line between 2 and 3. Suppose we divide
this into 10 equal parts and mark each point of
division as in Fig. 1.11 (i). Then-the first mark to

Fig. 1.11

the right of 2 will represent 2.1, the second 2.2, and so on. You might be finding some
difficulty in observing these points of division between 2 and 3.in Fig. 1.11 (i). To have
a clear view of the same, you may take a magnifying glass and look at the portion
between 2 and 3. It will look like what you see in Fig. 1.11'(ii). Now, 2.665 lies between
2.6 and 2.7. So, let us focus.on the portion between 2.6 and 2.7 [See Fig. 1.12(i)]. We
imagine to divide'this.again into ten equal parts. The first mark will represent 2.61, the
next 2.62, and so on./To see this clearly, we magnify this as shown in Fig. 1.12 (ii).

2.65

| 2.61 262 2.63 2.064 | 2,66 2.67

2,68 2.69 |

(i1)
Fig. 1.12

Again, 2.665 lies between 2.66 and 2.67. So, let us focus on this portion of the
number line [see Fig. 1.13(i)] and imagine to divide it again into ten equal parts. We
magnify it to see it better, as in Fig. 1.13 (ii). The first mark represents 2.661, the next
one represents 2.662, and so on. So, 2.665 is the 5th mark in these subdivisions.
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2.61 2.62 2.63 2.64 |

4|||.||

(1)

2.665

26612.6622.6632.664 I 2.6662.6672.6682.669

v

< |1 o
(i)
Fig. 1.13

We call this process of visualisation of representation of numbers on the number line,
through a magnifying glass, as the process of successive magnification.

So, we have seenthat it is possible by sufficient successive magnifications to visualise
the position (or representation) of a real number with a terminating decimal expansion
on the number line.

Let us now try and visualise the‘position (or representation) of a real number with a
non-terminating recurring decimal expansion on the number line. We can look at
appropriate intervals through a magnifying glass and by successive magnifications
visualise the position of the number on the number line.

Example 11 : Visualize the representation of 5.37 on the number line upto 5 decimal
places, that is, up.to 5.37777.

Solution :Once again we proceed by successive magnification, and successively
decrease the lengths of the portions of the number line in which 5.37 is located. First,

we'see.that 5.37 is located between 5 and 6. In the next step, we locate 5.37
between 5.3 and 5.4. To get a more accurate visualization of the representation, we
divide this portion of the number line into 10 equal parts and use a magnifying glass to

visualize that 5.37 lies between 5.37 and 5.38. To visualize 5.37 more accurately, we
again divide the portion between 5.37 and 5.38 into ten equal parts and use a magnifying

glass to visualize that 5.37 lies between 5.377 and 5.378. Now to visualize 5.37 still
more accurately, we divide the portion between 5.377 an 5.378 into 10 equal parts, and
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visualize the representation of 537 asin Fig. 1.14 (iv). Notice that 5.37 is located

closer to 5.3778 than to 5.3777 [see Fig 1.14 (iv)].

5 6

5
515£5354 \)5.65.75.85.9
< I&lli%lll >

| 1)
|
|
]
|
o - | 7
5:35 : g2
5317532 533 534 53 537&.38 .39{
B RN S A/ Y
(i1)
.
50375
| 5.371 5.372 5.373 5.374 5.37 5.377#,37 379 ‘
DR A LR N
| (iii)
|
|
|
|
s \3)
N 5.3775 : :
I 53771 5.3773 5.377]'| 5\3|77‘)
Ly
< Ly
537 (1v)
Fig. 1.14

Remark : We can proceed endlessly in this manner, successively viewing through a
magnifying glass and simultaneously imagining the decrease in the length of the portion
of the number line in which 5.37 is located. The size of the portion of the line we
specify depends on the degree of accuracy we would like for the visualisation of the

position of the number on the number line.
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You might have realised by now that the same procedure can be used to visualise a
real number with a non-terminating non-recurring decimal expansion on the number
line.

In the light of the discussions above and visualisations, we can again say that every
real number is represented by a unique point on the number line. Further, every
point on the number line represents one and only one real number.

EXERCISE 1.4

1. Visualise 3.765 on the number line, using successive magnification.

2. Visualise 426 on the number line;up to 4 decimal places.

1.5 Operations on Real Numbers

You have learnt, in earlier classes, that rational numbers satisfy the commutative,
associative and distributive laws for addition and multiplication. Moreover, if we add,
subtract, multiply ordivide (except by zero) two rational numbers, we still get a rational
number (that is, rational numbers are ‘closed’ with respect to addition, subtraction,
multiplication and division). It turns out that irrational numbers also satisfy the
commutative, associative and distributivelaws for addition and multiplication. However,
the sum, difference, quotients and products of irrational numbers are not always

17

irrational. For example, (\/8) i+ (_\/E) ,(\/5) — (\/5) (\/5)(\/5) and W are
rationals.

Let us look at what happens when we add and multiply a rational number with an

irrational number. For example, /3 is irrational. What about 2 + /3 and 24/3 ? Since
\/5 has a non-terminating non-recurring decimal expansion, the same is true for

2+ /3 and 2.3 Therefore, both 2 + /3 and 23 are also irrational numbers.

7
Example 12 : Check whether 7./5, f J2 + 21, = 2 are irrational numbers or

not.

Solution : \/5 =2.236..., /2 = 1.4142.., n=3.1415...
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NN

Then 7./5 =15.652..., N NN == =3.1304...

V2 +21=224142.. n—2=1.1415...
All these are non-terminating non-recurring decimals. So, all these are irrational numbers.

Now, let us see what generally happens if we add, subtract, multiply, divide, take
square roots and even nth roots of these irrational numbers, where 7 is any natural
number. Let us look at some examples.

Example 13 : Add 2\/5 + 5\/5 and \/5 — 3\/5.
Solution : (2\/5 +5\/§) +(\/§ —3\/§) = (2\/5 + \/5) + (5\/§ —3\/5)
= 2+DV2+(G5-)V3=32+23

Example 14 : Multiply 6./5 by 2./5 .
Solution : 6./5 x 2./5 =6%x2 x /5 x /5 =12.x5 =60

Example 15': Divide 8\/E by 2\/5 .

Solution : 8/15 = 2./3 = % =45

These examples may lead you to expect the following facts, which are true:
(i) The sum or difference of'a rational number and an irrational number is irrational.

(ii) The product or quotient of a non-zero rational number with an irrational number is
irrational.

(iii)) Ifweadd, subtract, multiply or divide two irrationals, the result may be rational or
irrational.

We now turn our attention to the operation of taking square roots of real numbers.

Recall that, if a is a natural number, then /g = 5 means 5> = a and b > 0. The same
definition can be extended for positive real numbers.

Let a > 0 be a real number. Then /; = b means »>*=a and b > 0.

In Section 1.2, we saw how to represent \/; for any positive integer n on the number
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line. We now show how to find /x for any given positive real number x geometrically.

For example, let us find it for x =3.5, i.e., we find /3.5 geometrically.

Fig. 1.15

Mark the distance 3.5 units from afixed point A on a givenine to obtain a point B such
that AB = 3.5 units (see Fig. 1.15). From B, mark a distance of 1'unit and mark the
new point as C. Find the mid-point of AC and mark that pointas O. Draw a semicircle
with centre O and radius/ OC. Draw aline perpendicular to AC passing through B and

intersecting the semicircle at D. Then, BD = v/3.5.

More generally; to-find Jx , for any positive real
number x, we mark B so that AB = x units, and, as in
Fig. 1.16, mark C.so that BC = 1 unit. Thenyas we

have done for the case x = 3.5, we find BD = Jx
(see Fig. 1.16). We can _prove this result using the
Pythagoras Theorem.

Notice that, in Fig. 1.16, A OBD is a right-angled triangle. Also, the radius of the circle
x+1

Fig. 1.16

is units.
x+1
Therefore; OC = 0D = OA = units.
\ V_ X+ 1) _x—1
Now, OB = > >

So, by the Pythagoras Theorem, we have

x+12 x—l2 dx
BD? = 0D? - 0OB? = > - =—=X,

This shows that BD = \/ .
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This construction gives us a visual, and geometric way of showing that [y exists for

all real numbers x > 0. If you want to know the position of \/x on the number line,

then let us treat the line BC as the number line, with B as zero, C as 1, and so on.
Draw an arc with centre B and radius BD, which intersects the number line in E

(see Fig. 1.17). Then, E represents Jx.

a5

Fig. 1.17

We would like to now extend the idea of square roots to cube roots, fourth roots,
and in general nth roots, where # is a positiye integer. Recall your understanding of
square roots and.cube roots from earlier classes.

What is 3/g ? Well, we know it has to be some positive number whose cube is 8, and
you must have guessed‘3/g =2. Let'us try 3/243 . Do you know some number b such
that > = 243? The answer is 3. Therefore, /243 = 3.

From these examples, can you define 2/, for a real number a > 0 and a positive
integer n?
Let a > 0 be a real number and » be a positive integer. Then 2/4 = b, if b = a and

b > 0. Note that the symbol * ./ * used in /2, ¥/8, %/a , etc. is called the radical sign.

We now list some identities relating to square roots, which are useful in various
ways. You are already familiar with some of these from your earlier classes. The
remaining ones follow from the distributive law of multiplication over addition of real
numbers, and from the identity (x + y) (x — y) = x? —)?, for any real numbers x and y.

Let a and b be positive real numbers. Then

) ab =+ab (if) \/%Z%
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i) (Va+vb)(Na-b)=a-b  Gv) (a+b)(a—b)=a’~b
W) (Va+b)(Ne +d)=ac +Jad +Jbe + Jbd
i) (Na +B) =a+2ab +b

Let us look at some particular cases of these identities.

Example 16 : Simplify the following expressions:

O [5+7)(2+5) @ (53355 )

(i) (V3 +7) @) (VIT=N7)(VIT+7)
Solution : (i) (5 +V7)(2+V5) =10+ 575 + 27% V35
(ii) (5+J§)(5—J§)=52—(\/§)z=25—5=20
(i) (ﬁ+ﬁ)2=(J§)2+2\/§\/7+(\/7)2=3+2Jﬁ+7=10+2ﬁ
(iv) (Jﬁ—ﬁ)(Jﬁ+ﬁ)=(Jﬁ)2—(\/7)2:11—7=4

Remark : Note that ‘simplify’ in'the example above has been used to mean that the
expression should be written as the sum of a rational and an irrational number.

1
We end this section by considering the following problem. Look at ﬁ Can you tell

where it shows up on the number line? You know that it is irrational. May be it is easier
to handle if the denominator is a rational number. Let us see, if we can ‘rationalise’ the
denominator, that is, to make the denominator into a rational number. To do so, we
need the.identities involving square roots. Let us see how.

1
Example 17 : Rationalise the denominator of ﬁ

1
Solution : We want to write ﬁ as an equivalent expression in which the denominator

is a rational number. We know that /2 . /2 is rational. We also know that multiplying
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V2 2
2 by Np will give us an equivalent expression, since N 1. So, we put these two

facts together to get

11 2 2

2 2022

In this form, it is easy to locate E on the number line. It is half way between 0 and

oL

1
Example 18 : Rationalise the.denominator of 2+ 3

1
Solution : We use the Identity (iv) given earlier. Multiply and divide 2+ 03 by

2—\/§t0get21\/* z ? 24 \/3_—2 ‘f

5
Example 19 : Rationalise the denominator of N \/g

Solution : Here we use the Identity (iii) given earlier.

5 5 Bz S(3ess) s
3 BB s 3-5 :(TJ(\EME)

1
E le 20 : Rationalise the d inator of :
xample ationalise the denominator of ——— NG

Solution :

Lot [(7-32)_7-32 _7-32
7+3J2 7+3J2 \7-3V2) 49-18 31
So, when the denominator of an expression contains a term with a square root (or

anumber under a radical sign), the process of converting it to an equivalent expression
whose denominator is a rational number is called rationalising the denominator.
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EXERCISE 1.5

1. Classify the following numbers as rational or irrational:

247
W 2-5 @ (3+323) =23 i S

1
@iv) ﬁ ) 2=n

2. Simplify each of the following expressions:

i (3++3)(2+2) (i (3++3)(3-53)
i) (V5 + \/5)2 @ (5 —2) (VB 42)

3. Recall, is defined as the ratio of the circumference (say ¢) of a circle to its diameter

c
(say d). That is; 1= — - This-seems to contradict the fact that 7 is irrational. How will

d

you resolve this contradiction?
Represent v/9.3 onthe number line.

Rationalise the/denominators of the following:

1 1
0 i 775
1

1
@ 2 @5

1.6 Laws of Exponents for Real Numbers

Do you remember how to simplify the following?

@ 17217 = (i) (5% =
10
(iii) = (iv) 77 .9 =
Did you get these answers? They are as follows:
G 1772.17°=17 (i) (537 = 5"
23"

(iii) = =23’ (iv) 7% . 9% = 63°
23
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To get these answers, you would have used the following laws of exponents,
which you have learnt in your earlier classes. (Here a, n and m are natural numbers.
Remember, a is called the base and m and » are the exponents.)

@ a.a=a'" (i) (@™ = a™

m

(iif) Z =a",m>n (iv) a"b™ = (ab)"

What is (a)°? Yes, it is 1! So you have learnt that (a)° = 1. So, using (iii), we can

get P a™". We can now extend the laws to negative exponents too:
So, for example :

i 177177 =177 (i) (57 =5

B

2 -10
(i) —z=23" ) ()7 (9% =(63)°
Suppose we wantto do the following computations:

2 A 1y
i 23/2° (ii) (35]

1

5 Lo
(i) — @iv) 135 -17°

73

How would we go about it? It turns out that we can extend the laws of exponents
that we have studied earlier,-even when the base is a positive real number and the
exponents are rational numbers. (Later you will study that it can further to be extended
when the exponents are real numbers.) But before we state these laws, and3 to even
make sense of these laws, we need to first understand what, for example 42 is. So,
we have.some work to do!

In Section 1.4, we defined %/ for a real number a > 0 as follows:

Let a > 0 be a real number and 7 a positive integer. Then 2/, = b, if b" = a and
b> 0.

1 1
In the language of exponents, we define #/z = a”. So, in particular, 3/2 = 27.

3
There are now two ways to look at 42.
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3 1 1
42 = (4) =(64)> =8
Therefore, we have the following definition:

Let a > 0 be a real number. Let m and »n be integers such that m and 7 have no
common factors other than 1, and » > 0. Then,

al= ( 2fa )'" — ol
We now have the following extended laws of exponents;

Let a > 0 be a real number and p and ¢ be rational numbers. Then, we have

i & .a'=a" (i) (@)t = o
a’ (
(iii) o a’’ (iv) a*b? = (aby
You can now'use these laws to answer the questions asked earlier.
o1 ?
Example 21 : Simplify (i) 23 .23 (i) [35J
7% Lot
(iii) (iv) 135 -17°
Solution : 7
2 1N 0t
(i) 23.22=2V ¥ =23=2'=2 (i) (35} =3°
1
75 (1_1] 3.5 2 (| 1 1
iy —=79)V =715 =7 (iv) 13°-17° = (13 x17)° =221°
73
EXERCISE 1.6
1 1 1
1. Find: (i) 642 (i) 32° (iii) 1253
3 2 3 -1
2. Find: (i 92 (i) 32° (i) 16 (iv) 125°
1
o NI LY 12 .
3 Smplity: () 2.2 ) (3] @) (@ 7eg
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1.7 Summary

In this chapter, you have studied the following points:

1.

10.

Anumber r is called a rational number, if it can be written in the form g , where p and g are

integers and g # 0.

Anumber s is called a irrational number, if it cannot be written in the form 5 , where pand

g are integers and g # 0.

The decimal expansion of a rational number is either terminating or non-terminating recurring.
Moreover, a number whose decimal expansion is terminating or non-terminating recurring
is rational.

The decimal expansion of an irrational numberis non-terminating non-recurring. Moreover,
anumber whose decimal expansion is non-terminating non-recurring is irrational.

All the rational and irrational numbers'make up the collection of real numbers.

There is a unique real number corresponding to every point on the number line. Also,
corresponding to each real number, there is a unique point on the number line.

r
If » is rational and s is irrational, then » + s and » — s are irrational numbers, and rs and S are

irrational numbers, 7 = 0.

For positive real numbers a and-b;, the following identities hold:

O ab = ayb i o=

i) (Va+b)(Ya-vB)yca-b ) (a+Vb)(a-b)=da"-b
V) (\/Z+\/3)2 =g+ 2Jab + b

> where aand b are

1 Ja-b
To rationalise the denominator of ————> we multiply this b
Ja + b Py e

integers.
Let a> 0 be a real number and p and ¢ be rational numbers. Then
Q) a.a'=a"" () (a)i=am

P

(iii) Z—q =a” " (iv) @b’ = (aby
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CHAPTER 2

INTRODUCTION TO EUCLID’S GEOMETRY

2.1 Introduction

The word ‘geometry’ comes form the Greek words ‘geo’, meaning the ‘earth’,
and ‘metrein’, meaning ‘to measure’. Geometry appears to have originated from
the need for measuring land. This branch of mathematics was studied in various
forms in every ancient civilisation, be it in Egypt, Babylonia, China, India, Greece,
the Incas, etc.The people of these civilisations faced several practical problems
which required the development of geometry in various ways.

