MINISTRY OF EDUCATION YEAR 13 MATHEMATICS

$$
r^{3}-1=0
$$

$$
\begin{array}{|c|c|cc|c|c|c|}
\hline x & f(x) & f^{\prime}(x) & 10 & { }^{y} \\
\hline-2 & 0 & 5 & 8 & x & g(x) & g^{\prime}(x) \\
\hline 3 & 4 & 1 & 6 & 2 & 7 & -4 \\
\hline 8 & 6 & -4 & & 3 & -2 & 8 \\
\hline 7 & 9 & 2 \\
\hline
\end{array}
$$

CURRICULUM DEVELOPMENT UNIT
FIJI 2018

The Curriculum Advisory Services (CAS) section of the Ministry of Education owns the copyright to this Year 13 Mathematics Textbook.

Schools may reproduce this in part or in full for classroom purposes only.

Acknowledgement of the CAS Section of the Ministry of Education copyright must be included on any reproductions.

Any other use of this textbook must be referred to the Permanent Secretary for Education through the Director Curriculum Advisory Services.

Issued free to schools by the Ministry of Education.
First Edition 2018

Trial Version

© Ministry of Education, Fiji, 2018

Published by
Curriculum Development Unit
Ministry of Education
Waisomo House
Private Mail bag
Suva
Fiji

Tel: (+679) 3313050

Website: www.education.gov.fj

PREFACE

The development of this Textbook was entirely based on the Year 13 Syllabus.

It has a total of nine strands: Complex Numbers, Vectors, Algebra, Trigonometry, Probability \& Inferential Statistics, Functions, Limits Continuity \& Differentiability, Differentiation and Integration.

The contents of this book have been simplified so that it can be used by all students with different capabilities. It contains very useful materials to help students and teachers alike to prepare for the Year 13 external examination.

It is confidently believed that it will furnish Year 13 students with the necessary number and variety of exercises essential to successful instructions in mathematics.

The step - by - step instructions in the methods and examples will make it suitable for both direct one - to - one tutoring and as well as regular classroom use. Moreover, there are inclusions of external examination [Fiji Seventh Form Certificate or Fiji Year 13 Certificate Examination] questions and illustrations that will help students a great deal.

All examples that have been introduced can even be attempted by an average pupil without assistance. They have been carefully graded to suit the slow learners as well, while there are some problems that are provided for advance learners.

Teachers and students are also advised to use other resources for enhancing of teaching and learning. This textbook is just a guide to accomplish the learning outcomes.

ACKNOWLEDGEMENTS

Throughout the process in writing this textbook, a number of people have sacrificed their valuable time to assist the Ministry of Education. They are acknowledged for their active participation and without their insights, guidance and continued support; this book may not have been possible.

The Ministry of Education, therefore, hereby acknowledges the following people for their valuable contributions to this book:

Pauliani Nene	Research Officer Mathematics, CDU
Jyotishna D. Chaudhary	Research Officer Mathematics, CDU
Dharmendra Prasad	Mathematics Advisor (SEO), CDU
Rajend Lal	Mathematics Advisor (SEO), CDU
Vipal Khatri	University of the South Pacific
Kellan K. Chand	University of the South Pacific
Rita Whippy	St Joseph's Secondary School
Aten Lal	Marist Brothers High School
Naisale Boletakanakadavu	Ballantine Memorial School
Nirmala W. P. Lal	Ahmadiyya Muslim College
Elvis Sidal	Nasinu Secondary School
Arvind Kumar	Nasinu Secondary School
Bimleshwar Prasad	Nabua Secondary School
Ralifo Tevita Nasario	Suva Grammar School
Nazmin N. Khalil	Nasinu Muslim College
Vimlesh A. Kumar	Suva Muslim College
Amitesh Chand	John Wesley College
Rozina Razim	Sacred Heart College
Muneshni R. M. Vilash	Suva Sangam College
Harmesh Sharma	Jai Narayan College
Maisea Ledua Tuicoro	Gospel High School
Anjana Lata	DAV College, Suva
Renuka Pratap	MGM High School
Finau L. Qaraniqio	DAV Girls College
Riteshni Karan	AOG High School
Mosese Tawake	Lami High School

INTRODUCTION

This textbook takes students and teachers into pleasant journey ahead in Mathematics lessons. But before we begin, let's just look at the brief history of Mathematics.

The history of mathematics is nearly as old as humanity itself. Since the ancient times, mathematics has been fundamental to advances in science, engineering, and philosophy. It has evolved from simple counting, measurement and calculation, and the systematic study of the shapes and motions of physical objects, through the application of abstraction, imagination and logic, to the broad, complex and often abstract discipline we know today. (http://www.storyofmathematics.com/)

A high-quality mathematics education therefore provides a foundation for understanding the world, the ability to reason mathematically, an appreciation of the beauty and power of mathematics, and a sense of enjoyment and curiosity about the subject. (https://www.gov.uk/government/publications/national-curriculum-in-england-mathematics-programmes-of-study/national-curriculum-in-england-mathematics-programmes-of-study\#key-stage-4)

However, the teacher is to take the role of a facilitator rather than the teacher centered teaching and incorporate more of technology driven lessons. Yet, it's harder to encourage students to learn and study due to the technology impact, then why not use technology to help students get motivated in Mathematics education.

In the book there are a variety of style types being used to help the teacher's guide students to a thorough understanding of the concepts. The style type is indicated by an icon as shown below:

Note for the teachers and students to elaborate a concept.
Pay attention to the examples. Listen to your teacher for any key ideas.

The answers given to each example. Understand and follow through the steps. If finding difficulty to follow, do not hesitate to ask your teacher.

Exercises based on the related concept learnt.

Did you know? These are some of the facts on the related concept or general ideas involving in Mathematics.

TABLE OF CONTENTS

2.1 Arithmetic Operations on Vectors 37
Arithmetic Operations on Vectors 38
2.2 Norm of a Vector and Unit Vectors 42
Norm and Unit Vectors 43
2.3 Dot Product and its application 46
Dot Product 47
Angle between the vectors 47
Angle Properties 49
2.4 Equation of a line 51
Equation of a line. 52
2.5 Division of a Line Segment 56
Ratio Formula 57
Review Exercise 2 61

3.1 Operations on Functions 62
1 New Functions from old 63
2 Domain and range 64
3.2 Graphs of Functions 68
1 Graphs of Polynomials 69
2 Graphs of Rational functions 73
Review Exercise 3 78
4.1 Trigonometry 79
Trigonometric Identities 80
Exact Values 83
4.2 Trigonometric Graphs 87
Trigonometric Graphs 88
4.3 Trigonometric Equations 91
Solving Trigonometric Equations 92

4.4 Application of Addition Formulae 96
1 Transformation of $\boldsymbol{A} \boldsymbol{\operatorname { C o s }} \boldsymbol{\theta} \pm \boldsymbol{B} \operatorname{Sin} \theta$ 97
4.5 Inverse Trig Functions 102
Graphs 103
Identities 105
Inverse of Reciprocal 106
Review Exercise 4 107
5.1 Limits of Functions 108
Computing Limits 109
Limits of Trigonometric Function 113
Limits at infinity 115
5.2 Piecewise Functions 117
Graphs 118
5.3 Limits, continuity \& differentiability from graphs 121
Interpretation of graphs 122
Review Exercise 5 126

6.1 Sequence 127
Sequences 128
6.2 Mathematical Induction 132
Prove by Mathematical Induction 133
6.3 Binomial Theorem 137
Binomial Theorem 138
Finding particular terms, coefficients and the independent term 141
6.4 Partial Fractions 144
Denominator with distinct linear factors 145
Repeated linear factors 147
Quadratics which cannot be factorised. 149
Review Exercise 6 152
7.1 Probability 153
Types of events 154
7.2 Inverse Normal Distribution 157
Inverse Normal problems 158
7.3 Binomial Distribution 163
Binomial Probabilities 164
Table of Binomial Probabilities 165
Table of Cumulative Binomial Distribution 168
7.4 Estimation 173
Estimation 174
Confidence Interval 175
Sample Size for estimation 177

7.5 Hypothesis Testing 179
Hypothesis Testing 180
One \& Two - tailed test 181
Steps in hypothesis testing 182
Review Exercise 7 186
8.1 Derivative of Functions 187
Common derivatives 188
Product and Quotient rules 190
Chain rule 192
Logarithmic differentiation 196
Implicit differentiation 198
8.2 Applications of Differentiation 201
Concavity, inflections and turning points 202
Maxima and Minima 205
Related rates 209
Kinematics using differentiation 213
Review Exercise 8 215

9.1 Anti - derivatives of Function 216
Algebraic Substitution 217
Use of partial fractions 227
Use of trig identities 229
9.2 Applications of Integration 231
Area between two graphs 232
Kinematics using integration 235
Review Exercise 9 237

COMPLEX NUMBERS

Introduction to Complex Numbers

1.1.1 The number \boldsymbol{i}

- The inadequacy of real numbers in solving quadratic equation of the type $x^{2}+\mathbf{1}=\mathbf{0}$ gave rise to a new type of numbers called the complex numbers.

By letting $i^{2}=-1$, in other words $i=\sqrt{-1}$, we are now able to work with a whole new range of equations. While \boldsymbol{i} is called an imaginary unit, it is essential to some real world fields such as electrical engineering, quantum mechanics, cartography, and many others.

Recall one of the rules of surds: $\sqrt{a b}=\sqrt{a} \sqrt{b}$ which is handy in finding square root of negative numbers.

With the help of i, square roots of negative numbers can be interpreted in the following way:
a) $\sqrt{-4}$
b) $\sqrt{-16}$
c) $\sqrt{-9}$
$=\sqrt{-1 \times 4}$
$=\sqrt{-1 \times 16}$
$=\sqrt{-1 \times 9}$
$=\sqrt{-1} \times \sqrt{4} \quad=\sqrt{-1} \times \sqrt{16}$
$=\sqrt{-1} \times \sqrt{9}$
$=i \times 2=i \times 4$
$=i \times 3$
$=2 i$
$=4 i$
$=3 i$

Exercise 1.1.1

Evaluate the following:
a) $\sqrt{-25}$
b) $\sqrt{-100}$
c) $\sqrt{-49}$
d) $\sqrt{-81}$

1.1.2 Quadratic Equations, where discriminant < 0

Quadratic equations have the form $a x^{2}+b x+c=0$.
Just identify and substitute the values of a, b and c in the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

You have to use imaginary numbers for square root of negative numbers.

Example 1
 Solve $x^{2}+2 x+5=0$

Answers Using the quadratic formula,

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \text { where } a=1, b=2 \text { and } c=5 \\
& x=\frac{-2 \pm \sqrt{2^{2}-4(1)(5)}}{2(1)}=\frac{-2 \pm \sqrt{-16}}{2} \\
& x=\frac{-2 \pm 4 i}{2}=-1+2 i,-1-2 i \quad \therefore x \in\{-1+2 i,-1-2 i\}
\end{aligned}
$$

Example 2 Solve the equation $4 x^{2}+2 x+1=0$.
Answers $a=4, b=2$ and $c=1$

$$
\begin{aligned}
x & =\frac{-2 \pm \sqrt{2^{2}-4(4)(1)}}{2(4)} \\
& =\frac{-2 \pm \sqrt{-12}}{8} \\
& =\frac{-2 \pm \sqrt{12} i}{8} \\
& =\frac{-2 \pm \sqrt{4} \sqrt{3} i}{8} \\
& =\frac{-2 \pm 2 \sqrt{3} i}{8} \\
& =-\frac{1}{4} \pm \frac{\sqrt{3}}{4} i
\end{aligned}
$$

Therefore $x=-\frac{1}{4}-\frac{\sqrt{3}}{4} i$ or $x=-\frac{1}{4}+\frac{\sqrt{3}}{4} i$.

Exercise 1.1.2

Solve the following equations and express the answers in rectangular form:

1. $4 x^{2}+9=0$
2. $4 x-13=8 x^{2}$
3. $3 x^{2}+10=4 x$
4. $2 x^{2}+8=0$
5. $x^{2}-2 x+2=0$
6. $x^{2}+25=0$
7. $x^{2}+x+1=0$
8. $3 x^{2}-4 x+2=0$
9. $x+\frac{5}{x}=3$
10. $\frac{x^{2}}{2}=5 x-17$

1.1.3 Parts of Complex Numbers

Complex number (z) can be written in the form $z=x+y i$ where x and y are real numbers and i is the imaginary unit, satisfying the equation $i^{2}=-1$. This is called rectangular form.

- The Complex number, z, is a single value number although it is made up of two parts ' x ' and ' $y i$ '.
- The ' x-term' is called the real part, denoted by $\operatorname{Re}(z)$.
- The ' y - term' is called the imaginary part (i.e. to the part attached to ' i '), denoted by $\operatorname{Im}(z)$.
- This means that the Complex number can also be written as

$$
z=\operatorname{Re}(z)+\operatorname{Im}(z) i
$$

(3) For example, given the complex number $w=-3.5+2 i$, the $\operatorname{Re}(w)$ and $\operatorname{Im}(w)$ are:

L $\quad \operatorname{Re}(w)=-3.5$ $\operatorname{Im}(w)=2$

Exercise 1.1.3

1. State the real and imaginary parts of each of the complex numbers shown below:
a) $z=3-2 i$
b) $z=-1 / 2+3 i$
c) $z=\frac{\sqrt{3}-i}{2}$
d) $z=-1-\sqrt{3} i$
e) $z=-\sqrt{2} i$
f) $z=6$
g) $3 z=3-2 i-z$
h) $2 z+2 i=3-i$
i) $z=-3$
2. $\operatorname{Re}(z)$ is $\sqrt{5}$ and $\operatorname{Im}(z)$ is $\frac{1}{2}$. Write z in rectangular form.
3. $\operatorname{Re}(w)$ is -1 and $\operatorname{Im}(w)$ is $\frac{1}{\sqrt{3}}$. Write w in rectangular form.

1.1.4 Solving Equations using Equality rule

Two complex numbers are equal only if their real and imaginary parts are equal. For example, consider $z_{1}=a+b i$ and $z_{2}=x+y i$. If $z_{1}=z_{2}$ then it can be said that $x=a$ and $y=b$.

