STD: -12th [EM] **SUB: -MATHS**

(A) A

(B) I - A

FULL TEST-1 MARKS: - 100

DATE: - 21/05/2021 **DURATION: 3 HR**

Name: -___ Roll No: -___

P	Answer the following questions. [Each of 1mark].	(50)
	SECTION: - A	

		SECTIO	DN: - A	
1.		first ten natural numbers. Relation R on set A is defined as follows : $x, y \in A$ t of the following, which statement is false ?		
	(A) $R = \{(2, 4), (4, 3), (6, 6), (6,$		(B) Domain of $R = \{2, \dots, n\}$	4, 6, 8}
2	(C) Range of $R = \{1, 2\}$		(D) None of these	
2.	R and S are non-empty relation on the set A. Out of the following statement is false.			
	(A) R and S are transitive \Rightarrow R \cap S is transitive.			
	(B) R and S are symmetric \Rightarrow R \cup S is symmetric.			
	(C) R and S are transit	tive $\Rightarrow R \cup S$ is transitive.		
		$\text{ve} \Rightarrow \text{R} \cap \text{S} \text{ is reflexive.}$		
3.	If $f: [2, \infty) \to \mathbb{R}$ be the	function defined by $f(x)$	$= x^2 - 4x + 5$, then the	cange of f is
	(A) R	(B) [1, ∞)	(C) [4, ∞)	(D) $[5, \infty)$
4.	If $\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = 3\pi$ then $xy + yz + zx =$			
	(A) 0	(B) 1	(C) 3	(D) $-\frac{1}{3}$
5.	If $\sin^{-1}x = 2\sin^{-1}a$ then	ı		
	$(A) a \le \frac{1}{\sqrt{2}}$	(B) $\frac{1}{2} < a < \frac{1}{\sqrt{2}}$	(C) $a \in \mathbb{R}$	(D) $ a < \frac{1}{2}$
6.	The value of $\sin(4\tan\theta)$	$1^{-1}\frac{1}{3}$ =		
	(A) $\frac{12}{25}$	(B) $\frac{24}{25}$	(C) $\frac{1}{5}$	(D) None of these
7. If $\sin^{-1} x > \cos^{-1} x$ then				
	(A) $x \in \mathbb{R}$	(B) $x \in \left(0, \frac{1}{\sqrt{2}}\right)$	(C) $x \in \left(\frac{1}{\sqrt{2}}, 1\right)$	(D) $x \in \left[\sqrt{2}, 1\right]$
8.	If matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$	satisfies the equation :	$x^2 - (a+d)x + k = 0 \text{ th}$	en
	(A) $k = bc$		(B) $k = ad$	
0	(C) $k = a^2 + b^2 + c^2$		(D) $k = ad - bc$	_
9.		atrices is $ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} $	$\begin{bmatrix} 3 \\ 1 \end{bmatrix} \dots \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 378 \\ 0 & 1 \end{bmatrix}$	then the value of $n =$
	(A) 26	(B) 27	(C) 377	(D) 373
10.		matrices of same order the		
- • •	(A) $A^{-n} B^n A^n$	(B) $A^n B^n A^{-n}$	(C) $A^{-1} B^n A$	(D) $n(A^{-1} BA)$
11.	If A is a square matrix	such that $A^2 = I$ then(A -	$-I)^3 + (A + I)^3 - 7A$ is eq	ual to