For example.“whenever the river Nile
overflowed, it wiped out the boundaries between
the adjoining fields of different landjowners. After
such flooding, these boundaries had to be
redrawn. For this purpose, the Egyptians
developed a numberof geometric techniques and
rules for calculating simple areas and also for
doing simple constructions. The knowledge of
geometry was also used by them for computing
volumesiof granaries, and for constructing canals
and pyramids. They also knew the correct formula
to.find the volume of a truncated pyramid (see
Fig. 2.1).You know that a pyramid is a solid figure,
the base of which is a triangle, or square, or some
other polygon, and its side faces are triangles
converging to a point at the top.

Fig. 2.1 : ATruncated Pyramid
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In the Indian subcontinent, the excavations at Harappa and Mohenjo-Daro, etc.
show that the Indus Valley Civilisation (about 3000 BCE) made extensive use of
geometry. It was a highly organised society. The cities were highly developed and
very well planned. For example, the roads were parallel to each other and there was
an underground drainage system. The houses had many rooms of different types. This
shows that the town dwellers were skilled in mensuration and practical arithmetic.
The bricks used for constructions were kiln fired and the ratio length : breadth : thickness,
of the bricks was found tobe 4 : 2 : 1.

In ancient India, the Sulbasutras (800 BCE to 500 BCE) were the manuals of
geometrical constructions. The geometry of the Vedic period originated with the
construction of altars (or vedis) and fireplaces for performing Vedic rites. The location
of the sacred fires had to be in accordance to.the clearly laid down instructions about
their shapes and areas, if they were to be effective instruments. Square and circular
altars were used for household rituals;while altars whose shapes were combinations
of rectangles, triangles and trapeziums were required for public worship. The sriyantra
(given in the Atharvaveda) consists of nine interwoven isosceles triangles. These
triangles are arranged in such a way that they produce 43 subsidiary triangles. Though
accurate geometric methods were used for the constructions of altars, the principles
behind them were not discussed.

These examples showthat geometry was being developed and applied everywhere
in the world. 'But this was happening in an unsystematic manner. What is interesting
about these developments of geometry in the ancient world is that they were passed
on from one generation to the next, either orally or through palm leaf messages, or by
other ways. Also, we find that in'some civilisations like Babylonia, geometry remained
a very practical oriented discipline,as was the case in India and Rome. The geometry
developed by Egyptians mainly consisted of the statements of results. There were no
general rules of the procedure. In fact, Babylonians and Egyptians used geometry
mostly for practical purposes and did very little to develop it as a systematic science.
But in civilisations like Greece, the emphasis was on the reasoning behind why certain
constructions work. The Greeks were interested in establishing the truth of the
statements they discovered using deductive reasoning (see Appendix 1).

A Greek mathematician, Thales is credited with giving the
first known proof. This proof was of the statement that a circle
is:.bisected (i.e., cut into two equal parts) by its diameter. One of
Thales’ most famous pupils was Pythagoras (572 BCE), whom
you have heard about. Pythagoras and his group discovered many
geometric properties and developed the theory of geometry to a
great extent. This process continued till 300 BCE. At that time
Euclid, a teacher of mathematics at Alexandria in Egypt, collected
all the known work and arranged it in his famous treatise,

Thales
(640 BCE —546 BCE)
Fig. 2.2
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called ‘Elements’. He divided the ‘Elements’ into thirteen
chapters, each called a book. These books influenced
the whole world’s understanding of geometry for
generations to come.

In this chapter, we shall discuss Euclid’s approach
to geometry and shall try to link it with the present day
geometry.

Euclid (325 BCE - 265 BCE)
Fig. 2.3

2.2 Euclid’s Definitions, Axioms and Postulates

The Greek mathematicians of Euclid’s time thought of geometry asan abstract model
of'the world in which they lived. Thenotions of point, line, plane (or surface) and so on
were derived from what was seen around-them. From studies-of the space and solids
in the space around them, an abstract geometrical notion of a solid object was developed.
A solid has shape, size, position, and.can be moved from one place to another. Its
boundaries are called surfaces. They separate one part of the space from another,
and are said to have no thickness. The boundaries of the surfaces are curves or
straight lines. These lines'end in points.

Consider/the three steps from solids to points (solids-surfaces-lines-points). In
each step we lose one extension, also called a dimension. So, a solid has three
dimensions, a surface has two, a line has'one and a point has none. Euclid summarised
these statements as definitions. He began his exposition by listing 23 definitions in
Book 1 of the ‘Elements’. A few of them are given below :

1. A point is that which has no part.
A line is breadthless length.

The ends of a line are points.

A'surface is that which has length and breadth only.

2
3
4. A straight line is a line which lies evenly with the points on itself.
5
6./ The'edges of a surface are lines.

7

A plane surface is a surface which lies evenly with the straight lines on itself.

Ifyou carefully study these definitions, you find that some of the terms like part,
breadth, length, evenly, etc. need to be further explained clearly. For example, consider
his definition of a point. In this definition, ‘a part’ needs to be defined. Suppose if you
define ‘a part’ to be that which occupies ‘area’, again ‘an area’ needs to be defined.
So, to define one thing, you need to define many other things, and you may get a long
chain of definitions without an end. For such reasons, mathematicians agree to leave
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some geometric terms undefined. However, we do have a intuitive feeling for the
geometric concept of a point than what the ‘definition” above gives us. So, we represent
a point as a dot, even though a dot has some dimension.

A similar problem arises in Definition 2 above, since it refers to breadth and length,
neither of which has been defined. Because of this, a few terms are kept undefined
while developing any course of study. So, in geometry, we fake a point, a line and a
plane (in Euclid's words a plane surface) as undefined terms. The only thing is
that we can represent them intuitively, or explain them with the help of ‘physical
models’.

Starting with his definitions, Euclid assumed certain properties, which were not to
be proved. These assumptions are actually ‘obvious universal truths®. He divided them
into two types: axioms and postulates. He used the term ‘postulate’ for the assumptions
that were specific to geometry. Common notions (often called axioms), on the other
hand, were assumptions used throughout mathematics and not specifically linked to
geometry. For details about axioms and postulates, refer to Appendix 1. Some of
Euclid’s axioms, not.in his order, are given below

(1) Things which are equal to the same thing are equal to one another.
(2) If equals‘are'added to equals, the wholes are equal.

(3) If equals are subtracted from equals, the remainders are equal.

(4) Things which coincide with one another are equal to one another.

(5) The whole is greater than the part.

(6) Things which are double of the same things are equal to one another.
(7) Things which are halves of the same things are equal to one another.

These ‘common notions’ refer to magnitudes of some kind. The first common
notion could be applied to plane figures. For example, if an area of a triangle equals the
area of a rectangle and the area of the rectangle equals that of a square, then the area
of the triangle also equals the area of the square.

Magnitudes of the same kind can be compared and added, but magnitudes of
different kinds cannot be compared. For example, a line cannot be added to a rectangle,
nor can an angle be compared to a pentagon.

The 4th axiom given above seems to say that if two things are identical (that is,
they are the same), then they are equal. In other words, everything equals itself. It is
the justification of the principle of superposition. Axiom (5) gives us the definition of
‘greater than’. For example, if a quantity B is a part of another quantity A, then A can
be written as the sum of B and some third quantity C. Symbolically, A > B means that
there is some C such that A =B + C.
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Now let us discuss Euclid’s five postulates. They are :
Postulate 1 : A straight line may be drawn from any one point to any other point.

Note that this postulate tells us that at least one straight line passes through two
distinct points, but it does not say that there cannot be more than one such line. However,
in his work, Euclid has frequently assumed, without mentioning, that there is a unique
line joining two distinct points. We state this result in the form of an axiom as follows:

Axiom 2.1 : Given two distinct points, there is a unique line that passes through
them.

How many lines passing through P also pass through Q (see Fig. 2:4)? Only one,
that is, the line PQ. How many lines passing through Q also pass through P? Only one,
that is, the line PQ. Thus, the statement above is self-evident, and so,is taken as an
axiom.

Fig. 2.4

Postulate 2 : A terminated-line can be produced indefinitely.

Note that what we call a line segment now-a-days is what Euclid called a terminated
line. So, according to the present day terms, the second postulate says that a line
segment can be extended on either side to form a line (see Fig. 2.5).

Fig. 2.5
Postulate 3 : A circle can be drawn with any centre and any radius.
Postulate 4 : All right angles are equal to one another.

Postulate S : If a straight line falling on two straight lines makes the interior
angles on the same side of it taken together less than two right angles, then the
two straight lines, if produced indefinitely, meet on that side on which the sum of
angles is less than two right angles.
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For example, the line PQ in Fig. 2.6 falls on lines

AB and CD such that the sum of the interior angles 1 A P B
and 2 is less than 180° on the left side of PQ. : !

Therefore, the lines AB and CD will eventually I 2\

intersect on the left side of PQ. D

Fig. 2.6

A brief look at the five postulates brings to your notice that Postulate'5 is far more
complex than any other postulate. On the other hand, Postulates 1 through 4 are so
simple and obvious that these are taken as ‘self-evident truths’"However, it is not
possible to prove them. So, these statements are accepted without'any proof
(see Appendix 1). Because of its.complexity, the fifth postulate will be given more
attention in the next section.

Now-a-days, ‘postulates’ and ‘axioms’ are terms that are used interchangeably
and in the same sense. ‘Postulate’ is actually a verb. When we say “let us postulate™,
we mean, “let us make some statement based on the observed phenomenon in the
Universe”. Its truth/validity.is checked afterwards. If it is true, then it is accepted as a
‘Postulate’.

A system of axioms'is called consistent (see Appendix 1), if it is impossible to
deduce from these axioms a statement that contradicts any axiom or previously proved
statement. So, when any system.of axioms is given, it needs to be ensured that the
system is consistent.

After Euclid stated his postulates and axioms, he used them to prove other results.
Then using these results, he proved some more results by applying deductive reasoning.
The statements that-were proved are called propositions or theorems. Euclid
deduced 465 propositions in a logical chain using his axioms, postulates, definitions and
theorems proved earlier in the chain. In the next few chapters on geometry, you will
be using these axioms to prove some theorems.

Now; letus see in the following examples how Euclid used his axioms and postulates
for proving some of the results:

Example 1 : If A, B and C are three points on a line, and B lies between A and C
(see Fig. 2.7), then prove that AB + BC = AC.

Fig. 2.7
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Solution : In the figure given above, AC coincides with AB + BC.

Also, Euclid’s Axiom (4) says that things which coincide with one another are equal to
one another. So, it can be deduced that

AB +BC = AC

Note that in this solution, it has been assumed that there is a unique line passing
through two points.

Example 2 : Prove that an equilateral triangle can be constructed on any given'line
segment.

Solution : In the statement above, a line segment of any length is'given, say AB
[see Fig. 5.8(i)].

wii)
Fig. 2.8

Here, you need to do some construction. Using Euclid’s Postulate 3, you can draw a
circle with point A as the centre andAB as the radius [see Fig. 2.8(ii)]. Similarly, draw
another circle with point Bas the centre and BA as the radius. The two circles meet at
a point, say C. Now, draw’ the line segments AC and BC to form A ABC
[see Fig. 2.8 (iii)].

So, you have to prove that this triangle is equilateral, i.e., AB = AC = BC.
Now, AB = AC, since they are the radii of the same circle )
Similarly,» AB/= BC (Radii of the same circle) 2)

From these two facts, and Euclid’s axiom that things which are equal to the same thing
are.equal to one another, you can conclude that AB = BC = AC.

So, A ABC is an equilateral triangle.

Note that here Euclid has assumed, without mentioning anywhere, that the two circles
drawn with centres A and B will meet each other at a point.

Now we prove a theorem, which is frequently used in different results:
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Theorem 2.1 : Two distinct lines cannot have more than one point in common.

Proof : Here we are given two lines / and m. We need to prove that they have only one
point in common.

For the time being, let us suppose that the two lines intersect in two distinct points,
say P and Q. So, you have two lines passing through two distinct points P and Q. But
this assumption clashes with the axiom that only one line can pass through two distinct
points. So, the assumption that we started with, that two lines can pass through two
distinct points is wrong.

From this, what can we conclude? We are forced to conclude that two distinct
lines cannot have more than one point in common.

EXERCISE 2.1

1.  Which of the following statements are true and which are false? Give reasons for your
answers.

(i) Only oneline can pass through a single point.

(ii) There are an infinite number of lines which pass through two distinct points.
(iii) A’terminated line can be produced indefinitely on both the sides.

(iv) Iftwo circles are equal, then their radii are equal.

(v) InFig:-29,ifAB=PQand PQ=XY, then AB = XY.

b

-

Fig.2.9

2. Give a definition for each of the following terms. Are there other terms that need to be
defined first? What are they, and how might you define them?

(i) parallel lines (i) perpendicular lines (i) line segment
(iv) radius of a circle (v) square
3. Consider two ‘postulates’ given below:

(i) Given any two distinct points A and B, there exists a third point C which is in
between A and B.

(i) There exist at least three points that are not on the same line.

Do these postulates contain any undefined terms? Are these postulates consistent?
Do they follow from Euclid’s postulates? Explain.
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4. If a point C lies between two points A and B such that AC = BC, then prove that
1
AC= 5 AB. Explain by drawing the figure.

5. In Question 4, point C is called a mid-point of line segment AB. Prove that every line
segment has one and only one mid-point.

6. InFig.2.10,ifAC =BD, then prove that AB =CD.

Fig. 2.10

7. Whyis Axiom 5, in the list of Euclid’s axioms, considered a ‘universal truth’? (Note that
the question is not about the fifth postulate.)

2.3 Equivalent Versions of Euclid’s Fifth Postulate

Euclid’s fifth postulate is very significant in the history of mathematics. Recall it again
from Section 2.2.-We see that by implication, no intersection of lines will take place
when the sum’of the measures of the interior angles on the same side of the falling line
is exactly 180°. There are several equivalent versions of this postulate. One of them is
‘Playfair’s Axiom’ (given by a Scottish mathematician John Playfair in 1729), as stated
below:

‘For every line | and for every point P not lying on I, there exists a unique line
m passing through P and parallel to I.

From Fig. 2.11, you can see'that of all the lines passing through the point P, only line
m is parallel to line /.

Fig. 2.11

This result can also be stated in the following form:

Two distinct intersecting lines cannot be parallel to the same line.
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Euclid did not require his fifth postulate to prove his first
28 theorems. Many mathematicians, including him, were
convinced that the fifth postulate is actually a theorem that
can be proved using just the first four postulates and other
axioms. However, all attempts to prove the fifth postulate as a
theorem have failed. But these efforts have led to a great
achievement — the creation of several other geometries. These /
geometries are quite different from Euclidean geometry. They y,
are called non-Euclidean geometries. Their creation is A LY
considered a landmark in the history of thought because till
then everyone had believed that Euclid’s was the only geometry
and the world itself was Euclidean. Now the geometry of the universe we live.in‘has been
shown to be a non-Euclidean geometry. In fact, itis called spherical geometry. In spherical
geometry, lines are not straight. They are parts of great circles (i.e., circles obtained by
the intersection of a sphere‘and planes passing through the centre of the sphere).

Fig. 2.12

In Fig. 2.12, the lines AN and BN (which are parts of great circles of a sphere) are
perpendicular to the'same line AB: But they are meeting each other, though the sum of
the angles on the same side of line AB is not less than two right angles (in fact, it is 90°
+90° = 180°)-Also, note that the sum of the angles of the triangle NAB is greater than
180°, as LA+ £ B =180°. Thus, Euclidean geometry is-valid only for the figures in the
plane. On the curved surfaces, it fails.

Now, let us consider an example.

Example 3 : Consider the following statement : There exists a pair of straight lines
that are everywhere equidistant from one another. Is this statement a direct consequence
of Euclid’s fifth postulate? Explain.

Solution : Take any line / and a point P not on /. Then, by Playfair’s axiom, which is
equivalent to the fifth postulate, we know that there is a unique line m2 through P which
is parallel to /.

Now; the distance of a point from a line is the length of the perpendicular from
the point to the line. This distance will be the same for any point on m from / and any
point on'/ from m. So, these two lines are everywhere equidistant from one another.

Remark : The geometry that you will be studying in the next few chapters is
Euclidean Geometry. However, the axioms and theorems used by us may be different
from those of Euclid’s.
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EXERCISE 2.2

1. How would you rewrite Euclid’s fifth postulate so that it would be easier to understand?

2. Does Euclid’s fifth postulate imply the existence of parallel lines? Explain.

2.4 Summary

In this chapter, you have studied the following points:

1.

