Assignment-5

Linear Programming

- A factory makes tennis rackets and cricket bats. A tennis racket takes 1.5 hours of machine time and 3 hours of craftsman's time in its making while a cricket bat takes 3 hour of machine time and 1 hour of craftsman's time. In a day, the factory has the availability of not more than 42 hours of machine time and 24 hours of craftsman's time.
 - (i) What number of rackets and bats must be made if the factory is to work at full capacity?

[2 Marks]

(ii) If the profit on a racket and on a bat is $\gtrless 20$ and $\gtrless 10$ respectively, find the maximum profit of the factory when it works at full capacity. [4 Marks]

2. A diet is to contain at least 80 units of vitamin A and 100 units of minerals. Two foods F_1 and F_2 are available. Food $F_1 \text{ costs } \notin 4$ per unit food and $F_2 \text{ costs } \notin 6$ per unit. One unit of food F_1 contains 3 units of vitamin A and 4 units of minerals. One unit of food F_2 contains 6 units of vitamin A and 3 units of minerals. Formulate this as a linear programming problem. Find the minimum cost for diet that consists of mixture of these two foods and also meets the minimal nutritional requirements?

[6 Marks]

[6 Marks]

- 3. There are two types of fertilizers F₁ and F₂. F₁ consists of 10% nitrogen and 6% phosphoric acid and F₂ consists of 5% nitrogen and 10% phosphoric acid. After testing the soil conditions, a farmerfinds that she needs at least 14 kg of nitrogen and 14 kg of phosphoric acid for her crop. If F₁ cost ₹ 6/kg and F₂ costs ₹ 5/kg, determine how much of each type of fertilizer should be used so that nutrient requirements are met at a minimum cost. What is the minimum cost?
- **4.** An oil company has two depots A and B with capacities of 7000 L and 4000 L respectively. The company is to supply oil to three petrol pumps, D, E and F whose requirements are 4500L, 3000L and 3500L respectively. The distance (in km) between the depots and the petrol pumps is given in the following table:

Distance in (km)		
From/To	A	В
D	7	3
E	6	4
F	3	2

Assuming that the transportation cost of 10 litres of oil is $\gtrless 1$ per km, how should the delivery be scheduled in order that the transportation cost is minimum? What is the minimum cost? [6 Marks]