(C) I + A

(D) 3A

12.	If a square matrix A is a s is false.	ingular matrix and A ¹ is a	transpose matrix of A their	n the following statement	
	(A) $ A \neq A^T $	(B) $ AA^T \neq A ^2$	(C) $ A^T A \neq A^T ^2$	(D) $ A + A^T = 0$	
13.	The elements of the determinant of order 3×3 are $\{0, 1\}$. Then the maximum and minimum value				
	are respectively				
	(A) 1, -1	(B) 2, −2	(C) 4, –4	(D) 6, –6	
14.		assing through (-7, 8) and (B) $5x - y - 27 = 0$		(D) $5x + y - 27 = 0$	
15.	If $F(x) = \frac{1}{x^2} \int_{4}^{x} (4t^2 - 2F'(t)) dt$ then F'(4) equals to				
	(A) $\frac{32}{9}$	(B) $\frac{64}{3}$	(C) $\frac{64}{9}$	(D) $\frac{32}{3}$	
16.	If the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -2x^3 - 9x^2 - 12x + 1$ is decreasing in I_1 and increasing in I_2 then				
	(A) $I_1 = R - (-2, 1)$ and	$I_2 = (-2, -1)$	(B) $I_1 = \phi \text{ and } I_2 = (-1, -1)$, ∞)	
	(C) $I_1 = (-\infty, -2) \cup (-1)$, ∞) and $I_2 = (-2, 1)$	(D) $I_1 = R - [-2, -1]$ and	$d I_2 = (-2, -1)$	
17.	The area of the triangle formed by the tangents and normal with positive X-axis to the curve x^2 +				
	$y^2 = 4$ at the point $(1, -1)$,	_		
10	-	(B) $2\sqrt{3}$ sq.	-		
18.	integer function.	e of the function $f(x) = [x]$			
		(B) $(-1)^{K-1} (K-1)\pi$	(C) $(-1)^K K\pi$	(D) $(-1)^{K-1} K\pi$	
19.	If $f(x) = xe^{x(1-x)}$ then $f(x)$ is				
	(A) increasing function	L 2 J	(B) decreasing function		
	(C) increasing function	in R	(D) decreasing function	n in $\left[-\frac{1}{2}, 1\right]$	
20.	If the curves $ax^2 + by^2 = 1$ and $a'x^2 + b'y^2 = 1$ are orthogonally then				
	(A) $\frac{1}{a} - \frac{1}{b} = \frac{1}{a'} - \frac{1}{b'}$	(B) $\frac{1}{a} + \frac{1}{b} = \frac{1}{a'} + \frac{1}{b'}$	(C) $\frac{1}{a} - \frac{1}{b} = \frac{1}{a'} + \frac{1}{b'}$	(D) $\frac{1}{a} + \frac{1}{b} = \frac{1}{a'} - \frac{1}{b'}$	
21.	The slope of normal to $(3t^2 + 1, t^3 - 1)$ at $t = 1$ is				
	(A) $\frac{1}{2}$	(B) -2	(C) 2	(D) $-\frac{1}{2}$	
22.	If $\int \frac{dx}{x^{1/2} (1+x^2)^{5/4}} dx =$	$= \frac{A\sqrt{x}}{\left(1+x^2\right)^{\frac{1}{4}}} + C \text{ then A} =$	=		
	(A) 1	(B) 2	(C) 3	(D) 4	
23.	$\int \sin 2x \ dx = f(x)$				
	Statement-1: $f(x + \pi) = f(x)$, for each real x .				
	Statement-2: $\sin^2(x + \pi) = \sin^2 x$, for each real x .				
	(A) Statement-1 and 2 are true.				
	(B) Statement-1 and 2 are true. Statement-2 does not give the explanation of statement-1. (C) Statement-1 is true.				

(D) Statement-1 is false. Statement-2 is true.