Though Euclid defined a point, a line, and a plane, the definitions are not accepted by
mathematicians. Therefore, these terms are now taken as undefined.

Axioms or postulates are the assumptions which are obvious universal truths. They are not
proved.

Theorems are statements which.are proved, using definitions, axioms, previously proved
statements and deductive reasoning.

Some of Euclid’s axioms were :

(1) Things which are equal to the same thing are equal to 'one another.
(2) If equals are-added to equals, the wholes are equal.

(3) If equals-are.subtracted from equals, the remainders are equal.

(4) Things which coincide with one another are equal to one another.

(5) The whole-is greater than the part.

(6) Things which are double of the same things are equal to one another.
(7) Things which are halves of the same things are equal to one another.
Euclid’s postulates were :

Postulate 1 : A straight line may be drawn from any one point to any other point.
Postulate 2 : A terminated line can be produced indefinitely.

Postulate 32 A circle can be drawn with any centre and any radius.
Postulate 4 : All right angles are equal to one another.

Postulate 5 : Ifa straight line falling on two straight lines makes the interior angles on the
same side of it taken together less than two right angles, then the two straight lines, if
produced indefinitely, meet on that side on which the sum of angles is less than two right
angles.

Two equivalent versions of Euclid’s fifth postulate are:

(i) ‘For every line / and for every point P not lying on /, there exists a unique line m
passing through P and parallel to /.

(i) Two distinct intersecting lines cannot be parallel to the same line.

All the attempts to prove Euclid’s fifth postulate using the first 4 postulates failed. But they
led to the discovery of several other geometries, called non-Euclidean geometries.



CHAPTER 3

LINES AND ANGLES

3.1 Introduction

In Chapter 2, you have studied that a minimum of two points are required to draw a
line. You have also studied some axioms and, with/the help of these axioms, you
proved some other statements. In-this chapter, you will study the properties of the
angles formed when two_lines ‘intersect each other, and also the properties of the
angles formed. when a line intersects two or more-parallel lines at distinct points.
Further you will use these properties to prove some statements using deductive reasoning
(see Appendix 1). You have already verified these statements through some activities
in the earlier classes.

In your daily life, you see different types of angles formed between the edges of
plane surfaces. For making assimilar kind of model using the plane surfaces, you need
to have a thorough knowledge of angles. For instance, suppose you want to make a
model of a hut to keep in the school exhibition using bamboo sticks. Imagine how you
would make it? You would keep some of the sticks parallel to each other, and some
sticks would be kept slanted. Whenever an architect has to draw a plan for a multistoried
building, she has to draw intersecting lines and parallel lines at different angles. Without
the knowledge of the properties of these lines and angles, do you think she can draw
the layout of the building?

In science, you study the properties of light by drawing the ray diagrams.
For example, to study the refraction property of light when it enters from one medium
to the other medium, you use the properties of intersecting lines and parallel lines.
When two or more forces act on a body, you draw the diagram in which forces are
represented by directed line segments to study the net effect of the forces on the
body. At that time, you need to know the relation between the angles when the rays
(or line segments) are parallel to or intersect each other. To find the height of a tower
or to find the distance of a ship from the light house, one needs to know the angle
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formed between the horizontal and the line of sight. Plenty of other examples can be
given where lines and angles are used. In the subsequent chapters of geometry, you
will be using these properties of lines and angles to deduce more and more useful
properties.

Let us first revise the terms and definitions related to lines and angles learnt in
earlier classes.

3.2 Basic Terms and Definitions

Recall that a part (or portion) of a line with two end points is called a-line-segment
and a part of a line with one end point is'called a ray. Note that the line'segment AB is

denoted by AB, and its length is denoted by’ AB. The ray AB is denotedby AR , and

a line is denoted by AR . However, we will'not use these symbols, and will denote
the line segment AB, ray AB, length AB and line AB by the same symbol, AB. The
meaning will be clear from the context. Sometimes small letters /, m, n, etc. will be
used to denote lines.

If three or more points lie on the same line, they are called collinear points;
otherwise they-are called non-collinear points.

Recall that an angle’is formed when:two rays originate from the same end point.
The rays making an angle are called the arms of the angle and the end point is called
the vertex of the angle. You haye studied different types of angles, such as acute
angle, right angle, obtuse angle, 'straight angle and reflex angle in earlier classes
(see Fig. 3.1). A

(i) acute angle : 0° <x <90° (ii) right angle : y = 90° (iii) obtuse angle : 90° <z <180°

(iv) straight angle : s = 180° (v) reflex angle : 180° <¢<360°
Fig. 3.1 : Types of Angles
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An acute angle measures between 0° and 90°, whereas a right angle is exactly
equal to 90°. An angle greater than 90° but less than 180° is called an obtuse angle.
Also, recall that a straight angle is equal to 180°. An angle which is greater than 180°
but less than 360° is called a reflex angle. Further, two angles whose sum is 90° are
called complementary angles, and two angles whose sum is 180° are called

supplementary angles.

You have also studied about adjacent angles
in the earlier classes (see Fig. 3.2). Two angles
are adjacent, if they have a common vertex, a
common arm and their non-common arms are
on different sides of the common arm. In
Fig. 3.2, £ ABD and £ DBC are adjacent
angles. Ray BD is their common‘arm and point
B is their common vertex. Ray BA and ray BC
are non common arms. Moreover, when two
angles are adjacent, then their sum’is always
equal to the angle“formed by the two non-
common arms. So, we can write

Z ABC= 2 ABD + £ DBC.

Note that £ . ABC and £ ABD: are not
adjacent angles."Why? Because their non-
common arms BD and BC lie on the same side
of the common arm BA/

If the non-common arms BA and BC in
Fig. 3.2, form a line then it will look like Fig. 3.3.
In this case, £ ABD and £ DBC are called
linear pair of ‘angles.

You may also recall the vertically opposite
angles formed when two lines, say AB and CD,
intersect each other, say at the point O
(see Fig.’3.4). There are two pairs of vertically
opposite angles.

One pair is ZAOD and ZBOC. Can you
find the other pair?

Fig. 3.2 : Adjacent angles

Fig. 3.3 : Linear pair of angles

Fig. 3.4 : Vertically opposite
angles
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3.3 Intersecting Lines and Non-intersecting Lines

Draw two different lines PQ and RS on a paper. You will see that you can draw them
in two different ways as shown in Fig. 3.5 (i) and Fig. 3.5 (ii).

(i) Intersecting lines (i1) Non-intersecting (parallel) lines
Fig. 3.5 : Different ways of drawing two lines

Recall the notion of a line, that it extends indefinitely in both directions. Lines PQ
and RS in Fig. 3.5 (i) are intersecting lines and in Fig. 3.5/(i1) are parallel lines. Note
that the lengths of the common perpendiculars-at different points on these parallel
lines is the same.-This equal length is called the distance between two parallel lines.

3.4 Pairs of Angles

In Section 3.2, you have learnt the definitions of
some of the pairs of angles such as
complementary angles, supplementary angles,
adjacent angles, linear pair of angles, etc. Can
you think of some relations’ between these
angles? Now, let us find out the relation between
the angles formed when a ray stands on a line.
Draw a figure in which a ray stands on a line as
shown in Fig. 3.6. Name the line as AB and the
ray as,OC. What are the angles formed at the  Fig. 3.6 : Linear pair of angles
point O? They are £ AOC, £ BOC and £ AOB.

Can we write £ AOC + £ BOC = £ AOB? )
Yes! (Why? Refer to adjacent angles in Section 6.2)
What is the measure of £ AOB? It is 180°. (Why?) 2)

From (1) and (2), can you say that £ AOC + £ BOC = 180°? Yes! (Why?)

From the above discussion, we can state the following Axiom:
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Axiom 3.1 : If a ray stands on a line, then the sum of two adjacent angles so
formed is 180°.

Recall that when the sum of two adjacent angles is 180°, then they are called a
linear pair of angles.

In Axiom 3.1, it is given that ‘a ray stands on a line’. From this ‘given’, we have
concluded that ‘the sum of two adjacent angles so formed is 180°°. Can we write
Axiom 3.1 the other way? That is, take the ‘conclusion’ of Axiom 3.1 as ‘given’/and
the ‘given’ as the ‘conclusion’. So it becomes:

(A) If the sum of two adjacent angles:is 180°, then a ray stands on a line (that is,
the non-common arms form a line).

Now you see that the Axiom6.1 and statement (A) are in a sense the reverse of
each others. We call each as.converse of the other. We 'do not know whether the
statement (A) is true or not. et us check. Draw adjacentangles of different measures
as shown in Fig. 3.7. Keep the ruler along one of the non-common arms in each case.
Does the other non-common arm also lie along the ruler?

Fig. 3.7 : Adjacent angles with different measures
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You will find that only in Fig. 3.7 (iii), both the non-common arms lie along the
ruler, that is, points A, O and B lie on the same line and ray OC stands on it. Also see
that £ AOC + £ COB = 125° + 55°=180°. From this, you may conclude that statement
(A) is true. So, you can state in the form of an axiom as follows:

Axiom 3.2 : If the sum of two adjacent angles is 180°, then the non-common arms
of the angles form a line.

For obvious reasons, the two axioms above together is called the/Linear Pair
Axiom.

Let us now examine the case when two lines intersect each other.

Recall, from earlier classes, that when two lines intersect, the vertically opposite
angles are equal. Let us prove thistesult now. See Appendix 1 for the ingredients of a
proof, and keep those in mind while studying the proof given below.

Theorem 3.1 : If two lines intersect each other, then the vertically opposite
angles are equal.

Proof : In the statement above, it is given
that ‘two lines intersect each-other’. So, let
AB and CD be'two lines intersecting at O as
shown in Fig, 3.8. They lead to two pairs of
vertically oppositeangles, namely,

(i) £ AOC and £ BOD (ii) £“AOD and
£ BOC. Fig. 3.8 : Vertically opposite angles

We need to prove that £/ AOC = £ BOD
and £ AOD = £ BOC.

Now, ray OA stands on line CD.
Therefore, £ AOC +Z AOD = 180° (Linear pair axiom) (1)
Can we write £ AOD + £ BOD = 180°? Yes! (Why?) 2)
From (1) and(2), we can write

Z AOC+ £ AOD = £ AOD + £ BOD
This implies that £ AOC = £ BOD (Refer Section 2.2, Axiom 3)
Similarly, it can be proved that Z/AOD = Z/BOC

Now, let us do some examples based on Linear Pair Axiom and Theorem 3.1.
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Example 1 : In Fig. 3.9, lines PQ and RS
intersect each other at point O. If
ZPOR: ZROQ=5":7, find all the angles.

Solution : ~ POR +/ ROQ = 180°
(Linear pair of angles)

But ZPOR:ZROQ=5:7

Given )
( ) A
5
Therefore, 2 POR = o x 180° =75° Fig. 3.9
. 7
Similarly, Z ROQ = o x 180° = 105°
Now, Z POS = ZROQ = 105° (Vertically opposite angles)
and Z SOQ = ZPOR =75° (Vertically opposite angles)

Example 2 : In Fig: 3.10, ray OS stands on a line POQ. Ray OR and ray OT are
angle bisectors of £ POSand £ SOQ, respectively. If £ POS = x, find £ ROT.

Solution : Ray’OS stands on the line POQ.

Therefore, Z POS + £ SOQ =.180°
But, Z POS =x
Therefore, x + £ SOQ = 180°
So, ZS0Q = 180° —x
Now, ray OR bisects ~ POS,therefore, Fig. 3.10
Z ROS = % x £ POS
1 X
=3 X x = 3
Similarly, £ SOT = % x £ SOQ

1
= 5 % (180°—x)

90° — X
2
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Now, Z ROT = £ ROS + £ SOT

= 29002
2 2

= 90°
Example 3 : In Fig. 3.11, OP, OQ, OR and OS are

four rays. Prove that £ POQ + £ QOR + £ SOR +
Z POS =360°.

Solution : In Fig. 3.11, you need to produce any of
the rays OP, OQ, OR or OS backwards to a point.
Let us produce ray OQ backwards to arpoint T so
that TOQ is a line (see Fig. 3.12):

Now, ray OP stands on line TOQ.
Therefore, Z TOP+ ZPOQ=180° (1)
(Linear pair axiom)
Similarly, ray OS-stands on line TOQ.
Therefore, £, TOS+ 2 S0Q =180°/ 1(2)
But 2 S0Q =2 SOR + £ QOR
So, (2) becomes
2 TOS + £ SOR +« QOR = 180°

Now, adding (1) and (3), you get

2 TOP + £ POQ + TOS + £ SOR + £ QOR = 360°
But Z TOP+ £ TOS = £ POS
Therefore, (4) becomes

<« POQ+ 2 QOR + Z SOR + /£ POS = 360°

EXERCISE 3.1

1. In Fig. 3.13, lines AB and CD intersect at O. If
Z AOC+ £ BOE =70° and £ BOD =40°, find
Z BOE andreflex £ COE.

Fig. 3.12
3)

“

Fig. 3.13
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2. InFig. 3.14, lines XY and MN intersect at O. If
ZPOY=90°anda:b=2:3,find c.

3. InFig. 3.15, £ PQR = £ PRQ, then prove that
ZPQS=ZPRT.

4. InFig. 3.16,ifx +y=w+z, then prove that AOB
is a line.

5./ InFig:3.17,POQ s aline. Ray OR is perpendicular
to line PQ. OS is another ray lying between rays
OP and OR. Prove that

1
ZROS =7 (£QOS - £POS).

6. Itisgiventhat £ XYZ =64°and XY is produced
to point P. Draw a figure from the given
information. Ifray YQ bisects £ ZYP, find £ XYQ
and reflex £ QYP.

Fig. 3.14

/\

Fig. 3.15

Fig. 3.16

Fig. 3.17
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3.5 Parallel Lines and a Transversal

Recall that a line which intersects two or more lines
at distinct points is called a transversal
(see Fig. 3.18). Line / intersects lines m and n at
points P and Q respectively. Therefore, line / is a
transversal for lines m and n. Observe that four angles
are formed at each of the points P and Q.

Let us name these anglesas £ 1, £2,..., Z8 as WA
shown in Fig. 3.18. ‘
Z 1, £2, £ 7and £ 8 are called exterior A

angles, while £ 3, £ 4, £ 5 and./ 6 are called

interior angles. Fig. 3.18

Recall that in the earlier'classes, you have named some pairs of angles formed
when a transversal intersects two lines. These are as follows:

(a) Corresponding angles :

(i) £1and £5 (i) £ 2and £ 6

(iii) £ 4and £ 8 (iv) £3and £ 7
(b) Alternate interior angles :

(i) Z4and £ 6 (i) £3and £ 5
(c) Alternate exterior angles:

(i)Z1land £7 (i) £2and £ 8
(d) Interior angles on the same side of the transversal:

(i) £4and L5 (i) £3and £ 6

Interior angles on the same side of the transversal
are also referred to' as consecutive interior angles
or allied angles or co-interior angles. Further, many
atimes, we simply use the words alternate angles for
alternate interior angles.

Now, let us find out the relation between the
angles in these pairs when line m is parallel to line 7.
You know that the ruled lines of your notebook are
parallel to each other. So, with ruler and pencil, draw
two parallel lines along any two of these lines and a
transversal to intersect them as shown in Fig. 3.19. Fig. 3.19
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Now, measure any pair of corresponding angles and find out the relation between
them. You may findthat: £ 1=4£5,/£2=/6,/4=/8and £ 3= /7. From this,
you may conclude the following axiom.

Axiom 3.3 : [f a transversal intersects two parallel lines, then each pair of
corresponding angles is equal.

Axiom 3.3 is also referred to as the corresponding angles axiom. Now, let us
discuss the converse of this axiom which is as follows:

If a transversal intersects two lines such that a pair of corresponding anglesis
equal, then the two lines are parallel.

Does this statement hold true? It can be verified as follows: Draw a line AD and
mark points B and C on it. At B and C, construct £ ABQ and £ BCS equal to each
other as shown in Fig. 3.20 (i).

4
) ¢
¢ /

A

Fig. 3.20

Produce QB and SC on the other side of AD to form two lines PQ and RS
[see Fig. 3.20 (ii)]. You may observe that the two lines do not intersect each other. You
may also draw common perpendiculars to the two lines PQ and RS at different points
and measure their lengths. You will find it the same everywhere. So, you may conclude
that the lines are parallel. Therefore, the converse of corresponding angles axiom is
also true. So, we have-the following axiom:

Axiom 3.4: If a transversal intersects two lines such that a pair of corresponding
angles is equal, then the two lines are parallel to each other.

Can we use corresponding angles axiom to find
out'the relation between the alternate interior angles
when a transversal intersects two parallel lines? In
Fig. 3.21, transveral PS intersects parallel lines AB
and CD at points Q and R respectively.

