Assignment-5

Linear Programming

1. A factory makes tennis rackets and cricket bats. A tennis racket takes 1.5 hours of machine time and 3 hours of craftsman's time in its making while a cricket bat takes 3 hour of machine time and1 hour of craftsman's time. In a day, the factory has the availability of not more than 42 hours of machine time and 24 hours of craftsman's time.
(i) What number of rackets and bats must be made if the factory is to work at full capacity?
[2 Marks]
(ii) If the profit on a racket and on a bat is ₹ 20 and ₹ 10 respectively, find the maximum profit of the factory when it works at full capacity.
2. A diet is to contain at least 80 units of vitamin A and 100 units of minerals. Two foods F_{1} and F_{2} are available. Food F_{1} costs ₹ 4 per unit food and F_{2} costs ₹ 6 per unit. One unit of food F_{1} contains 3 units of vitamin A and 4 units of minerals. One unit of food F_{2} contains 6 units of vitamin A and 3 units of minerals. Formulate this as a linear programming problem. Find the minimum cost for diet that consists of mixture of these two foods and also meets the minimal nutritional requirements?
[6 Marks]
3. There are two types of fertilizers F_{1} and F_{2}. F_{1} consists of 10% nitrogen and 6% phosphoric acid and F_{2} consists of 5% nitrogen and 10% phosphoric acid. After testing the soil conditions, a farmerfinds that she needs at least 14 kg of nitrogen and 14 kg of phosphoric acid for her crop. If F_{1} cost
$₹ 6 / \mathrm{kg}$ and F_{2} costs ₹ $5 / \mathrm{kg}$, determine how much of each type of fertilizer should be used so that nutrient requirements are met at a minimum cost. What is the minimum cost?
4. An oil company has two depots A and B with capacities of 7000 L and 4000 L respectively. The company is to supply oil to three petrol pumps, D, E and F whose requirements are $4500 \mathrm{~L}, 3000 \mathrm{~L}$ and 3500 L respectively. The distance (in km) between the depots and the petrol pumps is given in the following table:

Distance in (km)		
From/To	A	B
D	7	3
E	6	4
F	3	2

Assuming that the transportation cost of 10 litres of oil is ₹ 1 per km, how should the delivery be scheduled in order that the transportation cost is minimum? What is the minimum cost?