34.		sion of the differential equation $\frac{dy}{dx} = \frac{\sin y + x}{\sin 2y - x \cos y}$ is $\sin^2 y = x \sin y + \frac{x^2}{a} + c$ then the			
	value of <i>a</i> is (A) 1	 (B) 2	(C) 3	(D) 4	
35.	The solution of	the differential equation	$\frac{dy}{dx} = \frac{e^x(\sin^2 x + \sin 2x)}{y(2\log y + 1)} $ i	s	
	(A) $y^2(\log y) - e^x$ (C) $y^2(\log y) + e^x$		(B) $y^2(\log y) - e^x$ (D) None of the		
36.	$\overrightarrow{a} \perp \overrightarrow{b}$, $ \overrightarrow{a} = 2$, $ \overrightarrow{b} = 3$, $ \overrightarrow{c} = 4$. The angle between \overrightarrow{b} and $ \overrightarrow{c} $ is $ \overrightarrow{a} = 2$, $ \overrightarrow{b} = 3$, $ \overrightarrow{c} = 4$. The angle between $ \overrightarrow{b} $ and $ \overrightarrow{c} $ is $ \overrightarrow{a} = 2$				
	(A) $4\sqrt{3}$	(B) $6\sqrt{3}$	(C) $12\sqrt{3}$	(D) $18\sqrt{3}$	
37.	$\bar{a} = (1, 2, -3), \bar{b}$	$\bar{\mu} = (2, 1, -1)$. The vector $\bar{\mu}$	is such that $\overline{a} \times \overline{\mu} = \overline{a} \times \overline{a}$	\overline{b} and $\overline{a} \cdot \overline{\mu} = 0$ then $ \overline{\mu} = \dots$	
	(A) $\frac{3}{2}$	(B) 10	(C) $\sqrt{10}$	(D) $\frac{\sqrt{5}}{2}$	
38.	The points $A(\vec{a})$), $B(\vec{b})$ and $C(\vec{c})$ are coll	inear then	_	
	(A) $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} =$	$\overrightarrow{0}$	(B) $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{b}$	$ \begin{array}{ccc} \rightarrow & \rightarrow & \rightarrow & \rightarrow \\ c & + & c & \times & a & = & 0 \end{array} $	
	(C) $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c}$	$\overrightarrow{c} \cdot \overrightarrow{a} = 0$	(D) None of thes	se	
39.	In a right angled triangle ABC, hypotenuse AB = P then $\overline{AB} \cdot \overline{AC} + \overline{BC} \cdot \overline{BA} + \overline{CA} \cdot \overline{CB} = .$				
	(A) 2P ²	(B) $\frac{P^2}{2}$	(C) P ²	(D) None of these	
	$\stackrel{\rightarrow}{a} = \hat{i} + \hat{j} + \hat{k},$	$\vec{b} = \hat{i} - \hat{j} + \hat{k}, \vec{c} = \hat{i} + 2$	$2\hat{j} - \hat{k}$ then $\begin{vmatrix} \overrightarrow{a} \cdot \overrightarrow{a} & \overrightarrow{a} \cdot \overrightarrow{b} \\ \overrightarrow{b} \cdot \overrightarrow{a} & \overrightarrow{b} \cdot \overrightarrow{b} \\ \overrightarrow{b} \cdot \overrightarrow{a} & \overrightarrow{b} \cdot \overrightarrow{b} \\ \overrightarrow{c} \cdot \overrightarrow{a} & \overrightarrow{c} \cdot \overrightarrow{b} \end{vmatrix}$	$ \begin{array}{ccc} \overrightarrow{a} \cdot \overrightarrow{c} \\ \overrightarrow{b} \cdot \overrightarrow{c} \\ \overrightarrow{b} \cdot \overrightarrow{c} \\ \overrightarrow{c} \cdot \overrightarrow{c} \end{array} = \dots $	
	(A) 2	(B) 4	(C) 16	(D) 64	
41.	$\stackrel{ ightarrow}{a}$ and $\stackrel{ ightarrow}{b}$ are u	nit vectors. The number	of possible integers in the	e range of $\frac{3}{2} \overrightarrow{a} + \overrightarrow{b} + 2 \overrightarrow{a} - \overrightarrow{b} $	
	is (A) 2	(B) 1	(C) 0	(D) 5	
42.			$(2 - \mu)\hat{i} + (2 - \lambda)\hat{j} + (3 - 2\lambda)\hat{j}$		
	(A) $2x + y = 5$ (B) $2x - y = 5$ (C) $2x + z = 5$ (D) $2x - z = 5$				
43.	The distance be 1 + S is	tween the lines $x = 1 - 4$	4t, y = 2 + t, z = 3 + 2t a	$\text{nd } x = 1 + S, \ y = 4 - 2S, \ z = -$	
	(A) 8	(B) $\frac{16}{\sqrt{90}}$	(C) $\frac{8}{\sqrt{5}}$	(D) $\frac{16}{\sqrt{110}}$	
44.	Three planes 4y (A) meets in a p (C) makes a tria	point	= 5 and $6x + 5y + 9z = 10$ (B) meets in a (D) Nothing can	line	
45.	(A) Every LPP ac(B) A LPP admit(C) If a LPP adm	=		-	