To solve the equations, take into account the equality rule.

Example 1 Solve $3-4 i=x+y i$

Answers

$\therefore x=3$ and $y=-4$

Example $2 \quad$ Find the values of x and y if $2+i=x+(y-1) i$.

Answers

$$
\begin{aligned}
& x=2 \text { and } y-1=1 \text {, solve } \\
& y=1+1
\end{aligned}
$$

$\therefore x=2$ and $y=2$
(3) Example 3 Find the values of x and y such that $(2-i) x+(1+3 i) y=7$.

Answers
Expand and simplify

$$
(2-i) x+(1+3 i) y=7 \Rightarrow 2 x-x i+y+3 y i=7 \Rightarrow(2 x+y)+(-x+3 y) i=7+0 i
$$

Equate the imaginary and real parts.

$$
\begin{align*}
& 2 x+y=7 \tag{1}\\
& -x+3 y=0 \tag{2}
\end{align*}
$$

Solve Simultaneously:

Note: Solving Simultaneous Equations

Two common approaches are

- Substitution Method: Substitute one equation into another equation, then solve.
- Elimination Method: One of the variables to have same coefficient, then either add/subtract to solve.

Using the Substitution method:

$$
\begin{equation*}
\text { Using equation }(1), \text { we have }(2 x+y)=7 \quad \Rightarrow y=7-2 x \tag{3}
\end{equation*}
$$

Substitute equation (3) into (2), we have
$(-x+3(7-2 x))=0 \quad \Rightarrow-x+21-6 x=0 \quad \Rightarrow-7 x=-21 \quad \Rightarrow x=3$

Finally, substitute $x=3$ into equation (3), to get $y=1$.

Therefore, $x=3$ and $y=1$

Exercise 1.1.4

Find x and y such that

1. $x+2 i=4-y i$
2. $x+2 i=1+y i$
3. $(x+y i)(-i)=3$
4. $(x+2 y)+(x-y) i=3+2 i$
5. $(x-y)+3 i=4+y i$
6. $(3+4 i)(x+y i)=13+10 i$

Manipulation of
Complex Numbers
(i) Addition:
$(a+i b)+(c+i d)=(a+c)+i(b+d)$
(ii) Subtraction:
$(a+i b)-(c+i d)=(a-c)+i(b-d)$
(iii) Multiplication:
$(a+i b)(c+i d)=(a c-b d)+i(a d+b c)$
(iv) Division by a non- zero complex number: $\frac{a+i b}{c+i d}=\frac{a c+b d}{c^{2}+d^{2}}+i \frac{b c-a d}{c^{2}+d^{2}},(c+i d) \neq 0$.

1.2.1 Working with ' \boldsymbol{i} '

Since $i^{2}=-1$ so $i=\sqrt{-1}$.

$$
\begin{aligned}
& i^{3}=i^{2} \times i \\
& =-1 \times i \\
& =-i \\
& \begin{aligned}
i^{5} & =i^{2} \times i^{2} \times i \\
& =-1 \times-1 \times i \\
& =i
\end{aligned} \\
& i^{4}=i^{2} \times i^{2} \\
& =-1 \times-1 \\
& =1
\end{aligned}
$$

1.2.2 Addition and Subtraction

Given two complex numbers $z_{1}=a+b i$ and $z_{2}=x+y i$, the following holds true for Addition and Subtraction.

Recall in algebra, you can add or subtract like terms. Similarly you can add or subtract the real parts and the imaginary parts.
i.e. $z_{1} \pm z_{2}$

$$
\begin{aligned}
& =\quad(a+b i)+(x+y i) \\
& =\quad a+b i+x+y i
\end{aligned}
$$

Collecting Real and Imaginary parts yields:
$\frac{+\left(\begin{array}{c}a \\ x)+(b) i \\ y\end{array}\right)}{(a+x)+(b+y) i}$

$$
\therefore z_{1}+z_{2}=(a+x)+(b+y) i
$$

Example 1 If $v=1-5 i$ and $w=-1+3 i$. Find:

1. $v+w$
2. $w-v$

Answers

1. $v+w$

$$
\begin{aligned}
& =(1-5 i)+(-1+3 i) \\
& =1-5 i \\
& +\quad+\frac{-1-3 i}{0-2 i} i
\end{aligned}
$$

$\therefore v+w=-2 i$
2. $w-v$

$$
\begin{aligned}
& =(-1+3 i)-(1-5 i) \\
& =-1+3 i \\
& \frac{-1-5 i}{-2+8 i} \\
& \therefore w-v=-2+8 i
\end{aligned}
$$

1.2.3 Multiplication

Given two complex numbers $z_{1}=a+b i$ and $z_{2}=x+y i$, the following holds true for Multiplication.

Recall in algebra, we use distributive law to expand the brackets. We will also use the fact that $i^{2}=-1$ when simplifying the result.
i.e. $z_{1} \times z_{2}$

$$
=(a+b i) \times(x+y i)
$$

$=(a+b i)(x+y i)$
$=a \times x+a \times y i+b i \times x+b i \times y i$
$=a x+a y i+b i x+b i y i$
$=a x+a y i+b i x+b y i^{2}$
$=a x+a y i+b i x+b y(-1)$
$=a x+a y i+b i x-b y \quad$ Collect real parts and imaginary parts
$\therefore z_{1} \times z_{2}=(a x-b y)+(a y+b x) i$

Example 2 If $v=1-5 i$ and $w=-1+3 i$. Find

1. $v \times w$
2. w^{2}

Answers

$$
\begin{aligned}
& \text { 1. } v \times w \\
& =(1-5 i) \times(-1+3 i) \\
& =\underbrace{1 \times-1}+\underbrace{1 \times 3 i}-\underbrace{5 i \times-1}+\underbrace{-5 i \times 3 i} \\
& =-1+3 i+5 i-15 i^{2} \\
& =-1+3 i+5 i-15(-1) \\
& =-1+3 i+5 i+15 \quad \text { Add the real and imaginary parts } \\
& =-1+15+3 i+5 i \\
& \therefore v \times w=14+8 i
\end{aligned}
$$

2. $w^{2}=w \times w$

$$
\begin{aligned}
& =(-1+3 i)^{2} \\
& =(-1)^{2}+2 \times-1 \times 3 i+(3 i)^{2} \\
& =1-6 i+9 i^{2} \\
& =1-6 i+9(-1) \\
& =1-6 i-9 \\
& =1-9-6 i \\
& =-8-6 i
\end{aligned}
$$

1.2.4 Division

Conjugate

Conjugate is found by changing the sign of the coefficient of i. The complex conjugate is denoted by a line on top, i.e. \bar{z}
The complex roots of quadratics occur in conjugate pairs. This means if $a+b i$ is a root then $a-b i$ is also a root.

Given two complex numbers $z_{1}=a+b i$ and $z_{2}=x+y i$, then

$$
\overline{z_{1}}=a-b i \text { and } \overline{z_{2}}=x-y i
$$

Complex Conjugate properties:

1) $\stackrel{=}{z}=z$
2) $\overline{z_{1} \pm z_{2}}=\overline{z_{1}} \pm \overline{z_{2}}$
3) $\overline{z_{1} \cdot z_{2}}=\overline{z_{1}} \cdot \overline{z_{2}}$
4) $\overline{\left(\frac{z_{1}}{z_{2}}\right)}=\overline{\overline{z_{1}}}$

Division

When dividing two complex numbers, multiply the numerator and denominator by the conjugate of the denominator.
i.e. $\frac{z_{1}}{z_{2}}=\frac{a+b i}{x+y i}$ multiply by conjugate of the denominator

$$
\begin{aligned}
=\frac{a+b i}{x+y i} \times \frac{x-y i}{x-y i} & =\frac{(a+b i)(x-y i)}{(x+y i)(x-y i)} \\
& =\frac{a x-a y i+b x i-b y i^{2}}{x^{2}-(y i)^{2}} \\
& =\frac{a x-a y i+b x i-b y(-1)}{x^{2}-y^{2}(-1)} \\
& =\frac{a x+b y+b x i-a y i}{x^{2}+y^{2}} \\
& =\frac{a x+b y+(b x-a y) i}{x^{2}+y^{2}}
\end{aligned}
$$

In rectangular form:

$$
\therefore \frac{z_{1}}{z_{2}}=\frac{a x+b y}{x^{2}+y^{2}}+\frac{(b x-a y)}{x^{2}+y^{2}} i
$$

Example 3 If $a=1-5 i$ and $b=-1+3 i$, show that $\overline{a b}=\bar{a} \cdot \bar{b}$

Answer

$$
\left.\begin{array}{rlrl}
\text { LHS } & =\overline{a b} & R H S & =\bar{a} \cdot \bar{b} \\
& =\overline{(1-5 i)(-1+3 i)} & & =\overline{(1-5 i)} \cdot \overline{(-1+3 i)} \\
& =\overline{(1-5 i)(-1+3 i)} & & =(1+5 i)(-1-3 i)
\end{array}\right)
$$

$$
\therefore L H S=R H S
$$

Example 4 Simplify and express $\frac{4-3 i}{3+2 i}+3$ in the form $a+b i$.

Answer

$$
\begin{aligned}
\frac{4-3 i}{3+2 i}+\frac{3}{1} & =\frac{4-3 i}{3+2 i}+\frac{3(3+2 i)}{1(3+2 i)} \\
& =\frac{4-3 i+9+6 i}{3+2 i} \\
& =\frac{13+3 i}{3+2 i}
\end{aligned}
$$

Next, multiply the numerator and denominator by the conjugate of the denominator.

$$
\begin{aligned}
\frac{13+3 i}{3+2 i} & =\frac{13+3 i}{3+2 i} \times \frac{3-2 i}{3-2 i} \\
& =\frac{(13+3 i)(3-2 i)}{9-4 i^{2}} \\
& =\frac{39-26 i+9 i-6 i^{2}}{9+4} \\
& =\frac{45-17 i}{13} \\
& =3.46-1.31 i
\end{aligned}
$$

Exercise 1.2

1. Evaluate
a) i^{5}
b) i^{7}
c) $\frac{1}{i^{6}}$
d) $3 i^{2} \times 4 i^{3}$
2. Given that $z=3+i$ and $w=-1+2 i$, evaluate the following:
a) $z+w$
b) $z-w$
c) $z+2 w$
d) $2 z-3 w$
e) $z+z$
f) $w-w$
3. Simplify
a) $(-1-\sqrt{3} i)(1+i)$
b) $(1-i)^{2}$
c) $-8 i^{4}\left(9 i^{9}-3 i^{6}\right)$
d) $(1+\sqrt{2} i)^{2}$
4. Two complex numbers, α and β are given as: $\alpha=2-i$ and $\beta=3+2 i$.
a) Show that $\bar{\alpha}+\bar{\beta}=\overline{\alpha+\beta}$.
b) Find α / β in the form $a+b i$.
5. Simplify
a) $\frac{1}{1+i}$
b) $\frac{1+\sqrt{2} i}{i}$
c) $\frac{2-i}{3}-1$
d) $\frac{3-2 i}{1+i}$
6. Two complex numbers are given as: $z=1-\sqrt{3} i$ and $w=1+i$.
a) Show that $z+\bar{z}=2 \operatorname{Re}(z)$
b) Show that $\overline{\bar{w}}=w$
c) Find $\frac{w}{z}$
d) Simplify and express $\frac{\bar{w}}{\bar{z}}$ in the form $a+b i$
e) Show that $\overline{\left(\frac{w}{z}\right)}=\frac{\bar{w}}{\bar{z}}$

1.3.1 \quad Geometric Representation of $z=a+b i$

1.3.1.1 Argand Diagram

A complex number z is viewed as point in a two - dimensional Cartesian coordinate system called the complex plane or Argand diagram.
The x - axis shows the real part (a) and y-axis shows the imaginary part (b).
Graphically, $z=a+b i$ is drawn below:

(3) Example

If $z=1-\sqrt{3} i$, plot the points z and \bar{z} on an Argand diagram.

Answer

1.3.1.2 Modulus of z

The Modulus (magnitude or Absolute value) of a complex number is the length of the vector from the origin to the position of the complex number in the Argand diagram.
If $z=a+b i$, the modulus (using Pythagoras theorem) is defined as

$$
|z|=\sqrt{a^{2}+b^{2}} .
$$

Graphically, modulus is shown below:

Properties of modulus:

1. $|\bar{z}|=|z|$
2. $\bar{z} z=|z|^{2}$
3. $\left|z^{n}\right|=|z|^{n}$
4. $|v \times w|=|v| \times|w|$
5. $\left|\frac{v}{w}\right|=\frac{|v|}{|w|}$

Example If $z=1-\sqrt{3} i$
Show that $\bar{z} z=|z|^{2}$

Answer

$$
\begin{array}{lll}
\bar{z} z=|z|^{2}: & \text { Let } L H S=\bar{z} z, \quad R H S=|z|^{2} & \\
& L H S=\bar{z} z & \\
& =(1-\sqrt{3} i)(1+\sqrt{3} i) & \\
& =1^{2}-(\sqrt{3} i)^{2} & \\
=1-3 i^{2} & =\left(\sqrt{1^{2}+(-\sqrt{3})^{2}}\right)^{2} \\
& =1-3(-1) & =2^{2} \\
& =4 & L H S=R H S
\end{array}
$$

1.3.1.3 Argument of $z[\arg (z)]$

The angle from the positive x - axis to the line segment joining the origin is called the argument of z. If $z=x+y i$ lies in the first or the fourth quadrant then $\arg (z)=\tan ^{-1}\left(\frac{y}{x}\right)$

Graphically:

Arguments have positive values if measured anticlockwise from the positive x - axis and negative if measured clockwise.

Principle argument $-\operatorname{Arg}(z)$ lies in the interval $-\pi<\theta \leq \pi$ or $-180^{\circ}<\theta \leq 180^{\circ}$ Note capital A for principle argument.

Properties of argument:

1. $\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$
2. $\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$
3. $\arg \left(z^{n}\right)=n \arg (z)$

Example A complex number is given as $z=-1-\sqrt{3} i$.
a) Plot the point on an argand diagram.
b) Find $|z|$.
c) Find $\arg (z)$.