Is £ BQR = Z QRC and £ AQR = £ QRD?
You know that £ PQA = 2 QRC )]

(Corresponding angles axiom)
Fig. 3.21
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Is Z PQA = Z BQR? Yes! (Why ?) 2)
So, from (1) and (2), you may conclude that

2/ BQR = Z QRC.
Similarly, Z AQR =/ QRD.

This result can be stated as a theorem given below:

Theorem 3.2 : If a transversal intersects two parallel lines, then each pair of
alternate interior angles is equal.

Now, using the converse of the corresponding angles axiom, can we show the two
lines parallel if a pair of alternate interior angles is equal? In Fig. 3.22, the transversal
PS intersects lines AB and CD.at points Q and R respectively such that
Z BQR = Z QRC.

Is AB || CD?
Z BQR = Z PQA (Why?) (1) — -
But, Z BQR =4 QRC (Given) (2)
So, from (1) and (2), you may conclude that
Z PQA = £/ \QRC
But they are corresponding angles.
So, AB||CD (Converse of corresponding angles axiom)

This result can be stated:as a theorem given below: Fig. 3.22

Theorem 3.3 : If a transversal intersects two lines such that a pair of alternate
interior angles is equal, then the two lines are parallel.

In a similar way, you can obtain the following two theorems related to interior angles
on the same side of the transversal.

Theorem 3.4 : If a transversal intersects two parallel lines, then each pair of
interior angles on the same side of the transversal is supplementary.

Theorem' 3.5 : If a transversal intersects two lines such that a pair of interior
angles on the same side of the transversal is supplementary, then the two lines
are parallel.

You may recall that you have verified all the above axioms and theorems in earlier
classes through activities. You may repeat those activities here also.
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3.6 Lines Parallel to the Same Line

If two lines are parallel to the same line, will they be parallel to each other? Let us
check it. See Fig. 3.23 in which line m || line / and line # || line /.

Let us draw a line 7 transversal for the lines, /, m and n. It is given that
line m || line / and line » || line /.

Therefore, Z1=42 and L 1=/3

(Corresponding angles axiom)

So, Z2=2,3(Why?)
But £ 2 and £ 3 are corresponding angles and they N T
are equal. \

Therefore, you can say that
Line m ||Line n
(Converse of corresponding angles axiom) Fig. 3.23

This result can be stated in the form of the following theorem:

Theorem 3.6:_Lines which are parallel to the same line are parallel to each
other.
Note : The property-above can be extended to more than two lines also.

Now, let us solve some examples trelated to parallel lines.

Example 4 : In Fig. 3.24,if PQ||RS; L MXQ = 135°and £ MYR =40°, find £ XMY.

Fig. 3.24 Fig. 3.25

Solution : Here, we need to draw a line AB parallel to line PQ, through point M as
shown in Fig. 3.25. Now, AB || PQ and PQ || RS.
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(AB || PQ, Interior angles on the same side of the transversal XM)

Therefore, AB || RS (Why?)
Now, Z QXM+ £ XMB = 180°

But Z QXM = 135°

So, 135°+ £ XMB = 180°
Therefore, Z XMB = 45°

Now, ZBMY = £ MYR
Therefore, Z BMY = 40°

Adding (1) and (2), you get
Z XMB + £ BMY = 45° +4(0°
That s, /XMY = 85°

(1)

(AB || RS, Alternate angles)

)

Example 5 : If a transversal intersects two lines such that the bisectors of a pair of

corresponding angles-are parallel, then prove that the two lines are parallel.

Solution : In Fig. 3.26, atransversal AD intersects two lines PQ and RS at points B
and C respectively. Ray BE is the bisectorof £ ABQ and ray CG is the bisector of

Z BCS; and BE || CG.
We are to prove that PQ || RS.
It is given that ray BE is the bisector of 2 ABQ.

1
Therefore, Z ABE = > Z ABQ (1)

Similarly, ray CG is'the bisector of £ BCS.
1
Therefore, . ~ZBCG= 5 £ BCS 2)
But BE'|||CG and AD is the transversal.
Therefore, Z ABE = ZBCG
(Corresponding angles axiom) 3)
Substituting (1) and (2) in (3), you get
! Z ABQ= 1 Z BCS
2 Q=3
That s, Z ABQ= 2/ BCS

Fig. 3.26
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But, they are the corresponding angles formed by transversal AD with PQ and RS;
and are equal.

Therefore, PQ || RS
(Converse of corresponding angles axiom)

Example 6 : In Fig. 3.27, AB || CD and CD || EF. Also EA L AB. If £ BEF = 55°, find
the values of x, y and z.

Solution : y+ 55°=180° \ _[\ﬁ
(Interior angles on the same side of the /_ N
transversal ED) oL »
Therefore, y=180°-55°=125° \ /f
Again x=y Yo
(AB || CD, Corresponding angles axiom) A
Therefore x =125° \
Now, since AB || CD and CD || EF, therefore, AB || EF. Fig. 3.27
So, / EAB+ / FEA = 180° (Interior angles on the same
side of the transversal EA)
Therefore, 90° +z + 55°= 180°
Which gives z=35°
EXERCISE 3.2

1. In Fig. 3.28, find the values of x and y and then
show that AB || CD.

Fig. 3.28
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InFig. 3.29,ifAB||CD,CD ||EFandy:z=3:7,
find x.

In Fig. 3.30, if AB || CD, EF L CD and
< GED=126°, find £ AGE, £ GEF and £ FGE.

In Fig. 3.31, if PQ || ST, £ PQR = 110°“and
ZRST=130°, find £ QRS.

[Hint : Drawa line parallel to ST through
pointR]

In Fig. 3.32, if AB || CD, .« APQ = 50° and
ZPRD=127°, find xand y.

In Fig. 3.33, PQ and RS are two mirrors placed
parallel to each other. An incident ray AB strikes
the mirror PQ at B, the reflected ray moves along
the path BC and strikes the mirror RS at C and
again reflects back along CD. Prove that
AB| CD.

Fig. 3.31

Fig. 3.32

Fig. 3.33
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3.7 Angle Sum Property of a Triangle

In the earlier classes, you have studied through activities that the sum of all the angles
of a triangle is 180°. We can prove this statement using the axioms and theorems
related to parallel lines.

Theorem 3.7 : The sum of the angles of a triangle is 180°.

Proof : Let us see what is given in the statement

above, that is, the hypothesis and what we need to y
prove. We are given a triangle PQR and £ 1, £ 2

and £ 3 are the angles of A PQR (see Fig. 3.34).

We need to prove that £ 1+ /2 + 2 3.=180°. Let A
us draw a line XPY parallel toQR through the
opposite vertex P, as shown in.Fig. 3.35, so'that we
can use the properties related to parallel lines.

Now, XPY is a line. Fig. 3.34
Therefore, L4+ L1+ 25=180° (H
But XPY || QR and PQ, PR are transversals.

So, Z4=/2 and ~L5=43
(Pairs of alternate angles)

Substituting £ 4 and £ 5 in (1), we get
L2+ 41+ 2£3=180°
That s, L1+ 242+ £3=180°

N

Fig. 3.35

Recall that you have studied about the formation of an exterior angle of a triangle in
the earlier, classes (see Fig. 3.36). Side QR is produced to point S, £ PRS is called an
exterior angle of APQR.

Is A3+ £4=180°?(Why?) (1)
Also, see that
L1+ 22+ 23=180°(Why?) )
From (1) and (2), you can see that
L4=L1+2L2.

This result can be stated in the form of
a theorem as given below: Fig. 3.36



56 MATHEMATICS

Theorem 3.8 : If a side of a triangle is produced, then the exterior angle so
formed is equal to the sum of the two interior opposite angles.

It is obvious from the above theorem that an exterior angle of a triangle is greater
than either of its interior apposite angles.

Now, let us take some examples based on the above
theorems.

Example 7 : In Fig. 3.37, if QT L PR, £ TQR =40°
and £ SPR =30°, find x and y.
Solution : In A TQR, 90° + 40° + x = 180°
(Angle sum property of a triangle) \

Therefore, x = 50° / .
Now, y= ZSPR+x "(Theorem 3.8) !
Therefore, y = 30°+50° T

= 809 C

Fig. 3.37

Example 8 :/In"Fig. 3.38, the sides AB and AC of
AABC are produced to points E and D respectively.
If bisectors BO_and CO of £ CBE and £ BCD
respectively meet at point Os then prove that

1
2 BOC =90° — 5 ZBAC;
Solution : Ray BO is the bisector of £ CBE.

1
Therefore, <~ CBO = 5 ~ CBE

1
= - (180°—)
Y
= o _ = 1
90°- = (1)

Similarly, ray CO is the bisector of £ BCD. Fig. 3.38

1
Therefore, Z BCO = 5 Z BCD
= 5 (180°-2)
90° —

=1 2
: @)
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In ABOC, £ BOC + £ BCO + £ CBO = 180° 3)
Substituting (1) and (2) in (3), you get
z y
2/ BOC +90° — 5 +90° — 5= 180°

S sBOC= = +2

© 272

1

or, Z BOC = 5 yt2) 4)
But, x+y+z=1180° (Angle sum property of a triangle)
Therefore, y+z=180°—x

Therefore, (4) becomes

1
£ BOC= - (180°~x)

p— 900 i
RO
1
= 90°~ 5\ BAC
EXERCISE 3.3

1. InFig.3.39, sides QP and RQ of A PQR are produced to points S and T respectively.
If £ SPR=135°and £/ PQT = 110°, find £ PRQ.

2. InFig.3.40, £ X=62° £ XYZ=54°1f YO and ZO are the bisectors of £ XYZ and
£ XZY respectively of AXYZ, find £ OZY and £ YOZ.

3. InFig.3.41,ifAB| DE, Z BAC=35°and ~ CDE = 53°, find £ DCE.

Fig. 3.39 Fig. 3.40 Fig. 3.41

4. InFig.3.42,iflines PQ and RS intersect at point T, such that £ PRT =40°, £/ RPT =95°
and £ TSQ=75°, find £ SQT.
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5. InFig.3.43,if PQ L PS,PQ| SR, £ SQR =28° and £ QRT = 65°, then find the values
ofx and y.

_\' - A v
i
Fig. 3.42 £ Fig.3.43
6. InFig.3.44, the side QR of APQR is produced to
a point S. If the bisectors of /\PQR and R
Z PRS meet at point T, then prove that
1
ZQTR= > ZQPR.
Fig. 3.44

3.8 Summary

In this chapter, you have studied the following points:

1. Ifaray stands on a line, then the sum of the two adjacent angles so formed is 180° and vice-
versa. This property is called as the Linear pair axiom.

If two lines intersect each other, then the vertically opposite angles are equal.

If a transversal intersects two parallel lines, then

(i) each pair of corresponding angles is equal,

(i) each pair of alternate interior angles is equal,

(iii) each pair of interior angles on the same side of the transversal is supplementary.
4. If a transversal intersects two lines such that, either

(i) | any one pair of corresponding angles is equal, or

(ii) any one pair of alternate interior angles is equal, or

(iii) any one pair of interior angles on the same side of the transversal is supplementary,
then the lines are parallel.

Lines which are parallel to a given line are parallel to each other.
The sum of the three angles of a triangle is 180°.

Ifaside of a triangle is produced, the exterior angle so formed is equal to the sum of the two
interior opposite angles.



CHAPTER 4

POLYNOMIALS

4.1 Introduction

You have studied algebraic expressions, their addition, subtraction, multiplication and
division in earlier classes. You also have studied how to factorise some algebraic
expressions. You mayrecall the algebraic identities :

(x+y)=x?+ 2xpt+ )

(x—py=x-2xy+y
and X ==y (x-y)
and their use in factorisation. In this chapter, we shall start our study with a particular
type of algebraic expression, called polynomial, and the terminology related to it. We
shall also study the Remainder Theorem and Factor Theorem and their use in the

factorisation of polynomials. In addition to the above, we shall study some more algebraic
identities and their use in factorisation and in evaluating some given expressions.

4.2 Polynomials in One Variable

Let us begin by recalling that a variable is denoted by a symbol that can take any real

value./We use the letters x, y, z, etc. to denote variables. Notice that 2x, 3x, —x, —Ex

are algebraic expressions. All these expressions are of the form (a constant) x x. Now
suppose we want to write an expression which is (a constant) x (a variable) and we do
not know what the constant is. In such cases, we write the constant as a, b, ¢, etc. So
the expression will be ax, say.

However, there is a difference between a letter denoting a constant and a letter
denoting a variable. The values of the constants remain the same throughout a particular
situation, that is, the values of the constants do not change in a given problem, but the
value of a variable can keep changing.



60 MATHEMATICS

Now, consider a square of side 3 units (see Fig. 4.1). 3
What is its perimeter? You know that the perimeter of a square
is the sum of the lengths of its four sides. Here, each side is

3 units. So, its perimeter is 4 x 3, i.e., 12 units. What will be the 3 3
perimeter if each side of the square is 10 units? The perimeter

is 4 x 10, i.e., 40 units. In case the length of each side is x 3

units (see Fig. 4.2), the perimeter is given by 4x units. So, as Fig. 4.1

the length of the side varies, the perimeter varies.

Can you find the area of the square PQRS? It is
x X x =x? square units. x is an algebraic expression. Youare S 2 R
also familiar with other algebraic expressions like
2x, x* + 2x, x> — x* + 4x + 7. Note that, all the algebraic
expressions we have considered so far\have only whole
numbers as the exponents of the variable. Expressions of this
form are called polynomials in one variable. In the examples P " Q
above, the variable is x. For instance, x> — x> + 4x.+ 7.is'a .

- . & . Q. Fig. 4.2

polynomial in x. Similarly, 3y* + 5y is a polynomial in the
variable y and # + 4 is'a polynomial in the variable z.

In the polynomial x? + 2x, the expressions x* and2x are called the terms of the
polynomial. Similarly, the polynomial 3y? +5y+ 7 has three terms, namely, 32, 5y and
7. Can you write the'terms of the polynomial —x* + 4x>+ 7x — 2 ? This polynomial has
4 terms, namely, —x3, 4x%, 7x and=2.

Each term of a polynomial has a coefficient. So, in —x* + 4x2 + 7x — 2, the
coefficient of x*is —1, the coefficient of x? is 4, the coefficient of x is 7 and -2 is the
coefficient of x° (Remember, x° = 1). Do you know the coefficient of x in x> —x + 7?
Itis—1.

2 is also a polynomial. In fact, 2, -5, 7, etc. are examples of constant polynomials.
The constant polynomial 0 is called the zero polynomial. This plays a very important
role in the'collection of all polynomials, as you will see in the higher classes.

1
Now, consider algebraic expressions such as x + ¥ Jx +3and i/; + ). Do you

1
know: that you can write x + — = x + x!'? Here, the exponent of the second term, i.e.,
X

x7is —1, which is not a whole number. So, this algebraic expression is not a polynomial.

1

1 1
Again, \/x + 3 can be written as x2> + 3 . Here the exponent of x is 5 which is

not a whole number. So, is /x + 3 a polynomial? No, it is not. What about
{/; + 3?? It is also not a polynomial (Why?).
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If the variable in a polynomial is x, we may denote the polynomial by p(x), or g(x),
or (x), etc. So, for example, we may write :

px)=2x*+5x-3
gx) =x° -1
)=y +y+
s(u) =2 —u—u*+ 61°
A polynomial can have any (finite) number of terms. For instance, x'° #x'% +[..
+ x*+ x + 1 is a polynomial with 151 terms.

Consider the polynomials 2x, 2, 5x*;—=5x?, y and #*. Do you see that.each of these
polynomials has only one term? Polynomialshaving only one term are called monomials
(‘mono’ means ‘one’).

Now observe each of the following polynomials:

p(x)=x+1, q(x) =x* — x, r(y)=y°+ 1, u) = u® —u*

How many terms-are there in each of these? Each of these polynomials has only
two terms. Polynomials having only two terms are called binomials (‘bi’ means ‘two”).

Similarly; polynomials having only three terms are called trinomials
(‘tri’ means ‘three’). Some examples of trinomials are

ORERE g =2 +x -,

ru)y= u+u-2, (y)=y"+y+5.

Now, look at the polynomial p(x) = 3x” — 4x° + x + 9. What is the term with the
highest power of x ? It is'3x”. The exponent of x in this term is 7. Similarly, in the
polynomial ¢(y) = 5)° — 4% — 6, the term with the highest power of y is 5)° and the
exponent of y in this'term is 6. We call the highest power of the variable in a polynomial
as the degree of the polynomial. So, the degree of the polynomial 3x7 — 4x°+ x + 9

is 7 and the degree, of the polynomial 5y° — 4)? — 6 is 6. The degree of a non-zero
constant polynomial is zero.