46. The solution of linear programming problem, maximize $Z = 3x_1 + 5x_2$ subject to $3x_1 + 2x_2 \le 18$, x_1 ≤ 4 , $x_2 \leq 6$, $x_1 \geq 0$, $x_2 \geq 0$ is

(A) $x_1 = 2$, $x_2 = 0$, z = 6

(B) $x_1 = 2$, $x_2 = 6$, z = 36

(C) $x_1 = 4$, $x_2 = 3$, z = 27

(D) $x_1 = 4$, $x_2 = 6$, z = 42

47. The solution set of the constraints $2x + 3y \le 6$, $x + 4y \le 4$ and $x \ge 0$, $y \ge 0$ includes the point as corner point.

(A) (1, 0)

(B) (1, 1)

(C) $\left(\frac{12}{5}, \frac{2}{5}\right)$ (D) $\left(\frac{2}{5}, \frac{12}{5}\right)$

48. The probability that A speaks truth is $\frac{4}{5}$, while this probability for B is $\frac{3}{4}$. The probability that they contradict each other when asked to speak on an event is

(A) $\frac{7}{20}$

49. In bag X there are 2 white and 3 black balls and in bag Y there are 4 white and 2 black balls. One

bag is selected at random and one ball is drawn from it. Then what is the probability that selected ball is white?

(A) $\frac{8}{15}$

(B) $\frac{2}{15}$

(C) $\frac{7}{15}$

(D) $\frac{14}{15}$

50. If $6P(A) = 8P(B) = 14P (A \cap B) = 1$, then $P(\frac{A'}{B}) = \dots$

(A) $\frac{3}{7}$

(D) $\frac{2}{5}$

SECTION: - B

Answer any eight of the following questions. [Each of 2marks] (16)**P**

1. Express $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ in the form of $\tan^{-1}x$.

2. Find the derivative of the function given by $f(x) = (1 + x)(1 + x^2)(1 + x^4)(1 + x^8)$ and hence find f'(1).

3. Find $\int \frac{3x^2 + 1}{(x^2 + 1)^3} dx$

4. $g(x) = \int f(t) dt$. The function f(t) is such that when $t \in [0, 1]$ then $\frac{1}{2} \le f(t) \le 1$ and when $t \in [0, 1]$ [1, 2] then $0 \le f(t) \le \frac{1}{2}$ show that $\frac{1}{2} \le g(2) \le \frac{3}{2}$.

5. $f(x) = \begin{cases} 1 - |x|, & |x| \le 1 \\ 0, & |x| > 1 \end{cases} \text{ If } g(x) = f(x+1) + f(x-1) \text{ then find } \int_{0}^{5} g(x).$

6. The area of the region bounded by the parabola $y^2 = 4ax$ and its latus rectum is 24 sq. units. Then

7. If $\alpha \parallel (\beta \times \gamma)$ then show that $(\alpha \times \beta) \cdot (\alpha \times \gamma) = |\alpha|^2 \cdot (\beta \cdot \gamma)$ where α , β and γ are vectors.