Answers

b)

$$
\begin{aligned}
|z| & =\sqrt{a^{2}+b^{2}} \\
& =\sqrt{(-1)^{2}+(-\sqrt{3})^{2}} \\
& =\sqrt{1+3} \\
& =2
\end{aligned}
$$

c)

Consider the right - angle triangle

$\therefore \operatorname{Arg}(z)=-\left(90^{\circ}+30^{\circ}\right)=-120^{\circ}$
This is the principle argument.
We could also $\operatorname{say} \arg (z)=270-30$

$$
=240^{\circ}
$$

Exercise 1.3.1

Use the complex numbers shown below to answer questions 1-4.
i. $\quad z_{1}=-1+i$
ii. $\quad z_{2}=-1-\sqrt{2} i$
iii. $\quad z_{3}=\frac{1-\sqrt{3} i}{2}$
iv. $\quad z_{4}=-4 i$
v. $z_{5}=3$
vi. $z_{6}=\frac{3}{4}+\frac{1}{\sqrt{3}} i$

1. Represent the complex numbers on complex planes.
2. Find the magnitude and argument of each of the above complex numbers.
3. Verify the following properties:
i. $\left|\overline{z_{6}}\right|=\left|z_{6}\right|$
ii. $\quad\left|z_{1} \times z_{2}\right|=\left|z_{1}\right| \times\left|z_{2}\right|$
iii. $\quad\left|\frac{z_{2}}{z_{1}}\right|=\frac{\left|z_{2}\right|}{\left|z_{1}\right|}$
4. Verify the following properties:
i. $\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$
ii. $\quad \arg \left(\frac{z_{4}}{z_{2}}\right)=\arg \left(z_{4}\right)-\arg \left(z_{2}\right)$

1.3.2 Polar or Trigonometric Form

Recall the rectangular form is written as $z=a+b i$.

- The polar coordinates is (r, θ) where r is modulus (position of a point in terms of its distance from the origin) and $\boldsymbol{\theta}$ is the argument (angle $\boldsymbol{\theta}$ from the positive x-axis).
- Using Casio $f x-82$ MS calculator (to be in degree mode) we can find r and θ

> To find r :

To find $\boldsymbol{\theta}$

- Writing as polar form

The polar representation of z is $z=r[\cos \theta+i \sin \theta]$

Short cut form to remember is $z=r$ cis θ

Example A complex number is given as $z=-1-\sqrt{3} i$. Write z in polar form.

Answers

$$
\therefore a=-1 \& b=-\sqrt{3}
$$

Press

$$
\therefore r=2
$$

$\therefore \theta=-120^{\circ}$

In polar form

$$
\begin{aligned}
z & =2 \quad\left[\cos \left(-120^{\circ}\right)+i \sin \left(-120^{\circ}\right)\right] \\
& =2 \operatorname{cis}\left(-120^{\circ}\right)
\end{aligned}
$$

1.3.3 Converting polar to rectangular form and vice versa

Recall that we have already converted rectangular form to polar form.
The polar form is written as $z=r \operatorname{cis} \theta$ or $z=r[\cos \theta+i \sin \theta]$.
To convert polar form to rectangular form $z=x+y i$, you will use distributive law to expand.

Using Casio $\mathrm{f} x$ - 82 MS calculator (to be in degree mode) find x and y

> To find y : Press

Example 1 A polar form of a complex number is given as

$$
z=3 \operatorname{cis} 60^{\circ}
$$

Write z in rectangular form.

Answer Using distributive law

$$
\begin{aligned}
& z=3\left(\cos 60^{\circ}+i \sin 60^{\circ}\right) \\
& =3 \cos 60^{\circ}+i \times 3 \sin 60^{\circ} \\
& =3 \times \frac{1}{2}+i \times 3 \times \frac{\sqrt{3}}{2} \\
& =\frac{3}{2}+\frac{3 \sqrt{3}}{2} i
\end{aligned}
$$

Example 2 The polar form of a complex number is given as

$$
z=2\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)
$$

Write z in rectangular form.

$$
\begin{aligned}
& \text { Answer } \\
& \begin{array}{l}
z=2 \times\left(\cos 45^{\circ}+i \sin 45^{\circ}\right) \\
z=2 \times \cos 45^{\circ}+2 \times i \sin 45^{\circ} \\
=2 \cos 45^{\circ}+2 \sin 45^{\circ} i \\
= \\
2
\end{array}+\sqrt{2} i
\end{aligned}
$$

1.3.4 \quad Argand Diagram representing polar form

Recall Argand diagram of a complex number $z=a+b i$. The same point can be plotted using polar form $z=r[\cos \theta+i \sin \theta]$.
Convert $z=r[\cos \theta+i \sin \theta]$ to rectangular form $z=a+b i$ and plot.

Also note that the rectangular and polar forms of any given complex number represent the same point.
(3) Example 3 A complex number is given as $z=5\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$.
a) Express z in rectangular form
b) Graph the complex number z on an Argand diagram.

Answers

a)

$$
\begin{aligned}
z & =5\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right) \\
& =\frac{5}{2}+\frac{5 \sqrt{3}}{2} i
\end{aligned}
$$

b)

1. For each of the complex numbers given below, write z in polar form:
i. $\quad z_{1}=-1+i$
ii. $\quad z_{2}=-1-\sqrt{2} i$
iii. $\quad z_{3}=\frac{1-\sqrt{3} i}{2}$
iv. $z_{4}=-4 i$
v. $z_{5}=3$
vi. $\quad z_{6}=\frac{3}{4}+\frac{1}{\sqrt{3}} i$
2. Represent the following complex numbers on complex planes:
i. $v=2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$
ii. $\quad w=3\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)$
iii. $\quad z=5\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$
iv. $\quad z=2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$

1.3.5 Multiplication and Division in Polar Form

(3) Example 4 Given two complex numbers: $v=2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$, $w=3\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)$. Find in rectangular form
a) $v \times w$
b) $\frac{v}{w}$

Answers

a) $v \times w$

Using the property $z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right.$

$$
\begin{aligned}
v \cdot w & =2 \times 3 \quad\left[\cos \left(60^{\circ}+30^{\circ}\right)+i \sin \left(60^{\circ}+30^{\circ}\right)\right] \\
& =6\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)
\end{aligned}
$$

Use Distributive Law

$$
\begin{aligned}
v \bullet w & =6\left(\cos 90^{\circ}+i \sin 90^{\circ}\right) \\
& =6 \times \cos 90^{\circ}+6 \times i \sin 90^{\circ} \\
& =6 \cos 90^{\circ}+6 \sin 90^{\circ} i \\
& =0+6 i \\
& =6 i
\end{aligned}
$$

b) $\frac{v}{w}$

$$
\begin{aligned}
& \text { Using the property } \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right] \\
& \begin{aligned}
\begin{aligned}
v & =\frac{2}{3} \\
& =\frac{2}{3}\left(\cos \left(60^{\circ}-30^{\circ}\right)+i \sin \left(60^{\circ}-30^{\circ}\right)\right] \\
& =\frac{2}{3}\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right) \\
& =\frac{\sqrt{3}}{3}+\frac{1}{3} i
\end{aligned}
\end{aligned}
\end{aligned}
$$

Exercise 1.3

1. Write each complex number in rectangular form:
a) $z=2\left(\cos 300^{\circ}+i \sin 300^{\circ}\right)$
b) $\quad z=\sqrt{7}\left(\cos 40.9^{\circ}+i \sin 40.9^{\circ}\right)$
c) $z=2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$
2. Given $p=5\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)$ and $q=2\left(\cos -30^{\circ}+i \sin -30^{\circ}\right)$
a) Represent p on an Argand diagram.
b) Find \bar{p}
c) Find \bar{q}
d) Find $p q$ and express your answer in rectangular form.
e) Find $\frac{p}{q}$ and express your answer in rectangular form.
3. Two complex numbers are given as $\alpha=3\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$ and $\beta=2\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$

Find:
a) $\quad \alpha \beta$ in the form $a+b i$
b) $\quad|\alpha \beta|$
c) $\quad \arg \left(\frac{\alpha}{\beta}\right)$
4. Given $p=2 \operatorname{cis} \frac{\pi}{2}$ and $q=\sqrt{2}$ cis π
a) Represent q on an Argand diagram.
b) Find \bar{p}
c) Find $p q$ in rectangular form.
d) Find $\frac{p}{q}$ in rectangular form.

Imaginary numbers are a fine and wonderful refuge of the divine spirit almost an amphibian of analysis, that portent of the ideal world, that amphibian between being and not-being, which we call the imaginary root of negative unity. ~ Gottfried Wilhelm L

Finding Roots

De Moivre's Theorem

If $z=r(\cos \theta+i \sin \theta)$ is a complex number, then

$$
z^{n}=r^{n}[\cos (n \theta)+i \sin (n \theta)]
$$

where $n \geq 1$ is a positive integer.

$$
\begin{aligned}
& \text { If } z^{n}=x+i y \\
& z^{n}=r c i s \theta \\
& z\left.=\sqrt[n]{r c i s}\left[\frac{2 \pi k+\theta}{n}\right] \quad k=0,1, \ldots, n-1\right] \\
& \text { e.g. }(i) z^{2}=4 i \\
& z^{2}=4 c i s \frac{\pi}{2} \\
& z=2 c i s\left[\frac{2 \pi k+\frac{\pi}{2}}{2}\right] \quad k=0,1
\end{aligned}
$$

1.4.1 Raising Complex Numbers to Powers Using De Moivre's theorem

De Moivre's theorem, named after Abraham de Moivre, states that

$$
z^{n}=[r(\cos \theta+i \sin \theta)]^{n}=r^{n}(\cos n \theta+i \sin n \theta)
$$

Example A rectangular form of a complex number z is given as $z=1-\sqrt{3} i$.
a) Express z in polar form.
b) Use De Moivre's Theorem to find z^{5}.
[Give your answer in rectangular form.]
c) Show that $\quad\left|z^{5}\right|=|z|^{5}$

Answers

a)

$\therefore r=2$

| RCL | \tan |
| :--- | :--- |$\therefore \theta=-60^{\circ}$

Thus in polar form: $\quad z=2\left[\cos \left(-60^{\circ}\right)+i \sin \left(-60^{\circ}\right)\right]$
b) Using formula $z^{n}=r^{n}(\cos n \theta+i \sin n \theta)$

$$
\left.\left.\begin{array}{rl}
z^{5} & =r^{5}
\end{array} \quad\left(\begin{array}{ll}
(\cos 5 \theta+i \sin 5 \theta) \\
& =2^{5}
\end{array}\right]\left[\cos \left(5 \times-60^{\circ}\right)+i \sin \left(5 \times-60^{\circ}\right)\right] .\right] ~\left(-300^{\circ}\right)+i \sin \left(-300^{\circ}\right)\right]
$$

Distributive law

$$
\begin{aligned}
& =32 \cos \left(-300^{\circ}\right)+i \times 32 \sin \left(-300^{\circ}\right) \\
& =16+i \times 32 \times \frac{\sqrt{3}}{2} \\
& =16+16 \sqrt{3} i
\end{aligned}
$$

$\therefore x=16$ Press | RCL | $\tan \quad \therefore y=27.71$ |
| ---: | :--- |

c)

$$
\begin{array}{lll}
L H S=\left|z^{5}\right| & R H S=|z|^{5} \\
=|16+16 \sqrt{3} i| & =|1-\sqrt{3} i|^{5} \\
=\sqrt{16^{2}+(16 \sqrt{3})^{2}} & =\left(\sqrt{1^{2}+(-\sqrt{3})^{2}}\right)^{5} \\
=32 & & =2^{5} \\
& \therefore L H S=R H S
\end{array}
$$

Exercise 1.4.1

1. A complex number is given as $z=2+\sqrt{3} i$.
a) Express z in polar form.
b) Find z^{6} using De Moivre's theorem.
2. A complex number is given by $z=2 \sqrt{3}-i$.
a) Write z in polar form.
b) Find z^{4} using De Moivre's theorem and express the answer in rectangular form.
3. A complex number z is given as $z=-3+i$.
a) Express z in polar form.
b) Use De Moivre's Theorem to find $(-3+i)^{3}$ and express in rectangular form.

Electrical engineers use complex numbers frequently in their careers. Calculating AC circuits, instead of direct current circuits, is a more complex process made simpler by utilizing complex numbers. Sales analysts may utilize complex numbers in order to make predictions and better understand the sales process. Economists use complex numbers in order to make profit predictions. When analyzing business cycles, complex numbers can also come into play ~ Stephanie Dube Dwilson

1.4.2 Finding $n t h$ roots

De Moivre's theorem can be used to find roots, $w=z^{1 / n}=\sqrt[n]{z}$.
Let $z=[r, \theta]$
Thus,

$$
\begin{aligned}
& z^{1 / n}=r^{1 / n}\left[\cos \left(\frac{2 \pi k+\theta}{n}\right)+i \sin \left(\frac{2 \pi k+\theta}{n}\right)\right], \text { if } \theta \text { is in radians } \\
& z^{1 / n}=r^{1 / n}\left[\cos \left(\frac{360^{\circ} k+\theta}{n}\right)+i \sin \left(\frac{360^{\circ} k+\theta}{n}\right)\right] \text {, if } \theta \text { is in } \operatorname{deg}
\end{aligned}
$$

where $k=0,1,2, \ldots$. till the number of solution

Spacing of \boldsymbol{n}-th roots

- For square roots there are two solutions 180° apart.
- For cube root there are three solutions 120° apart.
- For fourth root there are four solutions 90° apart.
- Therefore, for nth root there are n solutions $\frac{360^{\circ}}{n}$ or $\frac{2 \pi}{n}$ apart.

Example Solve $z^{3}=8\left(\cos 270^{\circ}+i \sin 270^{\circ}\right)$.[Leave the answers in polar form.]

Answers

Method 1

Given $z^{3}=8\left(\cos 270^{\circ}+i \sin 270^{\circ}\right)$, the roots are given by

$$
W_{k}=\sqrt[3]{8}\left[\cos \left(\frac{270^{\circ}+360^{\circ} k}{3}\right)+i \sin \left(\frac{270^{\circ}+360^{\circ} k}{3}\right)\right]
$$

where $k=\{0,1,2\}, n=3$ and $r=\left|z^{3}\right|=8$.