Example 1 : Find the degree of each of the polynomials given below:

() ¥*—x*+3 (i) 2 —y*—y* +2»¢ (iii) 2
Solution : (i) The highest power of the variable is 5. So, the degree of the polynomial
is’5.
(ii) The highest power of the variable is 8. So, the degree of the polynomial is 8.

(iii) The only term here is 2 which can be written as 2x°. So the exponent of x is 0.
Therefore, the degree of the polynomial is 0.
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Now observe the polynomials p(x) = 4x + 5, q(y) = 2y, r(t) = t + J2 and
s(u) =3 —u. Do you see anything common among all of them? The degree of each of
these polynomials is one. A polynomial of degree one is called a linear polynomial.
Some more linear polynomials in one variable are 2x— 1, V2 y+ 1,2 —u. Now, try and
find a linear polynomial in x with 3 terms? You would not be able to find it because a
linear polynomial in x can have at most two terms. So, any linear polynomial in x will
be of the form ax + b, where a and b are constants and a # 0 (why?). Similarly,
ay + b is a linear polynomial in y.

Now consider the polynomials :
2
2x*+5, 5x*+ 3x + 7w, x* and x> + 3%

Do you agree that they are all of degree two? A polynomial of degree two is called
a quadratic polynomial. Some examples-of a quadratic/polynomial are 5 — y?,
4y + 5y? and 6 —y —)?. Can you write a quadratic polynomial in one variable with four
different terms? You will find that a quadratic polynomial in one variable will have at
most 3 terms. If you list a few more quadratic polynomials, you will find that any
quadratic polynomial in x is of'the form ax? +/bx +'c, where a # 0 and a, b, ¢ are
constants. Similarly, quadratic polynomial in y will be-of the form ay* + by + ¢, provided
a # 0 and a, b,/c are constants.

We call a polynomial of degree three a'cubic polynomial. Some examples of a
cubic polynomial'in x are 4x3, 2x* + 1, 5x° + x2, 6x° — x, 6 —x3, 2x° + 4x2+ 6x + 7. How
many terms do you think a cubic polynomial in one variable can have? It can have at
most 4 terms. These may be written in the form ax® + bx? + cx + d, where a # 0 and
a, b, ¢ and d are constants.

Now, that you have seen-what a polynomial of degree 1, degree 2, or degree 3
looks like, can you write down a polynomial in one variable of degree n for any natural
number #? A polynomial in one variable x of degree » is an expression of the form

ax"ta x'+...tax+ta
n n—1 1 0
where ay, a,, a,, . . ., a are constants and a, # 0.

In particular, if a, = a, =a,=a,=...=a, = 0 (all the constants are zero), we get
the zero polynomial, which is denoted by 0. What is the degree of the zero polynomial?
The degree of the zero polynomial is not defined.

So far we have dealt with polynomials in one variable only. We can also have
polynomials in more than one variable. For example, x* + y* + xyz (where variables
are x, y and z) is a polynomial in three variables. Similarly p? + ¢'° + r (where the
variables are p, ¢ and ), 1* + v? (where the variables are u and v) are polynomials in
three and two variables, respectively. You will be studying such polynomials in detail
later.
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EXERCISE 4.1

1. Which of the following expressions are polynomials in one variable and which are
not? State reasons for your answer.

2
(i) 4x*-3x+7 (i) *+ 2 (i) 3V + /2 (iv)y+;
(V) xlO +y3 + tSO
2. Write the coefficients of x? in each of the following:
o
() 2+x*+x (i) 2 — x>+ x° (ii) Exz +x (V). V2x =1

Give one example each of a binomial of degree 35, and of amonomial of degree 100.

Write the degree of each of the following polynomials:

() 5x°+4x*+7Tx (i) 4—)?
(i) 51— /7 @iv) 3
5. Classify the following as linear, quadratic and cubic polynomials:
@ x*+x (i) x — x* (i) y+32+4 @iv) 1+x
v) 3¢ (vi) (vii) 7x°

4.3 Zeroes of a Polynomial

Consider the polynomial  p(x) = 5x° — 2x* + 3x — 2.

If we replace x by 1 everywhere'in p(x), we get
p(1)=5x1y-2xAp+3x(1)-2

=5-2+3=2
=4
So, we say that the value of p(x) at x = 1 is 4.
Similarly, p(0) =5(0)> —2(0)* + 3(0) -2

=2
Canyoufind p(—1)?
Example 2 : Find the value of each of the following polynomials at the indicated value
of variables:
(i) px)=5x*—-3x+T7atx=1.
(i) g() =3y -4y + 11 aty=2.
(i) p()=4r+5Ff-F+6atr=a.
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Solution : (i) p(x) =5x>-3x+ 7
The value of the polynomial p(x) at x = 1 is given by
p(h)=5(1y=3(1)+7
=5-3+7=9
(i) ¢0) =3y -4+ 11
The value of the polynomial ¢(y) at y =2 is given by

g2)=3Q2; -4Q)+ V11 =24—-8+ 11 =16+ 11
(iii) p()y=4'+5f -~ +6
The value of the polynomial p(¢) at = a'is'given by

pla) = 4a* + 58° ~a*>+ 6

Now, consider the polynomial p(x) = x - 1.
What is p(1)? Note that: p(1)=1-1=0.
As p(1) =0, we say‘that 1 is a zero of the polynomial p(x).
Similarly, you can-check that 2 is a zero of g(x), where g(x) = x — 2.
In general, we say that a zero of a polynomial p(x) is a number ¢ such that p(c) = 0.

You must-have observed that the zero of the polynomial x — 1 is obtained by
equating it to 0, i.e., x — 1 = 0, which gives x = 1. We say p(x) = 0 is a polynomial
equation and 1 is the root of the polynomial equation p(x) = 0. So we say 1 is the zero
of the polynomial x — 1, or a7oof of the polynomial equation x— 1 =0.

Now, consider the constant polynomial 5. Can you tell what its zero is? It has no
zero because replacing x by any number in 5x° still gives us 5. In fact, a non-zero
constant polynomial has no zero. What about the zeroes of the zero polynomial? By
convention, every real number is a zero of the zero polynomial.

Example'3 : Check whether —2 and 2 are zeroes of the polynomial x + 2.
Solution : Let p(x) =x + 2.

Then p(2)=2+2=4, p(-2)=2+2=0

Therefore, -2 is a zero of the polynomial x + 2, but 2 is not.

Example 4 : Find a zero of the polynomial p(x) = 2x + 1.

Solution : Finding a zero of p(x), is the same as solving the equation
px) =0
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1
Now, 2x+1=0givesusx=—§

So, — 5 is a zero of the polynomial 2x + 1.

Now, if p(x) = ax + b, a # 0, is a linear polynomial, how can we find a zero of
p(x)? Example 4 may have given you some idea. Finding a zero of the polynomial p(x),
amounts to solving the polynomial equation p(x) = 0.

Now, p(x) = 0 means ax+b=0,a=0
So, ax =+=b
. b
ie., X S

a

b
So,x=— - is the only zero of p(x), i.e., a linear polynomial has one and only one zero.
Now we can say that 1 is the zero of x — 1, and 2 is‘the zero of x + 2.

Example 5 : Verify.whether 2 and 0 are zeroes of the polynomial x? — 2x.

Solution : Let px) =x>—2x
Then pR)=22-4=4-4=0
and p0)=0-0=0

Hence, 2 and 0 are both zeroes of the polynomial x* — 2x.
Let us now list our observations:
(i) A zero of a polynomial need not be 0.
(ii) 0 may be a zero of a polynomial.
(iii) Every linear polynomial has one and only one zero.

(iv) A polynomial can have more than one zero.

EXERCISE 4.2
1. " Find the value of the polynomial 5x —4x*+ 3 at
@i x=0 (i) x=-1 (i) x=2
2. Find p(0), p(1) and p(2) for each of the following polynomials:
O po)=ry*-y+1 (i) p()=2+t+2£-7

(iii) p(x)=x’ (iv) pe)=(x=1(x+1)
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3. Verify whether the following are zeroes of the polynomial, indicated against them.

1 4

D px)=3x+1, x:_g (i) p(x)=>5x—m, X=3
(i) pe)=2~1, x=1,-1 ) p@)=@+1) (x-2), x=-1,2
V) pl)=x, x=0 (Vi) p() =L+ m, x= ‘?
(vii) p(x)=3x>—1, x=— 1.2 (vill) p(x)=2x+1, x= 1

s BB i 2

4. Find the zero of the polynomial in.each of the following cases:

) p)=x+5 (i) pe)=x—5 (ii)) p(r).=2x+5
@iv) p(x)=3x-2 (v) p(x)=3x Vi), px)=ax,a#0

(vii) p(x) = ex + d, ¢ # 05 c, d are real numbers.

4.4 Remainder Theorem

Let us consider two numbers 15and 6. You know that when we divide 15 by 6, we get
the quotient 2 and remainder 3. Do you remember how this fact is expressed? We
write 15 as
15= (6x2)+3
We observe that the remainder 3 is less than the divisor 6. Similarly, if we divide
12 by 6, we get
12=(6x2)+0
What is the remainder here? Here the remainder is 0, and we say that 6 is a
factor of 12 or 12 iscasmultiple of 6.
Now, the question is: can we divide one polynomial by another? To start with, let

us try and do this when the divisor is a monomial. So, let us divide the polynomial
2x3+ x? + x by the monomial x.

2% x* x

We have QP +x+x)sx= —+—+=
X X X

=2x*+x+1

In fact, you may have noticed that x is common to each term of 2x* + x* + x. So
we can write 2x° + x> + x as x(2x*> + x + 1).

We say that x and 2x? + x + 1 are factors of 2x* + x>+ x, and 2x* + x>+ x is a
multiple of x as well as a multiple of 2x* + x + 1.
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Consider another pair of polynomials 3x*+x + 1 and x.

Here, BGx2+tx+D+x=0Cx+x)+(x+x)+ (1 +x).

We see that we cannot divide 1 by x to get a polynomial term. So in this case we
stop here, and note that 1 is the remainder. Therefore, we have

3 +x+1={xxGx+ 1)} +1

In this case, 3x + 1 is the quotient and 1 is the remainder. Do you think thatxis a
factor of 3x? + x + 1? Since the remainder is not zero, it is not a factor.

Now let us consider an example to see how we can divide a polynomial by any
non-zero polynomial.
Example 6 : Divide p(x) by g(x), where p(x) = x + 3x% — 1 and g(x) =1+ x.
Solution : We carry out the process of division by means of the following steps:

Step 1 : We write the dividend x +3x?— 1 and the divisor 1'+ x in the standard form,
i.e., after arranging the terms in the descending order-of theirdegrees. So, the

dividend is 3x% + x —l'and divisoris x + 1.

Step 2 : We divide the first term of the dividend

by the first term of the divisor, i.e., we divide 32 )
3x? by x, and ‘get 3x. This gives us the first term  — =~ 3x = first term of quotient
of the quotient:

Step 3 : We multiply the divisor by the first term 3x
of the quotient, and subtract this product from x+1 J 3t x]
the dividend, i.e., we multiply x + 1 by 3x and

subtract the product.3x? + 3x from the dividend 3x% + 3x
3x* + x — 1. This gives us the remainder as N
2x— 1. —2x—1

Step 4 : We treat the remainder —2x — 1

as the new dividend. The divisor remains

the same. We repeat Step 2 to get the oy )
next term of the quotient, i.e., we dividle —= =_7 New Quotient
the first term — 2x of the (new) dividend ¥ ) =3x-2

by the first term x of the divisor and obtain — second term of quotient

—'2. Thus, — 2 is the second term in the

quotient.



68 MATHEMATICS

Step 5 : We multiply the divisor by the second (x+ 1)(=2) [-2x-1
term of the quotient and subtract the product =2x-2 |=2x=-2
from the dividend. That is, we multiply x + 1
by — 2 and subtract the product — 2x — 2
from the dividend — 2x — 1. This gives us 1
as the remainder.

This process continues till the remainder is 0 or the degree of the new dividend is/less
than the degree of the divisor. At this stage, this new dividend becomes the remainder
and the sum of the quotients gives us the whole quotient.

Step 6 : Thus, the quotient in full is 3x — 2 and the remainder‘s 1.

Let us look at what we have done“in the process above as a whole:

3x—=2

x+1J 3x2+x—1

3%+ 3x

—2x—1

—2x=2
+40+

1

Notice that 3x*+x— 1'=(x+ 1) (3x—-2) + 1
i.e., Dividend = (Divisor X Quotient) + Remainder

In general, if p(x) and.g(x) are two polynomials such that degree of p(x) > degree of
g(x) and g(x) #10, then we can find polynomials ¢(x) and #(x) such that:

px) = g(x)g(x) + r(x),
where r(x) = 0 or degree of r(x) < degree of g(x). Here we say that p(x) divided by
g(x), gives g(x) as quotient and #(x) as remainder.

In the example above, the divisor was a linear polynomial. In such a situation, let us
see if there is any link between the remainder and certain values of the dividend.

In  p(x) =3x2+x— 1, if we replace x by —1, we have
pED =31+ (=) -1=1

So, the remainder obtained on dividing p(x) = 3x?> + x — 1 by x + 1 is the same as the
value of the polynomial p(x) at the zero of the polynomial x + 1, i.e.,—1.
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Let us consider some more examples.
Example 7 : Divide the polynomial 3x* — 4x* — 3x —1 by x — 1.

Solution : By long division, we have:

3 -x*—x—-4

x—lJ 3x*—4x3 - 3x -1

4 743
_3xt o 3x
- X —3x-1
Y- | 2
T X -_I-x
—x*=3x -1
—-x>+ x
—4x -1
—+4xt4
=5

Here, the remainder/is— 5. Now, the zero of x —'1 is 1. So, putting x = 1 in p(x), we see
that

p(1)=3(1) =41y -3(1)-1
=344-3-1
= — 5, which is the remainder.
Example 8 : Find the remainder obtained on dividing p(x) =x*+ 1 by x + 1.

Solution : By long division,

¥—-x+1

x+1l x+1

X+ x?

x+1

_x 7t
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So, we find that the remainder is 0.
Here p(x) =x*+ 1, and the root of x + 1 =0 is x=—1. We see that
P =1y +1
=-1+1
=0,
which is equal to the remainder obtained by actual division.

Is it not a simple way to find the remainder obtained on dividing a polynomial by a
linear polynomial? We shall now generalise this fact in the form of the following
theorem. We shall also show you why the theorem is true, by giving yowa proof of the
theorem.

Remainder Theorem : Let p(x) be any polynomial’of degree greater than or
equal to one and let a besany veal number. If p(x) is divided by the linear
polynomial x — a, then the remainder is p(a).

Proof : Let p(x) be any polynomial with degree greater than or equal to 1. Suppose
that when p(x) is divided by x —a, the quotient is g(x) and the remainder is r(x), i.e.,

) = (x=a) q(x) + r(x)
Since the degree of x — a is 1 and the degree of #(x) is less than the degree of x — a,
the degree of #(x)-= 0. This means that #(x) iS a constant, say 7.

So, for every value of x, r(x) =r.
Therefore, px)=(x—a) qx)+r

In particular, if x = g, this equation gives us
p(a) = (a—a)q(a) +r
=7
which proves the theorem.

Let us use this result in another example.

Example 9 : Find the remainder when x* + x* — 2x> + x + 1 is divided by x — 1.
Solution : Here, p(x) = x*+x3>—2x2+x + 1, and the zero of x — 1 is 1.
So, p(H=((y+Ay-2(1)2+1+1

=2
So, by the Remainder Theorem, 2 is the remainder when x* + x> — 2x2 + x + 1 is
divided by x— 1.

Example 10 : Check whether the polynomial g(¢) = 47 + 4 — t — 1 is a multiple of
2t+ 1.
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Solution : As you know, ¢(¢) will be a multiple of 2¢ + 1 only, if 2¢ + 1 divides ¢()

leaving remainder zero. Now, taking 2¢ + 1 =0, we have ¢ = 5

1 1Y 1Y 1 1 1
Al =4 | 44— | = |-1=—+1+-1=0
% q( 2J ( 2) ( 2) ( 2) 2 2

So the remainder obtained on dividing ¢(¢) by 2¢+ 1 is 0.

So, 2¢ + 1 is a factor of the given polynomial ¢(¢), that is ¢(¢) is a multiple of
2t+ 1.

EXERCISE 2.3

1. Find the remainder when x* + 3x*>+ 3x.+1 is divided by

H x+1 (i) x—% (iii) x (iv) x+7 (v) 5+ 2x

Find the remainder when x>~ ax? + 6x — a is divided by x — a.

Check whether 7 +3x.is-a factor of 3x° + 7x.

4.5 Factorisation of Polynomials

Let us now look-atthe situation of Example 10 above more closely. It tells us that since
1
the remainder, q(—EJ =0, (2¢+/1)/is a factor of ¢(¢), i.e., g(£) = (2t + 1) g(¢)

for some polynomial g(¢). This is a particular case of the following theorem.