8. Find the coordinates of the point where the line through (5, 1, 6) and (3, 4,1) crosses the YZ-plane.

9. Maximise Z = 5x + 3y subject to $3x + 5y \le 15$, $5x + 2y \le 10$, $x \ge 0$, $y \ge 0$

- 10. A dice is tossed twice. Find the probability that there is at least one time 2 on a dice given that the sum of the number on the dice is 7.
- 11. In a bank, principal increases continuously at the rate of 5% per year. An amount of ₹ 1000 is deposited with this bank, how much will it worth after 10 years ? $(e^{0.5} = 1.648)$.
- 12. Let A and B be independent events for P(A) = 0.3 and P(B) = 0.4. Find
 - (i) $P(A \cap B)$ (ii) $P(A \cup B)$ (iii) $P(A \mid B)$ (iv) $P(B \mid A)$

Answer any six of the following questions. [Each of 3marks] (18)

- Consider $f: \mathbb{R}_+ \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x 5$. Show that f is invertible with $f^{-1}(y) = \left(\frac{\sqrt{y+6}-1}{3}\right).$
- 14. If $a + b + c \neq 0$ and $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0$ then prove that a = b = c.
- For $A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix}$ find A^{-1} . Using A^{-1} , solve the system of linear equations x 2y = 10,
 - 2x y z = 8, -2y + z = 7.
- 16. If $(a b \cos y)$ $(a + b \cos x) = a^2 b^2$ then prove that $\frac{dy}{dx} = \frac{\sqrt{a^2 b^2}}{a + b \cos x}$, $0 < x < \frac{\pi}{2}$.
- Find the equation of the plane containing two parallel lines $\frac{x-4}{1} = \frac{y-3}{-4} = \frac{z-2}{5}$ and $\frac{x-3}{1} = \frac{y+2}{-4} = \frac{z}{5}$.
- 18. Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes $\stackrel{\rightarrow}{r} \cdot (\stackrel{\wedge}{i} \stackrel{\wedge}{j} + 2\stackrel{\wedge}{k}) = 5$ and $\stackrel{\rightarrow}{r} \cdot (\stackrel{\wedge}{i} \stackrel{\wedge}{j} + 2\stackrel{\wedge}{k}) = 6$.
- 19. A merchant plans to sell two types of personal computers a desktop model and a portable model that will cost ₹ 25000 and ₹ 40000 respectively. He estimates that the total monthly demand of computers will not exceed from 250 units. Determine the number of units of each type of computers which the merchant should stock to get maximum profit if he does not want to invest more than ₹ 70 lakhs and if his profit on the desktop model is ₹ 4500 and on portable model is ₹ 5000.
- 20. In a hostel, 60% of the students read Hindi newspaper, 40% read English newspaper and 20% read both Hindi and English newspapers. A student is selected at random.
 - (a) Find the probability that she reads neither Hindi nor English newspapers.
 - (b) If she reads Hindi newspaper, find the probability that she reads English newspaper.
 - (c) If she reads English newspaper, find the probability that she reads Hindi newspaper.
- 21. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $(2\vec{a}+\vec{b})$ and $(\vec{a}-3\vec{b})$ externally in the ratio 1 : 2. Also, prove that P is the mid-point of the line segment RQ.

Answer any four of the following questions. [Each of 4marks]

- A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle. prove that the minimum length of the hypotenuse is $(a^{\frac{2}{3}} + b^{\frac{2}{3}})^{\frac{3}{2}}$.
- 24. The point C lies on the circle with diameter \overline{AB} . Prove that the area of $\triangle ABC$ is maximum then it is an isoscles triangle.
- 25. Evaluate the definite integral $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x + \cos x}{\sqrt{\sin 2x}} dx$
- Show that the general solution of the differential equation $\frac{dy}{dx} + \frac{y^2 + y + 1}{x^2 + x + 1} = 0$ is given by (x + y + 1) = A(1 x y 2xy), where A is parameter.
- 27. If $x^y + y^x = 1$, then find $\frac{dy}{dx}$.

F