Hence, the three distinct roots (in polar form) are:

$$
\begin{aligned}
& W_{0}=\sqrt[3]{8}\left[\cos \left(\frac{270^{\circ}+360^{\circ}(0)}{3}\right)+i \sin \left(\frac{270^{\circ}+360^{\circ}(0)}{3}\right)\right]=2\left(\cos 90^{\circ}+i \sin 90^{\circ}\right), \\
& W_{1}=\sqrt[3]{8}\left[\cos \left(\frac{270^{\circ}+360^{\circ}(1)}{3}\right)+i \sin \left(\frac{270^{\circ}+360^{\circ}(1)}{3}\right)\right]=2\left(\cos 210^{\circ}+i \sin 210^{\circ}\right) \\
& W_{2}=\sqrt[3]{8}\left[\cos \left(\frac{270^{\circ}+360^{\circ}(2)}{3}\right)+i \sin \left(\frac{270^{\circ}+360^{\circ}(2)}{3}\right)\right]=2\left(\cos 330^{\circ}+i \sin 330^{\circ}\right)
\end{aligned}
$$

Method 2

Note: There are 3 solutions. $\frac{360}{3}=120^{\circ}$ so add 120° to the smallest angle 90° which is obtained from $\frac{270^{\circ}}{3}$ where 270° is the argument of z and 3 refers to the number of roots.
So the angles are :

$$
\begin{aligned}
& 90^{\circ}, \\
& 90^{\circ}+120^{\circ}=210^{\circ} \\
& 210^{\circ}+120^{\circ}=330^{\circ}
\end{aligned} \quad \text { [this confirms with above angles] }
$$

Roots in polar form are $\left\{2\right.$ cis $90^{\circ}, 2$ cis $210^{\circ}, 2$ cis $\left.330^{\circ}\right\}$
(9) Example 2 The polar form of a complex number is given as $z=16$ cis π
Find the fourth roots of z.

Answers

Using Method 2

First Root

$$
\begin{aligned}
z_{1} & =16^{1 / 4}(\operatorname{cis} \pi)^{1 / 4} \\
& =16^{1 / 4} \operatorname{cis} \frac{\pi}{4} \\
& =2 \operatorname{cis} \frac{\pi}{4}
\end{aligned}
$$

For fourth root we expect four solutions which are $\frac{2 \pi}{4}=\frac{1}{2} \pi$ radians apart.

Second root	Third root	$4^{\text {th }}$ root
Add $\frac{1}{2} \pi$ to the first root.	Add $\frac{1}{2} \pi$ to the second root.	Add $\frac{1}{2} \pi$ to the third root.
$z_{2}=2 \operatorname{cis}\left(\frac{\pi}{4}+\frac{\pi}{2}\right)$	$z_{2}=2 \operatorname{cis}\left(\frac{3 \pi}{4}+\frac{\pi}{2}\right)$	$z_{2}=2 \operatorname{cis}\left(\frac{5 \pi}{4}+\frac{\pi}{2}\right)$
$=2 \operatorname{cis}\left(\frac{3 \pi}{4}\right)$	$=2 \operatorname{cis}\left(\frac{5 \pi}{4}\right)$	$=2 \operatorname{cis}\left(\frac{7 \pi}{4}\right)$
Roots in polar form are $\left\{2 \operatorname{cis} \frac{\pi}{4}, 2 \operatorname{cis} \frac{3 \pi}{4}, 2 \operatorname{cis} \frac{5 \pi}{4}, 2 \operatorname{cis} \frac{7 \pi}{4}\right\}$		
Roots in rectangular form are: $\{\sqrt{2}+\sqrt{2} i,-\sqrt{2}+\sqrt{2} i,-\sqrt{2}-\sqrt{2} i, \sqrt{2}-\sqrt{2} i\}$		

Exercise 1.4.2

1. A complex number z given in polar form is $\sqrt{8}\left(\cos \left(-\frac{3 \pi}{2}\right)+i \sin \left(-\frac{3 \pi}{2}\right)\right)$. Find the fourth roots of z. (Give your answer in polar form.)
2. A complex number z is given as $z=\sqrt{3}+i$.
a) Express z in polar form.
b) Use De Moivre's Theorem to find z^{4}.
c) Find all the cube roots of $z=\sqrt{3}+i$.
3. A complex number z is given as $z=1+i$.
a) Plot zon an argand diagram.
b) Find the modulus and argument.
c) Express z in polar form.
d) Use De Moivre's Theorem to find z^{4}.
e) Find the square roots of $z=1+i$.
4. Solve
a) $z^{3}=8 i$
b) $z^{4}=i+1$
c) $z^{3}+i=0$
d) $z^{4}=81$
5. Solve
a) $z^{3}=27\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)$
b) $z^{2}=4\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$

Adam and Eve are like an imaginary number, the square root of minus one. You can never see any concrete proof that it exists, but if you include it in your equations, you can calculate all manner of things that couldn't be imagined without it ~ — Philip Pullman

1.5.1 Horizontal and vertical lines

$\operatorname{Re}(z)$ refers to the real part which is shown as vertical line on the x-axis.
For instance, sketch $\operatorname{Re}(z)=c$
This means the set of all complex numbers with a real part of c, thus a vertical line will be drawn at point c on the x-axis
$\operatorname{Im}(\mathrm{z})$

$\operatorname{Im}(z)$ refers to the imaginary part which is shown as the horizontal line on the y-axis.
For instance, sketch $\operatorname{Im}(z)=d$
This means the set of all complex numbers with a real part of d, thus a horizontal line will be drawn at point d on the y-axis

Example 1 Sketch $\operatorname{Re}(z)=4$

Answer

Example 2 Sketch $\operatorname{Im}(z)=4$
Answer

1.5.2 Rays

(3) Example 3 Sketch $\operatorname{Arg}(z)=\frac{\pi}{6}$

Answer
This is a ray from the origin making an angle of $\frac{\pi}{6}$ radians with the positive x-axis.

1.5.3 Circles

Example 4 Sketch $|z|=3$

Answer

1.5.4 Regions given as inequality

Recall the sketching of graphs using the inequality signs like $<,>, \leq$, or \geq.
A solid line for \leq or \geq, and a dashed line for < or >.
Shade above or right of the line or outside the circle for $>$ or \geq
Shade below or left of the line or inside the circle for < or \leq.

(3) Example 5 Sketch $|z| \leq 3$

Answer

This contains all the points on and inside the circle with radius $=3$

(3) Example 6 Sketch $-1<\operatorname{Re}(z) \leq 4$

Answer

Exercise 1.5.1

On argand diagrams, sketch the following graphs

1. $|z|=3$.
2. $|z|<2$.
3. $|z| \geq 1$.
4. $\operatorname{Re}(z)=4$
5. $-3<\operatorname{Re}(z) \leq 2$
6. $0 \leq \operatorname{Re}(z)<1$
7. $\operatorname{Im}(z)=-5$
8. $-1<\operatorname{Im}(z) \leq 2$
9. $1 \leq \operatorname{Im}(z)<5$
10. $\operatorname{Arg}(z)=\frac{\pi}{3}$
11. $\operatorname{Arg}(z)=30^{\circ}$
12. $\operatorname{Arg}(z)=-\frac{\pi}{2}$

Review Exercise 1

1. A complex number has $\operatorname{Re}(z)=-2$ and $\operatorname{Im}(z)=\sqrt{3}$. Find:
a) \bar{z}, the conjugate of z, in rectangular form.
b) $z \times \bar{z}$
c) $\frac{1}{z}$ in the form $a+b i$.
2. Solve for x and y in $(-2+\sqrt{3} i)(x+y i)=3-2 i$
3. Solve the equation $x^{2}-2 x+4=0$.
4. A complex number z is given as $z=1-\sqrt{2} i$.
a) Express z in polar form.
b) Use De Moivre's Theorem to find z^{4}.
c) Find all the fourth roots of $z=1-\sqrt{2} i$.
5. Sketch the following graphs:
a) $\operatorname{Re}(z)=-3$
b) $|z|=4$
c) $\operatorname{Arg}(z)=-\frac{\pi}{3}$
d) $-1 \leq \operatorname{Re}(z) \leq 1$

SUB - STRAND 2.1

2.1.1 Three - Dimensional Vectors

A vector has both magnitude (length, or size) and direction. Recall Vectors in 2dimensions. It is denoted by a skew symbol (\sim) at the bottom of the letter that is $\underset{\sim}{v}=\binom{x}{y}$. It can be drawn on the $x-y$ plane where the first element on the top represent the x-value and the second element at the bottom represents the y value.

$+x$: shift x units to the right side	$-x$: shift x units to the left side
$+y:$ shift y units upwards	$-y:$ shift y units downwards

(8) Example Draw vector $\underset{\sim}{a}=\binom{6}{3}$

2 Answers

Extend this idea to represent 3-dimensional vectors. Three dimensional vectors comprises of x, y and z components, which are right-angles to each other.

$$
\begin{aligned}
& \text { Draw vector } \underset{\sim}{a}=\left(\begin{array}{l}
2 \\
3 \\
5
\end{array}\right)
\end{aligned}
$$

2.1.2 \quad Arithmetic Operations on Vector

2.1.2.1 Scalar Multiplication

The scalar is multiplied with each element of the vector.
Given that the vector $\underset{\sim}{v}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ and k is a scalar, then $k\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}k x \\ k y \\ k z\end{array}\right)$
(3) Example 1 Evaluate $-2\left(\begin{array}{c}3 \\ -2 \\ \frac{1}{2}\end{array}\right)$

Answer

$$
-2\left(\begin{array}{c}
3 \\
-2 \\
\frac{1}{2}
\end{array}\right)=\left(\begin{array}{r}
-6 \\
4 \\
-1
\end{array}\right)
$$

(8) Example 2 Given vector $\mathbf{p}=\left(\begin{array}{r}2 \\ -2 \\ 3\end{array}\right)$ and vector $\mathbf{q}=\left(\begin{array}{c}-5 \\ 2 \\ 4\end{array}\right)$.

$$
\text { Find the constant } k \text { such that } 5 \mathbf{p}+k \mathbf{q}=\left(\begin{array}{r}
20 \\
-14 \\
7
\end{array}\right)
$$

Answer

$$
\begin{aligned}
& 5 \mathbf{p}+k \mathbf{q}=\left(\begin{array}{r}
20 \\
-14 \\
7
\end{array}\right) \Rightarrow 5\left(\begin{array}{r}
2 \\
-2 \\
3
\end{array}\right)+k\left(\begin{array}{r}
-5 \\
2 \\
4
\end{array}\right)=\left(\begin{array}{r}
20 \\
-14 \\
7
\end{array}\right) \begin{array}{l}
\text { Multiply the scalar by each } \\
\text { element of the vector. }
\end{array} \\
& 10-5 k=20 \quad \Rightarrow k=-2 \\
& -10+2 k=-14 \quad \Rightarrow k=-2 \quad \text { Solve any one of the equations } \\
& 15+4 k=7 \quad \Rightarrow k=-2 \\
& \therefore k=-2
\end{aligned}
$$

2.1.2.2 Vector Addition and Subtraction

While adding or subtracting vectors, just add or subtract the respective components
Given Vector $\underset{\sim}{a}=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$ and $\underset{\sim}{b}=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$, then
$\underset{\sim}{a} \pm \underset{\sim}{b}=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right) \pm\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$
$=\left(\begin{array}{l}a_{1} \pm b_{1} \\ a_{2} \pm b_{2} \\ a_{3} \pm b_{3}\end{array}\right)$

Example 3

$\underset{\sim}{a}=\left(\begin{array}{l}2 \\ 3 \\ 5\end{array}\right)$ and $\underset{\sim}{b}=\left(\begin{array}{r}3 \\ -1 \\ 2\end{array}\right)$, find

1. $a+\underset{\sim}{b}$
2. $\underset{\sim}{b}-\underset{\sim}{a}$

Answers

$$
\begin{array}{ll}
\underset{\sim}{a}+\underset{\sim}{b} & \underset{\sim}{b}-\underset{\sim}{a}=\underset{\sim}{b}+(-\underset{\sim}{a}) \\
=\left(\begin{array}{l}
2 \\
3 \\
5
\end{array}\right)+\left(\begin{array}{r}
3 \\
-1 \\
2
\end{array}\right) & =\left(\begin{array}{r}
3 \\
-1 \\
2
\end{array}\right)-\left(\begin{array}{l}
2 \\
3 \\
5
\end{array}\right) \\
=\left(\begin{array}{l}
5 \\
2 \\
7
\end{array}\right) & =\left(\begin{array}{r}
1 \\
-4 \\
-3
\end{array}\right)
\end{array}
$$

2.1.3 Finding Vector given two points

If two points P_{1} and P_{2} are known, the vector from P_{1} to $P_{2}, \overrightarrow{P_{1} P_{2}}$ is found by

$$
\overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}}=\mathrm{P}_{2}-\mathrm{P}_{1}
$$

(8) Example 4 Point $P_{1}=(1,-3,4)$ and $P_{2}=(1,3,-1)$

Find the vector ${\overrightarrow{\mathrm{P}_{1} \mathrm{P}}}_{2}$.
2 Answer $\quad \overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}}=\mathrm{P}_{2}-\mathrm{P}_{1}$

$$
\begin{aligned}
\left(\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right)-\left(\begin{array}{r}
1 \\
-3 \\
4
\end{array}\right) & =\left(\begin{array}{c}
1-1 \\
3--3 \\
-1-4
\end{array}\right) \\
\overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}} & =\left(\begin{array}{r}
0 \\
6 \\
-5
\end{array}\right)
\end{aligned}
$$

Exercise 2.1

1. Vectors are given as $\underset{\sim}{x}=\left(\begin{array}{r}2 \\ -3 \\ 1\end{array}\right), \underset{\sim}{y}=\left(\begin{array}{r}0 \\ 3 \\ -1\end{array}\right)$ and $\underset{\sim}{z}=\left(\begin{array}{r}1 \\ -1 \\ 3\end{array}\right)$. Evaluate the following:
a) $\underset{\sim}{x}+\underset{\sim}{y}-\underset{\sim}{z}$
b) $2 \underset{\sim}{x}-\underset{\sim}{z}$
c) $\underset{\sim}{x}+(-3) \underset{\sim}{y}-\underset{\sim}{z}$
2. Given vectors $\underset{\sim}{c}=\left(\begin{array}{c}-1 \\ 2 \\ 4\end{array}\right)$ and $\underset{\sim}{d}=\left(\begin{array}{c}-2 \\ 4 \\ 3\end{array}\right)$, find the constant k such that

$$
3 \underset{\sim}{c}+k \underset{\sim}{d}=\left(\begin{array}{r}
1 \\
-2 \\
6
\end{array}\right)
$$

3. Point $P_{1}=(0,-3,4)$ and $P_{2}=(-1,2,-1)$

Find the vector ${\overrightarrow{P_{1}}}_{2}$.
4. Point $P_{1}=(0,-3,4)$ and $P_{2}=(-1,2,-1)$

Find the vector $\overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}}$.