Factor Theorem :/If p(x) is a polynomial of degree n > 1 and « is any real number,

then (i) x—aisafactorof p(x), if p(a) =0, and (ii) p(a) =0, if x — @ is a factor of p(x).

Proof: By the Remainder Theorem, p(x)=(x — a) g(x) + p(a).
(1) Ifp(a) = 0, then p(x) = (x — a) g(x), which shows that x — a is a factor of p(x).
(ii). Since x — a is a factor of p(x), p(x) = (x — a) g(x) for same polynomial g(x).

In this case, p(a) = (a — a) g(a) = 0.
Example 11 : Examine whether x + 2 is a factor of x* + 3x? + 5x + 6 and of 2x + 4.
Solution : The zero of x + 2 is —2. Let p(x) = x>+ 3x*+ 5x + 6 and s(x) =2x + 4

Then, P(2) = (<20 + 3(27 + 5(=2) + 6
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=-8+12-10+6

=0
So, by the Factor Theorem, x + 2 is a factor of x* + 3x2 + 5x + 6.
Again, s(-2)=2(2)+4=0

So, x + 2 is a factor of 2x + 4. In fact, you can check this without applying the Factor
Theorem, since 2x + 4 = 2(x + 2).

Example 12 : Find the value of &, if x — 1 is a factor of 4x* + 3x*> — 4x + k.

Solution : As x — 1 is a factor of p(x)=4x* + 3x* —4x + k, p(1) =0

Now, p) =412 +3(1)y-4(1) +%
So, 4+3-4+k=0
ie., k= -3

We will now use the Factor Theoremto factorise some polynomials of degree 2 and 3.
You are already familiar with the factorisation of a quadratic polynomial like
x2 + Ix + m. You had factorised it by splitting the middle term Ix as ax + bx so that
ab = m. Thenx>* x+'m = (x + a) (x + b). We shall now try to factorise quadratic
polynomials of the type‘ax? + bx + ¢, where a = 0 and a, b, ¢ are constants.

Factorisation of the‘polynomial ax? + bx + ¢ by splitting the middle term is as
follows:

Let its factors be (px +.¢) and (zx + s). Then
ax*+bx+tc=(px+q)(rmx+s)y=prx*+(ps+qr)x+gs

Comparing the coefficients of x2, we get a = pr.

Similarly, comparing the coefficients of x, we get b = ps + gr.

And, on comparing the constant terms, we get ¢ = gs.

This shows us that b is the sum of two numbers ps and gr, whose product is
(s)(gr) = (pr)(gs) = ac.

Therefore, to factorise ax? + bx + ¢, we have to write b as the sum of two
numbers whose product is ac. This will be clear from Example 13.

Example 13 : Factorise 6x* + 17x + 5 by splitting the middle term, and by using the
Factor Theorem.

Solution 1 : (By splitting method) : If we can find two numbers p and ¢ such that
pTq=17 and pqg=6 x5=30,then we can get the factors.
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So, let us look for the pairs of factors of 30. Some are 1 and 30,2 and 15, 3 and 10, 5
and 6. Of these pairs, 2 and 15 will giveus p+¢g=17.

So, 6x2+ 17x+5 =6x*+(2+15)x+5
=6x*+2x+ 15x+5
=2x(Bx+ 1)+ 53x+1)
=0Bx+1)(2x+5)

Solution 2 : (Using the Factor Theorem)

17 5
6x2+ 17x+ 5= 6(362 + ?x + g) =6 p(x), say. If a and b are the zeroesof p(x), then

5
6x*+17x+5=6(x—a) (x—b). So,ab= 6 Let us look at some possibilities for a and

,+1. Now, p(lJ=l+£(lJ+% # 0. But

b. They could be +
2). 4 6\2

L4
2

1
p(?J = (. So, (x + g) is a factor of p(x). Similarly, by trial, you can find that

5
(x + Ej is a factor of p(x).

Therefore, 6x> +17x+ 5

Il

(=)
VR
=

+
W | —
Ne—
VR
=

+

N | L
Ne—

_ 6(3x+1j(2x+5J
3 2
= Gx+1)(2x+5)

For the example above, the use of the splitting method appears more efficient. However,
let us consider another example.

Example 14 : Factorise y* — 5y + 6 by using the Factor Theorem.

Solution : Let p(y) = * — 5y + 6. Now, if p(y) = (¥ — a) (v — b), you know that the
constant term will be ab. So, ab = 6. So, to look for the factors of p(y), we look at the
factors of 6.

The factors of 6 are 1, 2 and 3.
Now, p(2)=2>—-(5%x2)+6=0
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So, y—2is a factor of p(y).

Also, p(3)=32—-(5%x3)+6=0

So, y-—3isalso afactor of )2 — 5y + 6.

Therefore, *—5y+6=(Q—-2)y—3)

Note that y? — 5y + 6 can also be factorised by splitting the middle term —5y.

Now, let us consider factorising cubic polynomials. Here, the splitting method will not

be appropriate to start with. We need to find at least one factor first, as you will see‘in

the following example.

Example 15 : Factorise x* — 23x* + 142x — 120.

Solution : Let p(x) = x* — 23x>+ 142x — 120

We shall now look for all thefactors of —120. Some of these are +1, +2, £3,

+4,+5,46,+8,+£10, £12, £15,420, £24, +30, +£60.

By trial, we find thatp(1) = 0. So'x — 1 is a factor of p(x).

Now we see that x* — 23x* 4+142x — 120 = x* — x* = 22x% + 22x + 120x — 120
=x%(x—1)=22x(x — 1)+ 120(x — 1) (Why?)
=(x—-1)(x*—=22x + 120) [Taking (x — 1) common]

We could have also got this by dividing p(x) by x — 1.

Now x? —22x + 120 can‘be factorised either by splitting the middle term or by using
the Factor theorem. By splitting the middle term, we have:

x2—22x+ 120 = x*— 12x — 10x + 120
=x(x—12)— 10(x — 12)
=(x-12) (x-10)
So, X3 =23x2—142x - 120 = (x — )(x — 10)(x — 12)

EXERCISE 4.4
1.. Determine which of the following polynomials has (x + 1) a factor :
) ¥+x+x+l (i) ¥+ +x2+x+1
(i) x*+3x°+3x2+x+1 (iv) x3—x2—(2+\/§)x+\/§

2. Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the
following cases:
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) pr)=2x+x*-2x—1,gx)=x+1
(i) p(x)=x*+3x*+3x+1,g(x)=x+2
(i) p(x)=x*—-4x*+x+6,g(x)=x-3

3. Find the value of &, if x — 1 is a factor of p(x) in each of the following cases:

) po)=x+xtk (i) p() =26+ ke + 3

(ii}) p(x)=he*~ J2x+1 (iv) p(x) =k —3x+k
4. Factorise :

@ 12x*-Tx+1 (i) 2x*+7x+3

(i) 6x*>+5x—6 (iv) 3x*—x—4
5. Factorise :

O x¥*-2x*—x+2 (i) ¥*—3x*~9x-5

(i) x*+ 13x2+32x+20 (iv) 2P+ -2y -1

4.6 Algebraic Identities

From your earlier classes, you may recall that an algebraic identity is an algebraic
equation that is-truefor all values of the variables occurring in it. You have studied the
following algebraic identities in earlier classes:

Identity T v (x'+ y)y> =x2+ 2xp + )2
Identity I : (x — y)? =x2 =2xy +)?
Identity ITI : x> — 37 = (x £3)/(x — )
Identity IV : (x+a)(x +b)=x*+(a+ b)x + ab

You must have also used some of these algebraic identities to factorise the algebraic
expressions. You can also see their utility in computations.

Example 16 : Find the following products using appropriate identities:
(1) (¢ +3)(x +3) (i) (x=3) (x+5)

Solution : (i)Here we can use Identity I : (x + y)? = x* + 2xy + )2 Putting y = 3 in it,
we get

(x+3)(x+3)=(x+3y=x>+2(x)(3) + 3)
=x*+6x+9
(ii) Using Identity IV above, i.e., (x + a) (x + b) = x* + (a + b)x + ab, we have
x=3)(x+5=x*+(3+5x+(3)5)
=x2+2x-15
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Example 17 : Evaluate 105 x 106 without multiplying directly.
Solution : 105 x 106 = (100 + 5) x (100 + 6)
= (100)*+ (5 + 6) (100) + (5 x 6), using Identity IV
10000+ 1100+ 30
11130

You have seen some uses of the identities listed above in finding the product of some
given expressions. These identities are useful in factorisation of algebraic expressions
also, as you can see in the following examples.

Example 18 : Factorise:

2
(i) 49 + T0ab + 255 (i) %Tsxz -

Solution : (i) Here you can/see that
49a* = (T7a)*, 25b%* = (5b)°, 70ab = 2(7a) (5b)
Comparing the given expression with x* + 2xy + )2 we observe that x = 7a and y = 5b.
Using Identity I, we get
49a%+ 70ab + 256> = (Ta + 5b)>= (7Ta + 5b) (7a + 5b)

.. 25 2 (5 Y 2
(ii) We have ——x” — RA (_xJ _ (Z)
4 9 2 3

Now comparing it with Identity TIl; we get

2 2 2
5. Y _(5) _(»
4 9 2 3
_ (EHZ) (éx_z)
2 3)\2 3

So far; all our identities involved products of binomials. Let us now extend the Identity
I'to a trinomial x + y + z. We shall compute (x + y + z)? by using Identity I.

Let x + y =t¢. Then,
(r+y+2P=(t+2)
=£+22z+ 7 (Using Identity I)
=(x+yyP+2x+yz+z? (Substituting the value of )
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=x2+2xy +)? + 2xz + 2yz + 22 (Using Identity I)
=x2+y*+z2+2xy +2yz+2zx  (Rearranging the terms)
So, we get the following identity:
Identity V: (x + y + 2> =x? + > + 22 + 2xp + 2yz + 22x

Remark : We call the right hand side expression the expanded form of the left hand
side expression. Note that the expansion of (x + y + z)? consists of three square terms
and three product terms.

Example 19 : Write (3a + 4b + 5¢)? in expanded form.
Solution : Comparing the given expression with (x + y + z)? ave find that
x=3a,y=4band z = 5c.
Therefore, using Identity V, we have
(Ba+4b +5¢)* = Ba)*+ (4b)* +(5¢)* + 2(3a)(4b) +2(4b)(5¢) + 2(5¢)(3a)
= 9a% + 16b* + 25¢* + 24ab + 40bc + 30ac
Example 20 : Expand (4a — 2b — 3c)*.
Solution : Using'ldentity V, we have
(4a —2b —3¢)* =/[4a + (-2b) + (-30)]
= (4a)y’ + (=2b)* + (—3¢)* + 2(4a)(-2b) + 2(-2b)(-3c) + 2(-3c)(4a)
= 164> + 4b*+9¢* — 16ab + 12bc — 24ac
Example 21 : Factorise 4x> + >+ 2> — 4xy — 2yz + 4xz.
Solution : We have 4x? + y2 + 72 — 4xy — 2yz + 4xz = (2x)* + (—=)* + (2)* + 2(2x)(—~)
+2(=)(2) T 2(2x)(2)
= [2x + (=) + zJ? (Using Identity V)
=Qx-ytzp=Q2x-y+to)2x-y+t2)

So-far, we have dealt with identities involving second degree terms. Now let us
extend Identity I to compute (x + y)>. We have:

()P =ty ct+yy
= (x )+ 2xp + y7)
= X0+ 2xy + )+ )(x + 2xy +)7)
=x+2x% +x + Xy +2x)°2 + )
=x*+3xy + 307+ )}
=Xy x +y)



78 MATHEMATICS

So, we get the following identity:
Identity VI: (x+yp)P=x+y*+3xy (x+y)
Also, by replacing y by —y in the Identity VI, we get
Identity VII : (x —p)’ =x>—p* - 3xp(x — )
=x*- 3x% + 3xpr— y?
Example 22 : Write the following cubes in the expanded form:
(i) Ba + 4by (i) (5p - 3q)
Solution : (i) Comparing the given expression with (x + y)*, we find that
x = 3a and y = 4b.
So, using Identity VI, we have:
(Ba+4by = (3a)’ + (4b)’ + 3(Ba)(4b)(3a + 4b)

= 27a° + 64b° + 108a%h + 144ab?

(i) Comparing the given expression with (x — y)*, we find that
x=5p,y=13q.
So, using Identity VII, we have:
(5p = 39>’ = (5p)'— (39)’ - 3(5p)B9)(5p — 3q)

= 125p® - 27¢° — 225p°q + 135pg?

Example 23 : Evaluate each of the following using suitable identities:
(i) (104)° (i) (999)°
Solution : (i) We have
(104)°= (100 + 4)
= (100)* + (4)* + 3(100)(4)(100 + 4)
(Using Identity VI)

1000000 + 64 + 124800
1124864

(i1)*We have
(999)* = (1000 — 1)
= (1000)* — (1)* = 3(1000)(1)(1000 — 1)
(Using Identity VII)
= 1000000000 — 1 -2997000
= 997002999
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Example 24 : Factorise 8x° + 27)° + 36x%y + 54x)?
Solution : The given expression can be written as
(2x)° + By’ +3(4x*)(3y) + 3(2x)(9?)
= (2x)* + 3y)’ + 3(2x)’(3y) + 3(2x)(3y)?
= (2x + 3y) (Using Identity VI)
= (2x+3))(2x +3))(2x + 3y)
Now consider (x + y + z)(x* + y*+ 22 — xy — yz — zx)
On expanding, we get the product as
X2ty + 22— xy—yz—zx) + y(x? +32 + 22 — xy — yz — zx)
tz(2+ )y P+ 22 —xy—yz—zx) =%+ x)* + x2* — X*y — xyz — zx* + ¥%y
+ 3y +y22 —xy? = yz —xyz v X2 ¥z + 2 — xyz — yz? — xz?
=x*+ )y +2 - 3xyz (On simplification)
So, we obtain the following identity:
Identity VIII : ¥ + P +.22 - 3xyz=(x +ty + )+ y* + 22 — Xy — yz — 2X)
Example 25 ¢ Factorise :8x°* +1° + 272° & 18xyz
Solution : Here, we have
8x3 + 3+ 272 — 18xyz
=(2x)’ +y1 + (32) - 3(20)(»(32)
=Qx Aty 3)[(2x)7 + )7 + (32 - (200 — ()(32) - (2x)(32)]
=Q2x +yA3z) (4x2 + )2 + 922 — 2xy — 3yz — 6x2)

EXERCISE 4.5
1. Use suitable identities to find the following products:
@ @4 (+10) (i) (x+8)(x—10) (i) (3x+4)(3x-5)
) 6+ 20 3) (v) (3-2%) (3:+2x)
2. Evaluate the following products without multiplying directly:
@ 103x107 (i) 95 %96 (iii) 104 x96

3. Factorise the following using appropriate identities:

2

(i) 9x*+6xy+)> (i) 4*—4y+1 (i) x> — IJ?W
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4. Expand each of the following, using suitable identities:
() G+2y+4z)y (i) 2x—y+2)° (iif) (—2x+3y+2z)
. R ?
(iv) Ba—-"Tb—c)* (V) (2x+5y—3z) (vi) 2 a-— Eb +1
5. Factorise:
(i) 4x2+9y*+16z°+ 12xy—24yz— 16xz
(i) 2x*+y*+ 8z — 2\/§xy + 42 yz—8xz
6. Write the following cubes in expanded form:
3 \ 2 7
i QCx+1) (i) 2a—3b) (iii) [Ex + 1} (iv) [x - gy}
7. Evaluate the following using suitable identities:
M ©9 (i) (102 (i) (998)’
8. Factorise each of the following:
i) 8a°+b+12a*bh+ 6ab? (i) 84° — b* — 12a*b + 6ab?
(i) 27 =125a°—~135a+2254 (iv) 64&° —27H° - 144a*b + 108ab?
1 9 1
2Ipp— =~ — —p* +—
e T L
9. Verify: (D’ +y =(x+y) (B—xp+y?) (i) ¥y =(x-p) (@ +xp+)?)
10. Factorise each of'the following:
(1) 27y + 1252 (i) 64m*—343n°
[Hint : See Question 9.]
11. Factorise : 27x° +)* +2° — 9xyz
1
12. Verify thatx? +y* + 22— 3xyz = 5 (x+y+2) [(x -+ (-2 +(z- x)z]
13, -Ifx +y+z=0, show that x* +3° + 2> = 3xyz.
14. Without actually calculating the cubes, find the value of each of the following:
0 127+ (7P +6)
(i) (28)°+(-15)°+(-13)’
15. Give possible expressions for the length and breadth of each of the following

rectangles, in which their areas are given:

Area:254*—35a+12 Area: 35y + 13y—12

(i) (ii)
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16. What are the possible expressions for the dimensions of the cuboids whose volumes
are given below?