Vectors are used in everyday life to locate individuals and objects. They are also used to describe objects acting under the influence of an external force ~ Reference An IAC Publishing Labs Company

2.2.1 Norm and Unit Vectors

2.2.1.1 Norm of a vector

Norm of a vector $\underset{\sim}{a}$ is the length of the vector. It is also known as modulus or magnitude. The symbol is $|a|$ and is found using Pythagoras theorem:

$$
|a|=\sqrt{x^{2}+y^{2}+z^{2}}
$$

Example 1 Find the magnitude of $\underset{\sim}{a}=\left(\begin{array}{r}1 \\ -3 \\ 4\end{array}\right)$

Answer

$$
|\mathbf{a}|=\sqrt{1^{2}+(-3)^{2}+4^{2}}=\sqrt{26} \text { or } 5.10
$$

2.2.1.2 Unit Vectors

A unit vector is any vector which is of 1 unit length.
Unit vectors in the direction of x, y, and z - axis are denoted by \mathbf{i}, \mathbf{j} and \mathbf{k}.

- \mathbf{i}, \mathbf{j} and \mathbf{k} in column vector can be represented as $\mathbf{i}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \mathbf{j}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ and $\mathbf{k}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
- Normalizing a vector which is finding a unit vector in the same direction

$$
\frac{d}{|d|} \rightarrow \text { unit vector in the direction of vector } d
$$

(3) Example 2 Point $P_{1}=(3,0,-1)$ and $P_{2}=(-2,1,4)$

Find the vector $\overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}}$ in terms of the unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k}.

Answers

$$
\begin{aligned}
\overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}}=\mathrm{P}_{2}-\mathrm{P}_{1} & =\left(\begin{array}{r}
-2 \\
1 \\
4
\end{array}\right)-\left(\begin{array}{r}
3 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{r}
-5 \\
1 \\
5
\end{array}\right) . \\
& =-5 \mathbf{i}+\mathbf{j}+5 \mathbf{k}
\end{aligned}
$$

(8) Example 2 The vectors $\underset{\sim}{a}$ and $\underset{\sim}{b}$ are defined by:

$$
\underset{\sim}{a}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \text { and } \underset{\sim}{b}=\left(\begin{array}{r}
1 \\
3 \\
-1
\end{array}\right)
$$

a) Express $\underset{\sim}{a}$ and $\underset{\sim}{b}$ in terms of unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k}.
b) Find $\underset{\sim}{a}-2 \underset{\sim}{b}$ and express in terms of unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k}.

Answers

a) $\underset{\sim}{a}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k} \quad$ and $\quad \underset{\sim}{b}=\mathbf{i}+3 \mathbf{j}-\mathbf{k}$.
b)

$$
\begin{aligned}
& \underset{\sim}{a-2 b} \\
& =\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}-2(\mathbf{i}+3 \mathbf{j}-\mathbf{k}) \\
& =\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}-2 \mathbf{i}-6 \mathbf{j}+2 \mathbf{k} \\
& =-\mathbf{i}-4 \mathbf{j}+5 \mathbf{k}
\end{aligned}
$$

(8) Example 4 A vector is given as $\mathbf{p}=4 \mathbf{i}-4 \mathbf{j}+7 \mathbf{k}$
a) Find the modulus of $\mathbf{p}=4 \mathbf{i}-4 \mathbf{j}+7 \mathbf{k}$
b) Find the unit vector in the direction of $\mathbf{p}=4 \mathbf{i}-4 \mathbf{j}+7 \mathbf{k}$.

Answers

a) $|\mathbf{p}|=\sqrt{4^{2}+(-4)^{2}+7^{2}}=\sqrt{81}=9$.
b) Normalize

$$
\frac{\mathbf{p}}{|\mathbf{p}|}=\frac{1}{9}(4 \mathbf{i}-4 \mathbf{j}+7 \mathbf{k})=\frac{4}{9} \mathbf{i}-\frac{4}{9} \mathbf{j}+\frac{7}{9} \mathbf{k}
$$

Exercise 2.2.1

1. A vector is given as $\underset{\sim}{v}=\left(\begin{array}{r}-3 \\ 2 \\ 1\end{array}\right)$.
a) Express in terms of unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k}
b) Find the modulus of $\underset{\sim}{v}$.
c) Find the unit vector in the direction of $\underset{\sim}{v}$.
2. Vectors are given as $\underset{\sim}{x}=\left(\begin{array}{r}2 \\ -3 \\ 1\end{array}\right), \underset{\sim}{y}=\left(\begin{array}{r}0 \\ 3 \\ -1\end{array}\right)$ and $\underset{\sim}{z}=\left(\begin{array}{r}1 \\ -1 \\ 3\end{array}\right)$.
a) Find $2 \underset{\sim}{x}-3 y$
b) Find the $|\underset{\sim}{x}|, \quad|\underset{\sim}{y}|$ and $|\underset{\sim}{z}|$.
c) Express the three vectors in terms of unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k}
3. Point $P_{1}=(-2,0,-1)$ and $P_{2}=(-2,-5,4)$. Find the vector ${\overrightarrow{P_{1} P}}_{2}$ in terms of the unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k}.
4. Vectors are given as $\underset{\sim}{x}=\left(\begin{array}{r}2 \\ -3 \\ 1\end{array}\right), \underset{\sim}{y}=\left(\begin{array}{r}0 \\ 3 \\ -1\end{array}\right)$ and $\underset{\sim}{z}=\left(\begin{array}{r}1 \\ -1 \\ 3\end{array}\right)$.
a) Express $\underset{\sim}{x}, \underset{\sim}{y}$ and $\underset{\sim}{z}$ in terms of unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k}
b) Find the unit vector in the direction of $\underset{\sim}{z}$.

Numerator

$$
\cos \theta=
$$

Denominator

2.3.1 Scalar product or Dot product

The result obtained will always be scalar.
Given $\underset{\sim}{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\underset{\sim}{b}=\left(b_{1}, b_{2}, b_{3}\right)$, then ' a dot b ' is defined as

$$
\text { Scalar (Dot) Product : } \quad \underset{\sim}{a} \cdot \underset{\sim}{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Example 1 Points A and B have position vectors $\underset{\sim}{a}=\left(\begin{array}{c}1 \\ -2 \\ -2\end{array}\right)$ and $\underset{\sim}{b}=\left(\begin{array}{c}-2 \\ 1 \\ 3\end{array}\right)$
Determine the scalar product of vectors $\underset{\sim}{a}$ and $\underset{\sim}{b}$.

Answer

$$
\begin{aligned}
\underset{\sim}{a} \cdot \underset{\sim}{b} & =a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \\
& =1 \times-2+-2 \times 1+-2 \times 3 \\
& =-2-2-6 \\
& =-10
\end{aligned}
$$

2.3.2 Angle between two vectors

To find the angle between the two vectors, use formula

$$
a \cdot b=|a||b| \cos \theta
$$

Rearrange to get the angle:

$$
\begin{aligned}
& a \cdot b=|a||b| \cos \theta \\
& \frac{a \cdot b}{|a||b|}=\cos \theta \\
& \theta=\cos ^{-1}\left(\frac{a \cdot b}{|a||b|}\right)
\end{aligned}
$$

(3) Example Points A and B have position vectors $\underset{\sim}{a}=\left(\begin{array}{r}1 \\ -2 \\ -2\end{array}\right)$ and $\underset{\sim}{b}=\left(\begin{array}{r}-2 \\ 1 \\ 3\end{array}\right)$.
i. Determine the scalar product of $\underset{\sim}{a}$ and $\underset{\sim}{b}$.
ii. Find $|a|$ and $|b|$.
iii. Find the angle between $\underset{\sim}{a}$ and $\underset{\sim}{b}$.

Answers

i. $\quad \underset{\sim}{a} \cdot \underset{\sim}{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$

$$
=1 \times-2+-2 \times 1+-2 \times 3
$$

$$
=-2-2-6
$$

$$
=-10
$$

ii. $\quad|a|=\sqrt{x^{2}+y^{2}+z^{2}}$

$$
|b|=\sqrt{x^{2}+y^{2}+z^{2}}
$$

$$
\begin{array}{ll}
=\sqrt{1^{2}+(-2)^{2}+(-2)^{2}} & =\sqrt{(-2)^{2}+1^{2}+3^{2}} \\
=\sqrt{1+4+4} & =\sqrt{4+1+9} \\
=\sqrt{9} & =\sqrt{14}
\end{array}
$$

iii. $\quad \theta=\cos ^{-1}\left(\frac{a \cdot b}{|a||b|}\right)$

$$
\begin{aligned}
& =\cos ^{-1}\left(\frac{-10}{3 \times \sqrt{14}}\right) \\
& =152.98^{\circ}
\end{aligned}
$$

2.3.3 Properties of Angle

Properties of Angle between two vectors

1. If two vectors $\underset{\sim}{a}$ and $\underset{\sim}{b}$ are parallel, then the angle between them is either zero or 180°, that is

$$
\theta=0^{\circ}, 180^{\circ}
$$

One vector will be scalar multiple of the other.
2. If two vectors $\underset{\sim}{a}$ and $\underset{\sim}{b}$ are perpendicular to each other, the angle will be 90°. This means that their dot product is zero. This is also known as Orthogonal Vectors.

$$
\begin{aligned}
& \theta=90^{0} \\
& \underset{\sim}{a} \cdot \underset{\sim}{b}=0
\end{aligned}
$$

(3) Example If $\underset{\sim}{a}=\left(\begin{array}{r}1 \\ -3 \\ 4\end{array}\right)$ and $\underset{\sim}{b}=\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)$

Show that the two vectors $\underset{\sim}{a}$ and $\underset{\sim}{b}$ are orthogonal.

Answer

$$
\begin{aligned}
\underset{\sim}{a} \cdot \underset{\sim}{b} & =a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \\
& =1 \times 1+-3 \times 3+4 \times 2 \\
& =1-9+8 \\
& =0
\end{aligned}
$$

Hence, it is orthogonal.

Exercise 2.3

1. Given $\underset{\sim}{a}=\left(\begin{array}{r}-3 \\ 1 \\ 4\end{array}\right)$ and $\underset{\sim}{b}=\left(\begin{array}{r}-6 \\ 2 \\ 8\end{array}\right)$
a) Find the scalar product.
b) Find the angle between the vectors.
c) Are the vectors parallel or orthogonal? Explain.
2. Vectors are given as $\underset{\sim}{x}=\left(\begin{array}{r}2 \\ -3 \\ 1\end{array}\right), \underset{\sim}{y}=\left(\begin{array}{r}0 \\ 3 \\ -1\end{array}\right)$ and $\underset{\sim}{z}=\left(\begin{array}{r}1 \\ -1 \\ 3\end{array}\right)$. Find the scalar product of:
a) $\underset{\sim}{x}$ and $\underset{\sim}{y}$.
b) $\underset{\sim}{x}$ and $\underset{\sim}{z}$.
3. Given vector $p=\left(\begin{array}{l}-2 \\ +4 \\ +3\end{array}\right)$ and $q=\left(\begin{array}{l}+1 \\ -3 \\ +2\end{array}\right)$. Find the angle between p and q.
4. Given vectors $\underset{\sim}{a}=\left(\begin{array}{r}3 \\ -2 \\ 4\end{array}\right)$ and $\underset{\sim}{b}=\left(\begin{array}{r}2 \\ -1 \\ -2\end{array}\right)$. Show that the two vectors \mathbf{a} and \mathbf{b} are orthogonal.
5. Given vectors $\mathbf{c}=\left(\begin{array}{r}-1 \\ 2 \\ 4\end{array}\right)$ and $\mathbf{d}=\left(\begin{array}{r}3 \\ y \\ -2\end{array}\right)$, find the value of y if \mathbf{c} and \mathbf{d} are orthogonal.

A great example would be how airplane pilots receive instructions to land at airports. During a visual approach, the Air Traffic Control instructs pilots to fly a particular heading (direction) for a certain distance (magnitude). This is exactly what a vector quantity is- something that has a magnitude and direction. This is why the Air Traffic Controllers might sometimes use the phrase "expect vectors for the visual approach..." when the plane nears the airport.~ Krishnaprasad Bindumadhavan

2.4.1 Equation of Lines

A line which passes through a point $\left(x_{0}, y_{0}, z_{0}\right)$ and is parallel to the vector $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$
has Vector equation:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right)+t\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

Parametric equation:

$$
x=x_{0}+a t, y=y_{0}+b t, z=z_{0}+c t
$$

Symmetric Equation:

Symmetric Equation is also known as Cartesian Equation of line. This form of equation does not include parameter, t.

Finding Symmetric Equation from Parametric Equation :

$$
x=x_{0}+a t, y=y_{0}+b t, z=z_{0}+c t
$$

Making t the subject of each equation: $t=\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$
Hence, Symmetric or Cartesian Form of an equation of a line which passes

$$
\begin{aligned}
& \text { through a point }\left(x_{0}, y_{0}, z_{0}\right) \text { and is parallel to the vector }\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \text { is } \\
& \qquad \frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
\end{aligned}
$$

Example 1 Find the equation of the line passing through ($0,3,-1$) and parallel to the vector $\mathbf{i}-\mathbf{j}+3 \mathbf{k}$

Answers

Vector equation $\quad\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{r}0 \\ 3 \\ -1\end{array}\right)+t\left(\begin{array}{r}1 \\ -1 \\ 3\end{array}\right)$
Parametric Equation

$$
x=t, \quad y=3-t, \quad z=-1+3 t
$$

Make t the subject for each equation: $\frac{x-0}{1}=\frac{y-3}{-1}=\frac{z+1}{3}$
Simplifying gives: $\quad x=3-y=\frac{z+1}{3}$
Thus, the equation of the line in symmetric form is $\quad x=3-y=\frac{z+1}{3}$
(3) Example 2 Find the equation of a line passing through the points

$$
P_{1}=(3,0,-1) \text { and } P_{2}=(-2,1,4) .
$$

Answers
Find the vector from P_{1} to P_{2}.

$$
\overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}}=\mathrm{P}_{2}-\mathrm{P}_{1}=\left(\begin{array}{r}
-2 \\
1 \\
4
\end{array}\right)-\left(\begin{array}{r}
3 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{r}
-5 \\
1 \\
5
\end{array}\right) .
$$

$P_{1}=(3,0,-1)$ is the point on the line so the vector equation is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
3 \\
0 \\
-1
\end{array}\right)+t\left(\begin{array}{r}
-5 \\
1 \\
5
\end{array}\right)
$$

The parametric equation is $x=3-5 t, \quad y=t, \quad z=-1+5 t$
[Note: We can also use point P_{2}]
(3) Example 3: The equation of a line is given as $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{r}0 \\ 3 \\ -1\end{array}\right)+t\left(\begin{array}{r}1 \\ -1 \\ 3\end{array}\right)$
a) Give the coordinates of a point that lies on the line.
b) Give a vector which is parallel to the line.

Answers

a) $(0,3,-1)$
b) $\left(\begin{array}{r}1 \\ -1 \\ 3\end{array}\right)$
(3) Example 3 The symmetric equation of a line is given as $\frac{3-x}{-2}=y+1=\frac{4 z-8}{-4}$ Write the parametric and vector equation of this line.

Answers

The general form of symmetric equation of the line is

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

The given equation can be rewritten as

$$
\frac{-(x-3)}{-2}=\frac{y+1}{1}=\frac{4(z-2)}{-4} \Rightarrow \frac{x-3}{2}=\frac{y+1}{1}=\frac{z-2}{-1} \Rightarrow \frac{x-3}{2}=\frac{y-(-1)}{1}=\frac{z-2}{-1}
$$

The point on the line is $(3,-1,2)$ and the vector is $\left(\begin{array}{r}2 \\ 1 \\ -1\end{array}\right)$
Thus, the vector equation of the line is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{r}3 \\ -1 \\ 2\end{array}\right)+t\left(\begin{array}{r}2 \\ 1 \\ -1\end{array}\right)$.
Make x, y and z the subject to get the parametric equation

$$
\begin{aligned}
& x=3+2 t \\
& y=-1+t \\
& z=2+(-t)
\end{aligned}
$$

Exercise 2.4.1

1. Find the vector, parametric and symmetric equations of the line passing through $P_{1}=(-2,3,5)$ and $P_{2}=(3,-1,-2)$.
2. Write down the vector , parametric and symmetric equations of the line passing through $(2,-1,3)$ in the direction of $\left(\begin{array}{r}3 \\ 1 \\ -1\end{array}\right)$
3. For the line $\frac{x+2}{3}=\frac{4-y}{2}=2 z+4$
a) State the coordinates of a point that lies on this line.
b) State the direction vector.
c) Write the vector and parametric equation of the line.
4. Write down the vector equation of the line parallel to

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
3 \\
1 \\
-2
\end{array}\right)+t\left(\begin{array}{r}
-1 \\
4 \\
1
\end{array}\right) \text {, and passing through the point }(1,4,-2)
$$

5. Find the parametric equation of a line through $(-2,0,5)$ that is parallel to the line $x=3+2 t, \quad y=4-t, \quad z=6+2 t$
6. For the line $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{r}3 \\ -1 \\ 2\end{array}\right)+t\left(\begin{array}{r}2 \\ 1 \\ -1\end{array}\right)$,
a) State the coordinates of a point that lies on this line.
b) State the direction vector.
c) Write the equation of the line in parametric form.
7. The vector equations of two lines $\mathbf{L} \mathbf{1}$ and $\mathbf{L} \mathbf{2}$ are given as

$$
\begin{gathered}
\mathbf{L 1}: \\
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
-2 \\
1 \\
2
\end{array}\right)+t\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right) \quad\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
-1 \\
1 \\
4
\end{array}\right)+t\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)
\end{gathered}
$$

a) Give the direction vector for L1 .
b) Write the coordinates of a point on L2 .
c) Express $\mathbf{L} 1$ in symmetric form.
8. The parametric equation of a line is $x=3-5 t, y=2-t, z=t$
a) State the coordinates of a point that lies on this line.
b) State the direction vector.
c) Write the equation of the line in vector form.

Vectors are important in modeling and solving real - life problems. For example in an airplane, a dot product would give the combined effect of the coordinates in different dimensions on each other. It would actually be the product with cosine of their mutual angle. ~ Ahmad Bokhari

2.5.1 Ratio Formula

2.5.1.1 Dividing a line segment in the ratio $m: n$

- Finding a point which divides the interval internally in the ratio of $m: n$

Let's divide interval $A B$ in $(m+n)$ parts and denote point P as the point where it is m sub-intervals away from point A and n sub-intervals from point B.

Consider first point $\mathrm{A}=\left(a_{1}, a_{2}, a_{3}\right)$ and the second point $\mathrm{B}=\left(b_{1}, b_{2}, b_{3}\right)$
The position vectors of points A and B are $\mathrm{A}=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right) \quad \mathrm{B}=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$
If point P divides the line segment in the ratio $m: n$, then

$$
\mathrm{P}=\frac{m \mathrm{~B}+n \mathrm{~A}}{m+n}
$$

- Finding the point which divides the line segment externally

The division of the interval $A B$ externally in the ratio of $m: n$ would be given as

Note that point P is not on interval $A B$ but an extension of interval $A B$. Point P is formed as it is moved back from B by a ratio of n sections.

In this case n would be negative.
(3) Example 1 Point A has the coordinate $(6,1,5)$ and point B has the coordinate $(-1,4,3)$. Point P divides the line $A B$ such that $A P: A B=2: 5$. Find the coordinates of point P.
\& Answer

Note the ratio carefully: $A P=2, A B=5$ so $P B=3$
Finding the point:

$$
\begin{aligned}
& \mathrm{P}=\frac{m \mathrm{~B}+n \mathrm{~A}}{m+n} \\
& =\frac{2\left(\begin{array}{c}
-1 \\
4 \\
3
\end{array}\right)+3\left(\begin{array}{l}
6 \\
1 \\
5
\end{array}\right)}{2+3} \\
& =\frac{\left(\begin{array}{c}
-2 \\
8 \\
6
\end{array}\right)+\left(\begin{array}{l}
18 \\
3 \\
15
\end{array}\right)}{2+3} \\
& =\left(\begin{array}{l}
16 \\
11 \\
21
\end{array}\right) \div 5 \\
& =\frac{1}{5}\left(\begin{array}{l}
16 \\
11 \\
21
\end{array}\right) \\
& =\left(\begin{array}{l}
3.2 \\
2.2 \\
4.2
\end{array}\right) \\
& \therefore P(3.2,2.2,4.2)
\end{aligned}
$$

(9) Example $2 A$ and B are the points $(2,1,3)$ and $(-2,5,-4)$, respectively. Find the coordinates of point X on the line $A B$ such that $A X=\frac{1}{3} X B$.

$$
\begin{aligned}
& \text { \& Answer } \\
& \text { We are given } \frac{A X}{X B}=\frac{m}{n}=\frac{1}{3} \text {, that is, } m=1 \text { and } n=3 . \quad \rightarrow \quad X=\frac{m \mathrm{~B}+n \mathrm{~A}}{m+n} \\
& =\frac{1\left(\begin{array}{r}
-2 \\
5 \\
-4
\end{array}\right)+3\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)}{1+3} \\
& =\frac{\left(\begin{array}{r}
-2 \\
5 \\
-4
\end{array}\right)+\left(\begin{array}{l}
6 \\
3 \\
9
\end{array}\right)}{4} \\
& =\frac{1}{4}\left(\begin{array}{l}
4 \\
8 \\
5
\end{array}\right) \\
& =(1,2,5 / 4)
\end{aligned}
$$

Example $3 A$ and B are the points $(-1,2,4)$ and $(3,0,-2)$, respectively. Find the coordinates of point P on the line $A B$ such that $\frac{A P}{P B}=\frac{-1}{3}$.

Answer

$$
\begin{aligned}
\mathrm{P} & =\frac{m \mathrm{~B}+n \mathrm{~A}}{m+n} \\
& =\frac{-1\left(\begin{array}{c}
3 \\
0 \\
-2
\end{array}\right)+3\left(\begin{array}{c}
-1 \\
2 \\
4
\end{array}\right)}{-1+3} \\
& =\frac{\left(\begin{array}{c}
-3 \\
0 \\
2
\end{array}\right)+\left(\begin{array}{c}
-3 \\
6 \\
12
\end{array}\right)}{2} \\
& =\frac{1}{2}\left(\begin{array}{c}
-6 \\
6 \\
14
\end{array}\right) \\
& =(-3,3,7)
\end{aligned}
$$

Exercise 2.5.1

1. If P is the point $(1,1,0)$ and R is the point $(1,6,-5)$, find the coordinates of a point Q on the line $P R$ given that $P Q: Q R=3: 2$.
2. If R and S are the points $(-3,4,1)$ and $(5,0,-1)$, respectively, find the coordinates of point P such that $R P: R S=1: 4$.
3. A and B are the points $(-3,5,10)$ and $(12,-5,-15)$, respectively. Find the coordinates of point P on the line $A B$ such that $\frac{A P}{A B}=\frac{2}{5}$.
4. If Q is the point $(-2,1,1)$ and R is the point $(-2,4,-5)$, find the coordinates of a point P on the line $Q R$ given that $Q R=2 P R$.
5. Point A has the coordinate $(3,-5,2)$ and point B has the coordinate $(6,-5,-1)$. Point P divides the line $A B$ such that $A P: P B=-2: 5$. Find the coordinates of point P.
6. A is the point $(1,5,-4)$ and B is the point $(7,-3,-1)$ on a line $A B$. Find the coordinates of P on this line such that $\mathrm{AP}: \mathrm{PB}=6:-1$.
7. A is the point $(-3,4,-2)$ and B is the point $(1,2,-3)$ on a line $A B$. Find the coordinates of P on this line such that $A P: P B=5:-1$.

Review Exercise 2

1. Given vectors $c=\left(\begin{array}{r}-1 \\ 2 \\ 4\end{array}\right)$ and $d=\left(\begin{array}{r}1 \\ -2 \\ 3\end{array}\right)$, find the constant k such that

$$
3 c+k d=\left(\begin{array}{c}
-7 \\
14 \\
0
\end{array}\right)
$$

2. Given vector $\mathbf{p}=\left(\begin{array}{r}2 \\ -3 \\ 1\end{array}\right)$ and $\mathbf{q}=\left(\begin{array}{l}4 \\ 2 \\ 1\end{array}\right)$, find the scalar product of \mathbf{p} and \mathbf{q}.
3. Are the vectors $c=\left(\begin{array}{r}-1 \\ 2 \\ 4\end{array}\right)$ and $d=\left(\begin{array}{r}1 \\ -2 \\ 3\end{array}\right)$ Orthogonal ?
4. Find the unit vector in the direction of $\underset{\sim}{p}=2 \underset{\sim}{i}-\underset{\sim}{j}+\frac{1}{2} \underset{\sim}{k}$.
5. Given $a=3 j-k$ and $b=i+2 j+2 k$ find
a) $2 a-3 b$
b) $\quad|\underset{\sim}{a}|$ and $|\underset{\sim}{b}|$
c) the scalar product
d) the angle between $\underset{\sim}{a}$ and $\underset{\sim}{b}$.
6. Find the parametric equation of a line through the origin that is parallel to the line $x=t, \quad y=-1+t, z=6+2 t$

Operations on Functions

The domain of the composite function $\mathrm{f}(\mathrm{g}(\mathrm{x})$)
 is the set of all x in the domain of g such that $g(x)$ is in the domain of f.
The composition of the function f with the function g is defined by

$$
(f \circ g)(x)=f[g(x)]
$$

Two step process to find $y=f(g(x))$:

1. Find $h=g(x)$.
2. Find $y=f(h)=f(g(x))$

3.1.1 \quad New Functions from Old

Combining functions

If $f(x)$ and $g(x)$ are the two functions, there are many ways we can combine them:

1. Addition

$(f+g)(x)=f(x)+g(x)$

3. Multiplication

$$
(f \cdot g)(x)=f(x) \cdot g(x)
$$

2. Subtraction

$$
(f-g)(x)=f(x)-g(x)
$$

4. Division

$$
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0
$$

> A composite function, denoted by ' o ', is defined by

$$
f \text { o } g(x)=f(g(x))
$$

(8) Example If $f(x)=x^{2}$ and $g(x)=x+4$, then

$$
\begin{aligned}
& f 0 g(x)=f(x+4)=(x+4)^{2} \\
& g \mathbf{0} f(x)=g\left(x^{2}\right)=x^{2}+4
\end{aligned}
$$

Example 1 Functions f and g are given as $f(x)=3 x^{2}+2$ and

$$
g(x)=5 x-2
$$

Find the following:
a) $(f+g)(x)$
b) $(f-g)(x)$
c) $(f \cdot g)(x)$
d) $\left(\frac{f}{g}\right)(x)$
e) $f 0 g(x)$
f) $g \circ f(x)$