Volume : 3x2—12x Volume : 12k + 8ky — 20k

(i (ii)

4.7 Summary

In this chapter, you have studied the following points:

1.

Sl A Gl o

10.

11

12.
13.
14.
15.

A polynomial p(x) in one variable x is‘an algebraic expression in x of the-form
poty )4
= n-1 2
px)=ax"+ta x"'+. . . +tax’tax+ta,
where a, a, a,, . . ., a are constants and\a_# 0.

a,a,a,..., a arerespectively the coefficients of x°, x, x*, .. .,x", and n is called the degree
of the polynomial. Each of a x”, a | X', ..., a,, with a # 0, is called a term of the polynomial

p).

A polynomial of'one term is called a monomial.

A polynomial of two terms is called a binomial.

A polynomial of three terms is called a trinomial.

A polynomial of degree one is called a linear polynomial.

A polynomial of degree two is called a quadratic polynomial.
A polynomial of degree three is called a cubic polynomial.

A real number ‘@’ is a zero of a polynomial p(x) if p(a) = 0. In this case, a is also called a
root of the equation p(x) = 0.

Every linear polynomial in one variable has a unique zero, a non-zero constant polynomial
has no zero, and every real number is a zero of the zero polynomial.

Remainder Theorem : If p(x) is any polynomial of degree greater than or equal to 1 and p(x)
is divided by the linear polynomial x — a, then the remainder is p(a).

Factor Theorem : x — a is a factor of the polynomial p(x), if p(a) = 0. Also, if x — a is a factor
of p(x), then p(a) = 0.

(xTy+z)P=xt+)*+22+2xy +2yz+ 2zx
(cty)=x'+y +3xpx +y)
(x—yy=x'=y'=3xp(x—y)
X+y+2-3xyz=(x+y+z) (P +)y*+22—xy—yz—zx)
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CHAPTER 5

TRIANGLES

5.1 Introduction

You have studied about triangles and their various properties in your earlier classes.
You know that a closed figure formed by three intersecting lines is called a triangle.
(“Tri’ means ‘three’ )< A triangle has three sides, three angles and three vertices. For
example, in triangle ABC;.denoted as A ABC (see Fig. 5.1); AB, BC, CA are the three
sides, £ A, £B,»£ C are the three angles and A, B, C are three vertices.

In Chapter 6, you haye also studied some properties

of triangles. In this'chapter, you will study in details

about the congruence of triangles, rules of congruence,

some more properties of triangles and inequalities in

a triangle. You have already verified most of these

properties in earlier classes. We will now prove some

of them.

5.2 Congruence of Triangles Fig. 5.1

You must'have observed that two copies of your photographs of the same size are
identical: Similarly, two bangles of the same size, two ATM cards issued by the same
bank are identical. You may recall that on placing a one rupee coin on another minted
in.the same year, they cover each other completely.

Do you remember what such figures are called? Indeed they are called congruent
figures (‘congruent’ means equal in all respects or figures whose shapes and sizes
are both the same).

Now, draw two circles of the same radius and place one on the other. What do
you observe? They cover each other completely and we call them as congruent circles.
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Repeat this activity by placing one
square on the other with sides of the same
measure (see Fig. 5.2) or by placing two
equilateral triangles of equal sides on each
other. You will observe that the squares are
congruent to each other and so are the
equilateral triangles. Fig. 5.2

You may wonder why we are studying congruence. You all must have seen theiice
tray in your refrigerator. Observe that the moulds for making ice are all congruent.
The cast used for moulding in the tray also has congruent depressions (may be all are
rectangular or all circular or all triangular). Se, whenever identical objects have to be
produced, the concept of congruence is used.in making the cast.

Sometimes, you may find it difficult to replace the refill in your pen by a new one
and this is so when the new refill is'not of the same size as'the one you want to
remove. Obviously, if the two refills are identical orcongruent, the new refill fits.

So, you can find numerous examples where congruence of objects is applied in
daily life situations.

Can you think of some more examples of congruent figures?

Now, which-of the following figures are not congruent to the square in
Fig5.3 (i):

(@) (i) (iii) (iv)
Fig. 5.3

The large squares in Fig. 5.3 (ii) and (iii) are obviously not congruent to the one in
Fig 5.3 (i), but the square in Fig 5.3 (iv) is congruent to the one given in Fig 5.3 (i).

Let us now discuss the congruence of two triangles.

You already know that two triangles are congruent if the sides and angles of one
triangle are equal to the corresponding sides and angles of the other triangle.
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Now, which of the triangles given below are congruent to triangle ABC in
Fig. 5.4 (i)?

Fig. 5.4

Cut out each of these triangles from Fig. 5.4 (ii) to (v) and turn them around and
try to cover A ABC. Observe that triangles in Fig. 5.4 (ii), (iii) and (iv) are congruent
to A ABC while A TSU of Fig 5.4 (v) is not congruent to A ABC.

If A PQR is congruent to A ABC, we write A PQR = A ABC.

Notice that when A PQR = A ABC, then sides of A PQR fall on corresponding
equal sides.of A ABC and so is the case for the angles.

That is, PQ covers AB, QR covers BC and RP covers CA; £ P covers £ A,
Z.Q covers £ B and £ R covers £ C. Also, there is a one-one correspondence
between.the vertices. That is, P corresponds to A, Q to B, R to C and so on which is
written as

PoA, Qe B, ReC

Note that under this correspondence, A PQR = A ABC; but it will not be correct to
write AQRP = A ABC.

Similarly, for Fig. 5.4 (iii),
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FD <> AB, DE <> BC and EF <» CA
and F< A, DB andE« C
So, A FDE = A ABC but writing A DEF = A ABC is not correct.
Give the correspondence between the triangle in Fig. 5.4 (iv) and A ABC.

So, it is necessary to write the correspondence of vertices correctly for writing of
congruence of triangles in symbolic form.

Note that in congruent triangles corresponding parts are equal and we write
in short ‘CPCT’ for corresponding parts of congruent triangles.

5.3 Criteria for Congruence of Triangles

In earlier classes, you have learnt four criteria for congruence of’ triangles. Let us
recall them.

Draw two triangles with one side 3 cm. Are these triangles congruent? Observe
that they are not congruent (see Fig. 5.5).

Fig. 5.5

Now, draw two triangles with one side 4 cm and one angle 50° (see Fig. 5.6). Are
they congruent?

Fig. 5.6
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See that these two triangles are not congruent.
Repeat this activity with some more pairs of triangles.

So, equality of one pair of sides or one pair of sides and one pair of angles is not
sufficient to give us congruent triangles.

What would happen if the other pair of arms (sides) of the equal angles are also
equal?

In Fig 5.7, BC = QR, £ B = £ Q and also, AB = PQ. Now, what can you say
about congruence of A ABC and A PQR?

Recall from your earlier classes that, in this case, the two triangles are.congruent.
Verity this for A ABC and A PQR in Fig. 5.7.

Repeat this activity with other pairs of triangles. Do you observe that the equality
of two sides and the included angle is enough for the congruence of triangles? Yes, it
is enough.

~
N

ALYy v\

Fig. 5.7
This is the first criterion for congruence of triangles.

Axiom 5.1 (SAS congruence rule) : Two triangles are congruent if two sides
and the included angle of one triangle are equal to the two sides and the included
angle of the other triangle.

This result cannot be proved with the help of previously known results and so it is
accepted true as an axiom (see Appendix 1).

Let us now take some examples.
Example1 : In Fig. 5.8, OA = OB and OD = OC. Show that
(i) A AOD = A BOC and (ii) AD || BC.
Solution : (i) You may observe that in A AOD and A BOC,
OA =0OB

} (Given)
OD = 0C

Fig. 5.8
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Also, since £ AOD and £ BOC form a pair of vertically opposite angles, we have
Z AOD = « BOC.
So, A AOD =z A BOC (by the SAS congruence rule)

(ii) In congruent triangles AOD and BOC, the other corresponding parts are also
equal.

So, £ OAD = £ OBC and these form a pair of alternate angles for line segments
AD and BC.

Therefore, AD || BC.

Example 2 : AB is a line segment and'line / is its perpendicular bisector. If a point P
lies on /, show that P is equidistantfrom A and B. ]

A
Solution : Line / . AB and passes through C which
is the mid-point of AB (see Fig. 5.9). You have to
show that PA = PB. Consider A PCA and A PCB.

We have AC = BC | (C is the mid-point of AB)
£ PCA=-£ PCB =90° (Given)
PC = PC (Common)

So, A PCA =APCB (SAS rule)

and so, PA = PB, as they are corresponding sides of
congruent triangles. Fig. 5.9

Now, let us construct two triangles, whose sides are 4 cm and 5 cm and one of the
angles is 50° and this angle is.not included in between the equal sides (see Fig. 5.10).
Are the two triangles congruent?

N

Fig. 5.10
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Notice that the two triangles are not congruent.

Repeat this activity with more pairs of triangles. You will observe that for triangles
to be congruent, it is very important that the equal angles are included between the
pairs of equal sides.

So, SAS congruence rule holds but not ASS or SSA rule.

Next, try to construct the two triangles in which two angles are 60° and 45° and
the side included between these angles is 4 cm (see Fig. 5.11).

\ N

O/‘ /!

Fig. 5.11

Cut out these triangles-and place one triangle on the other. What do you observe?
See that one triangle covers the other completely; that is, the two triangles are congruent.
Repeat this activity with more pairs of triangles. You will observe that equality of two
angles and the included side is sufficient for congruence of triangles.

This result is the Angle-Side-Angle criterion for congruence and is written as
ASA criterion. You have verified this criterion in earlier classes, but let us state and
prove this result.

Since this result can be proved, it is called a theorem and to prove it, we use the
SAS axiom for'congruence.

Theorem 5.1 (ASA congruence rule) : Tiwo triangles are congruent if two angles
and the-included side of one triangle are equal to two angles and the included
side of other triangle.

Proof : We are given two triangles ABC and DEF in which:
£4ZB= ZLE, LC=/F

and BC = EF

We need to prove that A ABC = A DEF

For proving the congruence of the two triangles see that three cases arise.



TRIANGLES 89

Case (i) : Let AB = DE (see Fig. 5.12).

Now what do you observe? You may observe that

AB = DE (Assumed)
ZB=/E (Given)
BC = EF (Given)

So, A ABC = A DEF (By SAS rule)

\

\ \

7 v

d N ( L W
Fig. 5.12

Case (ii) : Let/if possible AB > DE. Soj we can take a point P on AB such that
PB = DE. Now consider A PBC and A DEF (see Fig. 5.13).

Fig. 5.13
Observe that in A PBC and A DEF,
PB =DE (By construction)
/B=ZE (Given)
BC = EF (Given)

So, we can conclude that:
A PBC = A DEF, by the SAS axiom for congruence.
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Since the triangles are congruent, their corresponding parts will be equal.
So, 2 PCB = Z DFE
But, we are given that

Z ACB = Z DFE

So, Z ACB= Z PCB

Is this possible?

This is possible only if P coincides with A.

or, BA=ED

So, A ABC =ADEF (by.SAS axiom)

Case (iii) : If AB < DE, we can choose a point M on DE such that ME = AB and
repeating the arguments as given in Case (ii), we can conclude that AB = DE and so,
A ABC = A DEF.

Suppose, now in two triangles two pairs of angles and one pair of corresponding
sides are equal but the side is not included between the corresponding equal pairs of
angles. Are the-triangles still congruent? You will observe that they are congruent.
Can you reason out why?

You know-that'the sum of the three angles of a triangle is 180°. So if two pairs of
angles are equal, the third pair is.also equal (180° — sum of equal angles).

So, two triangles are congruent if any two pairs of angles and one pair of
corresponding sides are equal. We may call it as the AAS Congruence Rule.

Now let us perform the following activity :

Draw triangles with angles 40°, 50° and 90°. How many such triangles can you
draw?

In facty you can draw as many triangles as you want with different lengths of
sides (see Fig; 5.14).

Fig. 5.14
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Observe that the triangles may or may not be congruent to each other.

So, equality of three angles is not sufficient for congruence of triangles. Therefore,
for congruence of triangles out of three equal parts, one has to be a side.

Let us now take some more examples.

Example 3 : Line-segment AB is parallel to another line-segment CD. O is.the
mid-point of AD (see Fig. 5.15). Show that (i) AAOB = ADOC (ii) O is also the
mid-point of BC.

Solution : (i) Consider A AOB and A DOC. A_ N

Z ABO= 2 DCO 8
(Alternate angles-as AB | CD K 7/
and BC is‘the transversal) \ Y
Z AOB = £'DOC \ \ €
(Vertically opposite angles)
OA='0D (Given) Fig. 5.15
Therefore, /AAOB = ADOC (AAS rule)
(i) OB = OC (CPCT)

So, O is the mid-point of BC.

EXERCISE 5.1

1. Inquadrilateral ACBD,

AC =, AD and AB bisects LA
(see Fig. 5.16). Show that A ABC = A ABD.

What can you say about BC and BD?

Fig. 5.16
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ABCD is a quadrilateral in which AD = BC and
Z DAB = Z CBA (see Fig. 5.17). Prove that

() AABD=ABAC
(i) BD=AC
(i) £ ABD=2BAC.

AD and BC are equal perpendiculars to a line
segment AB (see Fig. 5.18)..Show that CD bisects
AB.

D)

[ and m.are-two parallel lines intersected by
another pair of parallel lines p and ¢
(see Fig. 5.19). Show that A ABC = A CDA.

Line/ is the bisector of an angle £ A and B is any
point on /. BP and BQ are perpendiculars from B
tothe arms of £ A (see Fig. 5.20). Show that:

(i) AAPBzAAQB
(i) BP = BQ or B is equidistant from the arms
of LA.

Fig. 5.17

Fig. 5.18

Fig. 5.19

Fig. 5.20
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6. In Fig. 5.21, AC = AE, AB = AD and
ZBAD = Z EAC. Show that BC = DE.

Y/ N
Fig. 5:21
7. ABisaline segment and P is its mid-point. D and
E are points on the same side of ABsuch that
Z BAD = £ ABE and. £ EPA = £ DPB ™
(see Fig. 5.22). Show that
\
() ADAP=AEBP
(i) AD=BE
u
Fig. 5.22
8. Inrighttriangle ABC, right angled at C; M is
the mid=point of hypotenuse AB. C is joined
to M and produced to a point D such that
DM = CM. Point D is joined to point B
(see Fig. 5.23). Show that:
(i) AAMC = A BMD
(i) £ DBC is aright angle.
(i) A DBC =A ACB Fig. 5.23
1
@iv) CM = 5 AB

5.4 Some Properties of a Triangle

In the above section you have studied two criteria for congruence of triangles. Let us
now apply these results to study some properties related to a triangle whose two sides
are equal.
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Perform the activity given below:

Construct a triangle in which two sides are
equal, say each equal to 3.5 cm and the third side
equal to 5 cm (see Fig. 5.24). You have done such
constructions in earlier classes.

Do you remember what is such a triangle
called?

A triangle in which two sides are equal is called
an isosceles triangle. So, A ABC of Fig.’5.24 is
an isosceles triangle with AB = AC.

Fig. 5.24

Now, measure £ B and £ C./-What do you observe?
Repeat this activity with otherisosceles triangles with different sides.

You may observe that in each such‘triangle, the angles opposite to the equal sides
are equal.

This is a very important result and is indeed true for any isosceles triangle. It can
be proved as shown below.

Theorem 5.2 : Angles opposite to equal sides of an isosceles triangle are equal.
This result can be proved in many ways. One of
the proofs is given here.

Proof : We are given an isosceles‘triangle ABC
in which AB = AC. We need to prove that
ZB=2ZC.

Let us draw the bisector of £ A and let D be
the point of intersection of this bisector of Fig. 5.25
Z A and BC (see Fig. 5.25).

In‘/A BAD and A CAD,

AB = AC (Given)

< BAD = Z CAD (By construction)

AD = AD (Common)

So, A BAD = A CAD (By SAS rule)

So, £ ABD = £ ACD, since they are corresponding angles of congruent triangles.
So, ZB=/C
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Is the converse also true? That is:

If two angles of any triangle are equal, can we conclude that the sides opposite to
them are also equal?

Perform the following activity.

Construct a triangle ABC with BC of any length and £ B = 2 C = 50°. Draw the
bisector of £ A and let it intersect BC at D (see Fig. 5.26).

Cut out the triangle from the sheet of paper and fold it along AD so that vertex.C
falls on vertex B.

What can you say about sides ACand AB? 7 1\
Observe that AC covers AB completely
So, AC = AB .

Repeat this activity with some moretriangles. S0
Each time you will observe thatthe sides opposite \Y
to equal angles aré equal. So we have the Fig. 5.26
following:

Theorem 5.3 ;" The sides opposite to equal angles-of a triangle are equal.
This is the converse of Theorem 5.2.
You can prove this theorem by ASA congruence rule.