Answers

$$
\text { a) } \begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
& =\left(3 x^{2}+2\right)+(5 x-2) \\
& =3 x^{2}+5 x+2-2 \\
& =3 x^{2}+5 x
\end{aligned}
$$

$$
\text { b) } \quad \begin{aligned}
(f-g)(x) & =f(x)-g(x) \\
& =\left(3 x^{2}+2\right)-(5 x-2) \\
& =3 x^{2}-5 x+2+2 \\
& =3 x^{2}-5 x+4
\end{aligned}
$$

c)

$$
\begin{aligned}
(f \cdot g)(x) & =f(x) \cdot g(x) \\
& =\left(3 x^{2}+2\right) \cdot(5 x-2) \\
& =3 x^{2} \cdot 5 x-2 \cdot 3 x^{2}+2 \cdot 5 x+2 \cdot-2 \\
& =15 x^{3}-6 x^{2}+10 x-4
\end{aligned}
$$

d)

$$
\begin{aligned}
\left(\frac{f}{g}\right)(x) & =\frac{f(x)}{g(x)} \\
& =\frac{3 x^{2}+2}{5 x-2}
\end{aligned}
$$

e) $f o g(x)=f[5 x-2]$

$$
\begin{aligned}
& =3(5 x-2)^{2}+2 \\
& =3\left(25 x^{2}-20 x+4\right)+2 \\
& =75 x^{2}-60 x+12+2 \\
& =75 x^{2}-60 x+14
\end{aligned}
$$

A Short-cut way

$(5 x-2)^{2}$
$=(5 x)^{2}-2 \cdot 2 \cdot 5 x+(-2)^{2}$
$=25 x^{2}-20 x+4$
f) $g \circ f(x)=g\left[3 x^{2}+2\right]$

$$
\begin{aligned}
& =5\left(3 x^{2}+2\right)-2 \\
& =15 x^{2}+10-2 \\
& =15 x^{2}+8
\end{aligned}
$$

3.1.2 Domain and Range of Combined Functions

The domain of addition, subtraction and multiplication of two functions $f(x)$ and $g(x)$ is the intersection of the domains of f and g.

$$
d_{f+g}=d_{f-g}=d_{f \bullet g}=d_{f} \cap d_{g}
$$

The domain of $\frac{f}{g}$ has an additional restriction that $g(x) \neq 0$

$$
d_{\frac{f}{g}}=d_{f} \cap d_{g}, g(x) \neq 0
$$

The domain of $f 0 g(x)=$ domain of the inside function, $g(x)$ $f 0 g(x)$ exists if the Range of $g(x)$ is a subset of the Domain of $f(x)$.
(3) Example 2 Functions f and g are as follows $f(x)=\sqrt{x+3}$ and $g(x)=\sqrt{2-x}$.
Give the domain of $(f+g)(x)$

Answer

$$
d_{f}=\{x: x \geq-3\} \quad d_{g}=\{x: x \leq 2\}
$$

$$
d_{f+g}=d_{f} \cap d_{g}
$$

$$
=\{x:-3 \leq x \leq 2\}
$$

The diagram below shows the graph of $f(x)=\sqrt{x+3}$ and $g(x)=\sqrt{2-x}$

(3) Example 3 If $f(x)=x+4$ and $g(x)=\sqrt{x}$
a) Find $f \mathbf{o} g(x)$.
b) State the domain $f \mathbf{0} g(x)$.

Answers

a) $\quad f$ og $g(x)=f(\sqrt{x})=\sqrt{x}+4$
b) The domain of $(f \circ g)(x)$ will be given by the domain of the inside function, g.

domain of g is $x \geq 0$
\therefore domain of $(f \circ g)(x)$ is $\{x: x \geq 0, x \in \mathrm{R}\}$
(3) Example 4 Functions f and g are defined by

$$
\begin{aligned}
& f: x \rightarrow x^{2}-1 \\
& g: x \rightarrow \sqrt{x+2}
\end{aligned}
$$

Find:
b) $f 0 g(x)$.
c) the domain of $f \mathbf{0} g(x)$.
d) the range of $f 0 g(x)$.

Answers

a)

$$
(f \circ g)(x)=f(g(x))=(\sqrt{x+2})^{2}-1=(x+2)-1=x+1
$$

The diagram below shows the graph of $g(x)=\sqrt{x+2}$

c) Since domain is $x \geq-2$, substitute $x=-2$
in the expression for $f 0 g(x)$ which is the smallest domain of f og(x)

$$
\begin{aligned}
f \mathbf{0} g(x) & =x+1 \\
& =(-2)+1 \\
& =-1 .
\end{aligned}
$$

(If we substitute any number bigger than -2 , we will get answer more than -1) So the range is $y \geq-1$

Exercise 3.1

1. f and g are defined as $f: x \rightarrow x^{2}+1$ and $g: x \rightarrow \sqrt{x-5}$

Find and state its domain:
a) $(f+g)(x)$
b) $(f-g)(x)$
c) $(f \cdot g)(x)$
d) $\left(\frac{f}{g}\right)(x)$
2. f and g are defined as $f: x \rightarrow x^{2}+1$ and $g: x \rightarrow \frac{1}{x-4}$

State :
a) the domain of f.
b) the range of g.
c) $f \circ g(x)$.
3. f and g are defined $f: x \rightarrow x^{2}+1$ and $g: x \rightarrow \sqrt{x-2}$
a) State the domain of g.
b) Find f o $g(x)$.
c) State the domain of f og (x).
d) State the range of f o $g(x)$.
4. The function f and g are defined by $f: x \rightarrow x^{2}$ and $g: x \rightarrow x-3$

Find:
(a) $g \circ f(x)$.
(b) the domain and range of g of (x).
5. The function f and g are defined by $f(x)=\frac{1}{1-x}$ and $g(x)=x^{2}+3$

Find:
a) the domain of $f(x)$.
b) the range of $f(x)$.
c) the domain of $g(x)$.
d) the range of $g(x)$.
e) $g \circ f(x)$.

Some of the real life applications of rational functions are
(i) fields and forces in physics
(ii) spectroscopy in analytical chemistry
(iii) kinetics in biochemistry
(iv) electronic circuitry
(v) aerodynamics
(vi) medicine >concentrations in vivo
(vii) wave functions for atoms and molecules
(viii) optics and >photography to improve image resolution
(ix) acoustics and sound. ~ Wikipedia
(https://math.stackexchange.com/questions/900576/real-world-applications-of-rational-functions)

Features of a polynomial graph

Graphs of Functions

Note: The graph of a rational function has at most one horizontal asymptote.
If the degree of the numerator is less than the denominator, the horizontal asymptote is $\mathrm{y}=0$.

$$
\text { Example: } \quad y=\frac{1}{x}
$$

If the degree of the numerator is more than the denominator, there is NO horizontal asymptote .

Example: $\quad y=2 x+1$
If the degree of the numerator is equal to the degree of the denominator, the horizontal asymptote is $y=a / b$, where a and b

3.2.1 \quad Graphs of Polynomials

- What is concave upward / downward?

Concave upward

all the tangents on the interval are below the curve

Concave downward

all tangents are above the curve

An Inflection Point is where a curve changes from Concave upward to Concave downward (or vice versa).

Factored Polynomial

The graph of polynomials are smooth, unbroken curve, with no sharp corners.
Let a polynomial function be of degree n. To sketch its graph, follow these steps.
Step 1 Find y-intercepts.
Step 2 Find x-intercept.
Step 3 Determine turning point and inflection
For a factor $(x-a)^{n}$,
if n is odd then there is an inflection at $x=a$ and if n is even there is a turning point at $x=a$.

Step 4 Sketch the graph.
The degree of x in the expansion of the polynomial is odd, the end behavior of $f(x)$ will be similar to the graph of x^{3}.
$+x^{3} \curvearrowleft$
i.e. \backsim
$-x^{3} \leadsto$
i.e. Mn
tails pointing opposite direction

The degree of x in the expansion of the polynomial is even, the end behavior of $f(x)$ will be similar to the graph of x^{2}.

$$
+x^{2}
$$

i.e. $A M$
$-x^{2} \curvearrowleft$
i.e. M

Note:
You may also use test points within the intervals formed by the x-intercepts to determine the sign of $f(x)$ in the interval. This will determine whether the graph is above or below the x-axis in that interval.
When the values of $f(x)$ is negative, the graph is below the x-axis, and when $f(x)$ has positive value, the graph is above the x-axis.
(3) Example 1 The graph of the polynomial is given by the equation:

$$
f(x)=(x+1)^{2}(x-2)^{3} .
$$

a) Find x and y-intercepts
b) Identify the coordinates of turning point on the x-axis
c) Identify the coordinates of an inflexion point on the x-axis
d) Sketch the graph

\& Answers

a) x-intercepts, let $y=0$
$y=(x+1)^{2}(x-2)^{3}$
$0=(x+1)^{2}(x-2)^{3}$
either $(x+1)^{2}=0$ or $(x-2)^{3}=0$
$x=-1$ and $x=2$
the coordinates of x-intercepts are $(-1,0)$ and $(2,0)$
y-intercepts, let $x=0$

$$
\begin{aligned}
f(x) & =(x+1)^{2}(x-2)^{3} \\
y & =(0+1)^{2}(0-2)^{3} \\
& =-8
\end{aligned}
$$

the coordinate of y-intercept is $(0,-8)$
b) At $x=-1$, there is a turning point $\therefore(-1,0)$
c) At $x=2$ there is an inflection $\therefore(2,0)$
d) Sketch the graph

Sign of $f(x)$ in each interval separated by x-intercepts.
Choose $-2,0$ and 3 as test points for intervals shown below

Example 2 Sketch the graph of $y=x^{3}(x-2)^{2}(x+1)$ [Clearly show all the intercepts, the turning points and point of inflection.]

Answer

x-intercepts, let $y=0$

$$
y=x^{3}(x-2)^{2}(x+1)
$$

$$
0=x^{3}(x-2)^{2}(x+1)
$$

$$
0=x^{3}, 0=(x-2)^{2}, 0=x+1
$$

$x=0, x=2, x=-1$
the coordinates of x-intercepts are $(0,0)$: inflection point $(2,0)$: turning point $(-1,0)$: cuts at x - axis
y-intercepts, let $x=0$

$$
\begin{aligned}
& y=x^{3}(x-2)^{2}(x+1) \\
& y=0^{3}(0-2)^{2}(0+1) \\
& y=0
\end{aligned}
$$

the coordinate of y-intercept is $(0,0)$

Sketch the graph:

Example 3 Write the equation of the polynomial shown.

\& Answer
x-intercepts: $x=-1, x=2$
y-intercept $=4$
inflection point at $x=-1$ and turning point at $x=2$
$\therefore y=(x+1)^{3}(x-2)^{2}$

Exercise 3.2.1

1. Write the equation of the polynomial shown.

2. A polynomial function is given by $f(x)=x^{2}(x+3)^{3}(2-x)$
a) Find x and y intercepts of $f(x)$
b) Sketch the graph of the function $f(x)$ clearly showing the behaviour of the graph around the x-intercepts.
3. A polynomial function is given as $y=f(x)$. Given that the function satisfies $f(0)=f(2)=f(5)=0$ and $f(3)=24$,
a) state the x and y intercepts of the function.
b) find the equation of the function.
c) sketch the graph of the function.
4. Sketch the following graphs by clearly showing all the intercepts, the turning points and point of inflection.
a) $y=x^{3}(x-2)^{2}(1-x)$
b) $y=(x+2)^{2}(1-x)^{3}$

3.2.2 Graph of Rational functions

> Rational functions are quotients of polynomial functions. This means that rational functions can be expressed as $f(x)=\frac{p(x)}{q(x)}, q(x) \neq 0$
where $p(x)$ and $q(x)$ are polynomial functions.
$>$ The domain of a rational function is the set of all real numbers except the x-values that make the denominator zero.

To sketch its graph, follow these steps.
Step 1 Find x-intercepts by letting $p(x)=0$, i.e. the numerator equal to 0
Step 2 Find y-intercept, by letting $x=0$ that is find $f(0)$.
Step 3 Find the asymptotes using the following procedures:

1. Vertical Asymptotes

Find any vertical asymptotes by setting the denominator equal to 0 and solving for x. If a is a zero of the denominator, then the line $x=a$ is a vertical asymptote.

2. Other Asymptotes

Determine any other asymptotes. Consider three possibilities:
(a) If the denominator has a higher degree than numerator i.e. a bottom heavy function, then there is a horizontal asymptote $y=0$ (the x-axis).
(b) If the numerator and denominator have the same degree i.e. a balanced function,

$$
f(x)=\frac{a x^{n}+\ldots \ldots}{b x^{n}+\ldots} \quad \text { where } a, b \neq 0
$$

then the horizontal asymptote has equation $y=\frac{a}{b}$
(c) If the numerator is of degree exactly one more than the denominator (top heavy function), then there will be an oblique (slanted) asymptote.
To find it, divide the numerator by the denominator and disregard the remainder. Set the rest of the quotient equal to y to obtain the equation of the asymptote.

Step 4 Sketch the graph
(8) Example 1 A rational function is given as $f(x)=\frac{x+3}{(x-3)(x+2)}$
a) Find the x and y intercepts of the graph of $f(x)$.
b) Identify the asymptote(s) and find their equations
c) Sketch the graph of the function $f(x)$ clearly showing the intercepts and asymptotes.

Answers

a) x intercept
let numerator $=0$:

$$
x+3=0
$$

$$
x=-3
$$

x - intercept $=(-3,0)$
y intercept: let $x=0$:
$f(0)=\frac{(0+3)}{(0-3)(0+2)}=-\frac{1}{2}$
y-intercept $=(0,-0.5)$
b) vertical asymptote
let denominator $=0$:

$$
\begin{array}{cc}
x-3=0 & \text { and }
\end{array} x+2=0
$$

Since it's a bottom heavy function, the horizontal asymptote is $y=0$
c) Do a sign analysis in each interval separated by vertical asymptotes or x intercepts. This tells you where each section of the graph appears! Show asymptotes as dashed lines. The graph must approach the asymptotes.