Let us take some examples to apply these results.

Example 4 : In A ABC, the bisector AD of £ A is perpendicular to side BC
(see Fig. 7.27). Show that AB’= AC and A ABC is isosceles.

Solution : In AABD and AACD,

Z BAD = £ CAD (Given)

AD = AD (Common)

< ADB = £ ADC =90° (Given)

So, . A“ABD = A ACD (ASA rule)
So, AB = AC (CPCT)

or, A ABC is an isosceles triangle.

Fig. 5.27
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Example 5 : E and F are respectively the mid-points
of equal sides AB and AC of A ABC (see Fig. 5.28).
Show that BF = CE.

Solution : In A ABF and A ACE,

AB = AC (Given)
L A= LA (Common) \
AF = AE  (Halves of equal sides) ‘
Fig. 5.28
So, A ABF = A ACE (SASrule)
Therefore, BF = CE (CPCT)

Example 6 : In an isosceles triangle ABC with AB = AC, D and E are points on BC
such that BE = CD (see Fig. 5:29). Show that AD = AE.

Solution : In A ABD and A ACE,

AB = AC (Given) (1)
ZB=Z¢€
(Angles opposite to equal sides) (2)
Also, BE = CD
So, BE —-DE = CD - DE
That is, BD = CE 3) Fig. 5.29
So, A ABD = A ACE
(Using (1),/12), (3) and SAS rule).
This gives AD = AE (CPCT)
EXERCISE 5.2

1./ Inanisosceles triangle ABC, with AB = AC, the bisectors of £ B and £ C intersect
each other at O. Join A to O. Show that :

i OB=0C (ii) AObisects £ A

2. InA ABC,AD is the perpendicular bisector of BC
(see Fig. 5.30). Show that A ABC is an isosceles
triangle in which AB =AC.

Fig. 5.30
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3.

ABC is an isosceles triangle in which altitudes
BE and CF are drawn to equal sides AC and AB
respectively (see Fig. 5.31). Show that these
altitudes are equal.

ABC is atriangle in which altitudes BE and CF to
sides AC and AB are equal (see Fig. 5.32). Show
that

(i) AABE=zAACF
(i) AB=AC,i.e.,, ABC is anisoscelestriangle.

ABC and-DBC are two isosceles triangles on the
same/base BC (see Fig. 5.33). Show that
Z ABD= £ ACD.

AABC is an isosceles triangle in which AB =AC.
Side BA is produced to D such that AD = AB
(see Fig. 5.34). Show that £ BCD is aright angle.

ABC is aright angled triangle in which £ A=90°
and AB =AC. Find £ B and £ C.

Show that the angles of an equilateral triangle
are 60° each.

Fig. 5.31

Fig. 5.32

Fig. 5.33

Fig. 5.34
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5.5 Some More Criteria for Congruence of Triangles

You have seen earlier in this chapter that equality of three angles of one triangle to
three angles of the other is not sufficient for the congruence of the two triangles. You
may wonder whether equality of three sides of one triangle to three sides of another
triangle is enough for congruence of the two triangles. You have already verified in
earlier classes that this is indeed true.

To be sure, construct two triangles with sides 4 cm, 3.5 cmfand 4.5 cm
(see Fig. 5.35). Cut them out and place them on each other. What do you observe?
They cover each other completely, if the equal sides are placed on each other. So, the
triangles are congruent.

N
n
o

Fig. 5.35

Repeat this activity with some more triangles. We arrive at another rule for
congruence.

Theorem 5.4 (SSS congruence rule) : [If three sides of one triangle are equal to
the three sides of another triangle, then the two triangles are congruent.

This theorem can be proved using a suitable construction.

You-have already seen that in the SAS congruence rule, the pair of equal angles
has to be the included angle between the pairs of corresponding pair of equal sides and
if this is'not so, the two triangles may not be congruent.

Perform this activity:

Construct two right angled triangles with hypotenuse equal to 5 cm and one side
equal to 4 cm each (see Fig. 5.36).
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Fig. 5.36

Cut them out and place one triangle-over the other with equal‘side placed on each
other. Turn the triangles, if necessary. What do you observe?

The two triangles cover eachother completely and so they are congruent. Repeat
this activity with other pairs of right triangles. What do you observe?

You will find that two right triangles are congruent if one pair of sides and the
hypotenuse are equal, You have verified this in earlier classes.

Note that, the right angle is nof the included angle in this case.

So, you arrive-at the following congruence rule:

Theorem 3.5 (RHS congruence rule) : If.in two right triangles the hypotenuse
and one side of one triangle are equal to the hypotenuse and one side of the
other triangle, then the two triangles are congruent.

Note that RHS stands for Right angle - Hypotenuse - Side.
Let us now take some examples.

Example 7 : AB is a line-segment. P and Q are

points on opposite sides of AB such that each of them

is equidistant from the points A and B (see Fig. 5.37).

Show that the line PQ is the perpendicular bisector
of AB:

Solution : You are given that PA = PB and
QA= QB and you are to show that PQ L AB and
PQ bisects AB. Let PQ intersect AB at C.

Can you think of two congruent triangles in this figure?
Let us take A PAQ and A PBQ. Fig. 5.37

In these triangles,
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AP =BP (Given)

AQ=BQ (Given)

PQ =PQ (Common)

So, A PAQ = A PBQ (SSSrule)

Therefore, Z APQ = £ BPQ (CPCT).
Now let us consider A PAC and A PBC.

You have : AP =BP (Given)

Z APC="4 BPC (£ APQ = £ BPQ/proved above)

PC=PC (Common)

So, A PAC =.A-PBC (SAS rule)

Therefore, AC=BC (CPCT) (1)

and < ACP= Z BCP (CPCT)

Also, </ ACP + .2 BCP = 180° (Linear pair)
So, 2/°ACP =180°

or, Z ACP =90° 2)

From (1) and (2), you can easily conclude that PQ is the perpendicular bisector of AB.
[Note that, without showing the'congruence of A PAQ and A PBQ, you cannot show

that APAC = A PBC even'though AP = BP (Given)

PC =PC (Common)

and Z PAC = £ PBC (Angles opposite to equal sides in
AAPB)

It is because these results give us SSA rule which is not always valid or true for
congruence of triangles. Also the angle is not included between the equal pairs of
sides.]

Let us take some more examples.

Example 8 : P is a point equidistant from two lines / and m intersecting at point A
(see Fig. 5.38). Show that the line AP bisects the angle between them.

Solution : You are given that lines / and m intersect each other at A. Let PB L /,
PC L m. It is given that PB = PC.

You are to show that £ PAB = /£ PAC.
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Let us consider A PAB and A PAC. In these two

triangles,
PB =PC (Given)
Z PBA =ZPCA=90° (Given)
PA =PA (Common)
So, A PAB = A PAC (RHS rule) Fig. 5.38
So, Z PAB = 2 PAC (CPCT)

Note that this result is the converse of the result proved in Q.5 of Exercise 5.1.

EXERCISE 5.3

A ABC and A DBC are two isosceles triangles on
the same base BC and vertices Aand D are on the
same side of BC (see Fig. 5.39). IfAD is extended
to intersect BC at P, show that

(i) AABD=AACD
(i) ANABP=AACP
(iiiy AP bisects' £ A as well as £D.

(iv) AP isthe perpendicular bisector of BC. Fig. 5.39
AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that
(i) AD bisects BC (ii) AD bisects £ A.

Two sides AB and BC and median AM

of one triangle. ABC are respectively

equal to sides PQ and QR and median

PN of APQR (see Fig. 5.40). Show that:

() “ A ABM'=APQN

@ii) AABC=APQR Fig. 5.40

BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence
rule, prove that the triangle ABC is isosceles.

ABC is an isosceles triangle with AB = AC. Draw AP L BC to show that
ZB=ZC.
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5.6 Inequalities in a Triangle

So far, you have been mainly studying the equality of sides and angles of a triangle or
triangles. Sometimes, we do come across unequal objects, we need to compare them.
For example, line-segment AB is greater in length as compared to line segment CD'in
Fig. 5.41 (i) and £ A is greater than £ B in Fig 5.41 (ii).

Fig. 5.41
Let us now examine whether there is any relation between unequal sides and
unequal angles of a triangle. For this, let us perform the following activity:
Activity : Fix'two pins on-a drawing board say at B and C and tie a thread to mark a
side BC of a triangle.

Fix one end of another thread at C and tie a pencil
at the other (free) end . Mark a point A with the
pencil and draw A ABC (see Fig 5/42). Now, shift
the pencil and mark another point A’ on CA beyond
A (new position of it)
So, A'C>AC (Comparing the lengths)
Join A’ to ‘B and.complete the triangle A'BC.
What can you say about £ A’'BC and £ ABC?
Compare them. What do you observe? Fig. 5.42
Clearly, £ A'BC>~ZABC

Continue to mark more points on CA (extended) and draw the triangles with the
side BC and the points marked.

You will observe that as the length of the side AC is increased (by taking different
positions of A), the angle opposite to it, that is, £ B also increases.

Let us now perform another activity :
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Activity : Construct a scalene triangle (that is a triangle in which all sides are of
different lengths). Measure the lengths of the sides.

Now, measure the angles. What do you
observe?

In A ABC of Fig 5.43, BC is the longest side
and AC is the shortest side.

Also, Z Aisthe largest and £ B is the smallest.

Repeat this activity with some other triangles. Fig. 5.43

We arrive at a very important result of inequalities in a triangle. Itiis'stated in the
form of a theorem as shown below:

Theorem 5.6 : If two sides of a triangle are unequal, the angle opposite to the
longer side is larger (or greater). R
You may prove thistheorem by taking a point P ' ¥

on BC such that CA*= CP in Fig. 5.43. =

Now, let us perform another activity :

Activity : Draw a line-segment AB. With A as centre
and some radius,-draw an arc and mark different
points say P, Q, RS, T on it. Fig. 5.44

Join each of these points with/A as well as with B (see Fig. 5.44). Observe that as
we move from P to T, £ A’is becoming larger and larger. What is happening to the
length of the side opposite to it? Observe that the length of the side is also increasing;
thatis £ TAB> £ SAB> Z RAB> £ QAB > Z PAB and TB> SB > RB > QB > PB.

Now, draw jany triangle with all angles unequal
to each other. Measure the lengths of the sides
(see Fig. 5.45).

Observe that the side opposite to the largest angle
is the longest. In Fig. 5.45, £ B is the largest angle
and AC is the longest side.

Repeat this activity for some more triangles and
we see that the converse of Theorem 5.6 is also true. Fig. 5.45
In this way, we arrive at the following theorem:
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Theorem 5.7 : In any triangle, the side opposite to the larger (greater) angle is
longer.

This theorem can be proved by the method of contradiction.

Now take a triangle ABC and in it, find AB + BC, BC + AC and AC + AB. What
do you observe?

You will observe that AB +BC > AC,
BC + AC> AB and AC + AB > BC.
Repeat this activity with other triangles and with this you can arrive at the following

theorem :

Theorem 5.8 : The sum of any two sides of a
triangle is greater than the third side.

In Fig. 5.46, observe that the side' BA of A ABC has
been produced to a point D such that AD = AC. Canyou
show that £ BCD > 4 BDC and BA + AC > BC? Have
you arrived at the proof of the above theorem.

Let us now take)some examples based on these results. Fig. 5.46

Example 9 : Dis-apoint on side BC of A ABC such that AD = AC (see Fig. 5.47).
Show that AB > AD.

Solution : In A DAC,

AD = AC (Given)
So, Z ADC= £ ACD
(Angles opposite to equal sides)
Now, Z ADC is an exterior angle for AABD.
So, £ ADC > £ ABD
or, Z ACD> £ ABD
or, Z ACB> 2 ABC Fig. 5.47
So, AB > AC (Side opposite to larger angle in A ABC)

or, AB > AD (AD = AC)
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EXERCISE 5.4

1. Show that in a right angled triangle, the
hypotenuse is the longest side.

2. In Fig. 5.48, sides AB and AC of A ABC are
extended to points P and Q respectively. Also,
£ PBC < £ QCB. Show that AC > AB.

¢
Fig. 5.48
3. InFig.5.49, /B</Z Aand £ C< £D:Show that
AD<BC. N
~l
b
Fig. 5.49
4. AB and.CD-are respectively the smallest and
longest sides of a quadrilateral ABCD
(see Fig. 5.50). Show that £ A > £ C and
ZB>/D.
Fig. 5.50

5. InFig5.51, PR >PQ and PS bisects £ QPR. Prove
that £ PSR> £ PSQ.

Fig. 5.51
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6. Show that of all line segments drawn from a given point not on it, the perpendicular
line segment is the shortest.

EXERCISE 5.5 (Optional)*

1. ABCisatriangle. Locate a point in the interior of A ABC which is equidistant from all

the vertices of A ABC.

2. Inatriangle locate a point in its interior which is equidistant from all the sides of the
triangle.

3. Inahuge park, people are concentrated at three ;!

points (see Fig. 5.52):

A': where there are different slidesrand swings
for children,

B: near which a man-made lake is situated,
C: which is near to a large parking and exit.

Where should an icecream parlour be set up so

‘fl})at maximum number of persons can approach Fig. 5.52
1t?

(Hint/: The parlour should be equidistant from A, B and C)

4. Completethe hexagonal and starshaped Rangolies [see Fig. 5.53 (i) and (ii)] by filling
them with as many equilateral triangles of side 1 cm as you can. Count the number of
triangles in each case. Which has more triangles?

@ (i)
Fig. 5.53

*These exercises are not from examination point of view.
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5.7 Summary

In this chapter, you have studied the following points :

1.

2.
3.
4

10.
11.

12.

13.

14.
15.

Two figures are congruent, if they are of the same shape and of the same size.
Two circles of the same radii are congruent.
Two squares of the same sides are congruent.

If two triangles ABC and PQR are congruent under the correspondence A/ <> P,
B < Qand C < R, then symbolically, it is expressed as A ABC = A PQR!

If two sides and the included angle of one triangle are equal to two sides and the included
angle of the other triangle, then the two triangles are congruent (SAS Congruence Rule).

If two angles and the included side of .one triangle are equal to’two angles and the
included side ofthe other triangle; then the two triangles are congruent (ASA Congruence
Rule).

If two angles and one side'of one triangle are equal to two angles and the corresponding
side of the other triangle, then the two triangles are congruent (AAS Congruence Rule).

Angles opposite to equal sides of a triangle are equal.
Sides opposite to equal.angles of a triangle are equal.
Each angle of an equilateral triangle is of 60°.

If three sides of one triangle are equal to three sides of the other triangle, then the two
triangles are congruent (SSS Congruence Rule).

If in two right triangles, hypotenuse and one side of a triangle are equal to the hypotenuse
and one side of other, triangle, then the two triangles are congruent (RHS Congruence
Rule).

In a triangle, angle opposite to the longer side is larger (greater).
In a triangle, side opposite to the larger (greater) angle is longer.

Sum of any two sides of a triangle is greater than the third side.



CHAPTER 6

CONSTRUCTIONS

6.1 Introduction

In earlier chapters, the diagrams, which were necessary to prove a theorem or solving
exercises were not necessarily precise. They were drawn only to give you a feeling for
the situation and as an aid for proper reasoning. However, sometimes one needs an
accurate figure, for example - to’draw a map of a building to be constructed, to design
tools, and various parts of a machine, to draw road maps etc. To draw such figures
some basic geometrical instruments are needed. You must be having a geometry box
which contains the following:

(i) A graduated scale, on one side of which centimetres and millimetres are
marked off and on the/other side inches and their parts are marked off.

(i) A pair of set - squares, onewith angles 90°, 60° and 30° and other with angles
90°, 45° and 45°.

(iii) A pair of dividers (or a divider) with adjustments.

(iv) A pair of compasses (or a compass) with provision of fitting a pencil at one
end.

(v) A protractor.

Normally, all these instruments are needed in drawing a geometrical figure, such
as a'triangle, a circle, a quadrilateral, a polygon, etc. with given measurements. But a
geometrical construction is the process of drawing a geometrical figure using only two
instruments — an ungraduated ruler, also called a straight edge and a compass. In
construction where measurements are also required, you may use a graduated scale
and protractor also. In this chapter, some basic constructions will be considered. These
will then be used to construct certain kinds of triangles.
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6.2 Basic Constructions

In Class VI, you have learnt how to construct a circle, the perpendicular bisector of a
line segment, angles of 30°, 45°, 60°, 90° and 120°, and the bisector of a given angle,
without giving any justification for these constructions. In this section, you will construct
some of these, with reasoning behind, why these constructions are valid.

Construction 6.1 : 7o construct the bisector of a given angle.
Given an angle ABC, we want to construct its bisector.
Steps of Construction :

1. Taking B as centre and any radius, draw an arc to intersect the:rays BA and BC,
say at E and D respectively [see Fig.6.1(1)].

1
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