Example 2 A rational function is given as $f(x)=\frac{(x-3)(x+1)}{(x-1)(x+2)}$
a) Sketch the graph of $f(x)$
b) Complete the following, using your graph:

$$
\text { As } x \rightarrow+\infty, \quad f(x) \rightarrow \square
$$

Answers

a)

$$
\begin{aligned}
& x \text {-int } \rightarrow \text { let } y=0: \\
& x-3=0, x+1=0
\end{aligned}
$$

$$
y \text {-int } \rightarrow \text { let } x=0: f(x)=\frac{(0-3)(0+1)}{(0-1)(0+2)}
$$

x - intercepts: $(3,0)$ and $(-1,0)$

Vertical Asymptote:
let denominator $=0$
$x-1=0, x+2=0$
$x=1$ and $x=-2$

I y-int \rightarrow let $x=0: \quad f(x)=\frac{(0-3)(0+1)}{(0-1)(0+2)}$
I y-intercept $=(0,1.5)$
I
Horizontal Asymptote:
I It's a balanced function. Consider the I ratio of the coefficients of the variable
I with the highest power:
l $\mathrm{y}=\frac{x^{2}}{x^{2}} \Rightarrow y=1$

(3) Example 3 Sketch the graph of $y=\frac{x^{2}}{x-1}$

Answer
x intercept
let numerator $=0:$

$$
x^{2}=0
$$

$x=0$
Both x - intercept and y-intercept $=(0,0)$
Vertical Asymptote let denominator $=0:$
$x-1=0$
$x=1$

Since it's a top heavy function, carry out the long division

\[

\]

$$
\therefore y=x+1 \text { is the Oblique/slanting Asymptote }
$$

$$
-\left(x^{2}-x\right) \quad[\text { recall it's a straight line graph with } x \text {-int }(-1,0)
$$

$$
x+0 \quad \text { and } y \text {-int }(0,1)]
$$

Exercise 3.2.2

For the following functions:
a) Find x and y intercepts.
b) Identify the asymptotes and give their equations.
c) Sketch the graph, clearly showing the intercepts and the asymptote.

1. $f(x)=\frac{(x-3)}{(2 x+1)(x-2)}$
2. $f(x)=\frac{(2-x)}{\left(x^{2}-1\right)}$
3. $g(x)=\frac{(1-x)(x+2)}{(x+1)}$
4. $g(x)=\frac{(x+4)(2-x)}{(2 x+1)(x+1)}$
5. $h(x)=\frac{x^{2}-x-6}{x+1}$
6. $h(x)=\frac{x^{2}+4 x+3}{x-1}$
7. $y=\frac{(x+1)(x+2)}{(x-1)(x+3)}$
8. $y=\frac{(x+1)(3-2 x)}{(x-1)(x+2)}$

The length of a shadow is a function of its height and the time of day. Shadows can be used to find the height of large objects such as trees or buildings; the same function rule (ratio) by which we compare the length of an upright ruler to its shadow will help us find the unknown input (the height of the large object) when we measure its shadow. ~ Wendy Petti (http://www.educationworld.com/a curr/mathchat/mathchat010.shtml)

Review Exercise 3

1. Two functions are defined as

$$
f: x \rightarrow x^{2}-4 \quad g: x \rightarrow x+3
$$

a) State the domain and range of the two functions
b) Find $(f o g)(x)$.
c) What are the domain and range of $(f \circ g)(x)$?
2. The functions f and g are defined as: $f(x)=\frac{1}{3-x}$ and $g(x)=x^{2}+2$
a) State the domain and range of $f(x)$.
b) State the range of $g(x)$.
c) Find $g \circ f(x)$.
d) Find the range of $g \circ f(x)$.
3. Sketch the polynomial functions shown below:
a) $y=x(x-2)^{2}(1-x)^{3}$
b) $y=1 / 2(x+4)^{2}(2-x)^{3}$
c) $y=(x+3)^{2}(2-x)^{3}$
4. A rational function is given as $h(x)=\frac{2-x}{(x+3)(x-1)}$.
a) Find the x and y intercepts of the graph of $h(x)$.
b) Identify the asymptote(s) and give their equations.
c) Sketch the graph.
d) Complete the following statement:

As $x \rightarrow \infty, \quad h(x) \rightarrow \square$

TRIGONOMETRY

Trigonometric Identities

 and Exact Values
Quotient Identities

$$
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
$$

Reciprocal Identities		
$\sin \theta=\frac{1}{\csc \theta}$	$\cos \theta=\frac{1}{\sec \theta}$	$\tan \theta=\frac{1}{\cot \theta}$
$\csc \theta=\frac{1}{\sin \theta}$	$\sec \theta=\frac{1}{\cos \theta}$	$\cot \theta=\frac{1}{\tan \theta}$

Pythagorean Identities
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$1+\tan ^{2} \theta=\sec ^{2} \theta$
$\cot ^{2} \theta+1=\csc ^{2} \theta$

4.1.1 Identities

$>$ Basic identities/formulae

$\bullet \tan \theta=\frac{\sin \theta}{\cos \theta}$	$\bullet \cos ^{2} \theta+\sin ^{2} \theta=1$	$\bullet \tan ^{2} \theta+1=\sec ^{2} \theta$
- $\cot \theta=\frac{1}{\tan \theta}$	$\bullet \sec \theta=\frac{1}{\cos \theta}$	$\bullet \operatorname{cosec} \theta=\frac{1}{\sin \theta}$

Addition Formulae

- $\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$
- $\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$
- $\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$

$>$ Product to sum

- $2 \sin \mathrm{~A} \cos \mathrm{~B}=\sin (\mathrm{A}+\mathrm{B})+\sin (\mathrm{A}-\mathrm{B})$
- $2 \cos A \cos B=\cos (A+B)+\cos (A-B)$
- $2 \sin \mathrm{~A} \sin \mathrm{~B}=\cos (\mathrm{A}-\mathrm{B})-\cos (\mathrm{A}+\mathrm{B})$

$>$ Sum to product

- $\sin C+\sin D=2 \sin$ (half sum) \cos (half difference)
- $\sin C-\sin D=2 \cos$ (half sum) \sin (half difference)
- $\cos \mathrm{C}+\cos \mathrm{D}=2 \cos$ (half sum) \cos (half difference)
- $\cos \mathrm{D}-\cos \mathrm{C}=2 \sin$ (half sum) \sin (half difference)
> Double angle

| $\bullet \sin 2 \mathrm{~A}=2 \sin \mathrm{~A} \cos \mathrm{~A}$ | $\bullet \cos 2 \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1$ |
| ---: | ---: | ---: |
| | $=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}$ |
| $=1-2 \sin ^{2} \mathrm{~A}$ | |$\quad \bullet \tan 2 \mathrm{~A}=\frac{2 \tan \mathrm{~A}}{1-\tan ^{2} \mathrm{~A}}$

Half angle

$$
\begin{array}{|l|l|l}
\hline \bullet \sin \left(\frac{A}{2}\right)= \pm \sqrt{\frac{1-\cos A}{2}} & \bullet \cos \left(\frac{A}{2}\right)= \pm \sqrt{\frac{1+\cos A}{2}} \quad \tan \left(\frac{A}{2}\right)=\frac{1-\cos A}{\sin A} \\
\hline
\end{array}
$$

*The sign depends on which quadrant the angle is in.

Derivation of Half angle formulae from double angle formula

Consider $\cos 2 \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1$
Let $A=\frac{\theta}{2}$
$\cos 2\left(\frac{\theta}{2}\right)=2 \cos ^{2}\left(\frac{\theta}{2}\right)-1$
$\cos \theta=2 \cos ^{2}\left(\frac{\theta}{2}\right)-1$
$\cos \theta+1=2 \cos ^{2}\left(\frac{\theta}{2}\right)$
$\cos ^{2}\left(\frac{\theta}{2}\right)=\frac{\cos \theta+1}{2}$

Consider $\cos 2 \mathrm{~A}=1-2 \sin ^{2} \mathrm{~A}$
Let $A=\frac{\theta}{2}$
$\cos 2\left(\frac{\theta}{2}\right)=1-2 \sin ^{2}\left(\frac{\theta}{2}\right)$
$\cos \theta=1-2 \sin ^{2}\left(\frac{\theta}{2}\right)$
$2 \sin ^{2}\left(\frac{\theta}{2}\right)=1-\cos \theta$
$\sin ^{2}\left(\frac{\theta}{2}\right)=\frac{1-\cos \theta}{2}$

Proving Identities

(3) Example 1 Show that $\sin 60^{\circ}-\sin 40^{\circ}=2 \cos 50^{\circ} \sin 10^{\circ}$

Answer

Sum to product Identity that can be used:

- $\sin C-\sin D=2 \cos$ (half sum) \sin (half difference)

$$
\begin{aligned}
L H S & =\sin 60^{\circ}-\sin 40^{\circ} \\
& =2 \cos \left(\frac{60^{\circ}+40^{\circ}}{2}\right) \sin \left(\frac{60^{\circ}-40^{\circ}}{2}\right) \\
& =2 \cos 50^{\circ} \sin 10^{\circ} \\
& =R H S
\end{aligned}
$$

(8) Example 2 Prove that $\tan \theta \operatorname{cosec} \theta=\sec \theta$

Answer

Use basic identities
LHS $=\tan \theta \times \operatorname{cosec} \theta$

$$
\begin{aligned}
& =\frac{\operatorname{Sin} \theta}{\operatorname{Cos} \theta} \times \frac{1}{\operatorname{Sin} \theta} \\
& =\frac{1}{\operatorname{Cos} \theta} \\
& =\operatorname{Sec} \theta \\
& =R H S
\end{aligned}
$$

(3) Example 3 Prove that $\frac{1}{1+\sin ^{2} \theta}+\frac{1}{1+\csc ^{2} \theta}=1$

\& Answer

Identity that can be used: $\quad \csc ^{2} \theta=\frac{1}{\sin ^{2} \theta}$

$$
\begin{aligned}
& \frac{1}{1+\sin ^{2} \theta}+\frac{1}{\left[1+\frac{1}{\sin ^{2} \theta}\right]-----------------\rightarrow}=1 \\
& L H S
\end{aligned}=\frac{1}{1+\sin ^{2} \theta}+\left(1 \div\left[\frac{\sin ^{2} \theta+1}{\sin ^{2} \theta}\right]\right) \quad \begin{aligned}
& \text { Simplify: } \\
& {\left[1+\frac{1}{\sin ^{2} \theta}\right]} \\
& =\frac{\sin ^{2} \theta+1}{\sin ^{2} \theta} \\
& \\
& =\frac{1}{1+\sin ^{2} \theta}+1 \times \frac{\sin ^{2} \theta}{\sin ^{2} \theta+1} \\
& \\
& =\frac{1+\sin ^{2} \theta}{\sin ^{2} \theta+1} \\
& \\
& =1 \\
&
\end{aligned}
$$

Example 4 Prove: $\frac{\operatorname{Sin} 5 x-\operatorname{Sin} 3 x}{\operatorname{Cos} 5 x+\operatorname{Cos} 3 x}=\tan x$.

Answer

Identity that can be used: Sum to product

- $\sin C-\sin D=2 \cos$ (half sum) \sin (half difference)
- $\cos \mathrm{C}+\cos \mathrm{D}=2 \cos$ (half sum) \cos (half difference)

$$
\begin{aligned}
\text { LHS } & =\frac{\operatorname{Sin} 5 x-\operatorname{Sin} 3 x}{\operatorname{Cos} 5 x+\operatorname{Cos} 3 x} \\
& =\frac{2 \operatorname{Cos}\left(\frac{5 x+3 x}{2}\right) \operatorname{Sin}\left(\frac{5 x-3 x}{2}\right)}{2 \operatorname{Cos}\left(\frac{5 x+3 x}{2}\right) \operatorname{Cos}\left(\frac{5 x-3 x}{2}\right)} \\
& =\frac{2 \operatorname{Cos} 4 x \operatorname{Sin} x}{2 \operatorname{Cos} 4 x \operatorname{Cos} x} \\
& =\tan x \\
& =\text { RHS }
\end{aligned}
$$

Exercise 4.1.1

Prove these identities:

1. $\sin ^{2} x-\cos ^{2} x=2 \sin ^{2} x-1$
2. $\csc 2 \boldsymbol{\theta}-\cot 2 \boldsymbol{\theta}=\tan \boldsymbol{\theta}$
3. $\frac{\csc \theta}{\cot \theta+\tan \theta}=\cos \theta$
4. $\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=\sec \theta \operatorname{cosec} \theta$
5. $\tan \boldsymbol{\theta}-\cot \boldsymbol{\theta}=\frac{1-2 \cos ^{2} \theta}{\sin \theta \cos \theta}$
6. $\frac{\operatorname{Sin} \theta}{\operatorname{Cosec} \theta+\operatorname{Cot} \theta}=1-\operatorname{Cos} \theta$
7. $\frac{1}{1-\sin x}+\frac{1}{1+\sin x}=2 \sec ^{2} x$
8. $\frac{\operatorname{Sin} 2 \theta+\operatorname{Sin} 5 \theta}{\operatorname{Cos} 2 \theta-\operatorname{Cos} 5 \theta}=\cot \frac{3 x}{2}$

4.1.2 Exact Values

You may use special triangle ratios where applicable.

Trig Function	Angles		
$\mathbf{S O H} / \mathbf{C A H} / \mathbf{T O A}$	$\mathbf{3 0}^{\mathbf{}}$	$\mathbf{4 5}^{\mathbf{}}$	$\mathbf{6 0}^{\mathbf{}}$
$\operatorname{Sin} \theta$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$
$\operatorname{Cos} \theta$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
$\operatorname{Tan} \theta$	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$

(8) Example 1 Find the exact value of $\operatorname{Sin} 75^{\circ}$

Answer

Break down angle preferably as $30^{\circ}, 45^{\circ}$ or 60° as their exact values are known.
$\operatorname{Sin} 75^{\circ}=\operatorname{Sin}\left(30^{\circ}+45^{\circ}\right)$

Use Addition Formulae $\sin (\mathrm{A} \pm \mathrm{B})=\sin \mathrm{A} \cos \mathrm{B} \pm \cos \mathrm{A} \sin \mathrm{B}$

$$
\begin{aligned}
= & \sin 30^{\circ} \cdot \cos 45^{\circ}+\cos 30^{\circ} \cdot \sin 45^{\circ} \\
& =\frac{1}{2} \times \frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}} \\
= & \frac{1}{2 \sqrt{2}}+\frac{\sqrt{3}}{2 \sqrt{2}} \\
= & \frac{1+\sqrt{3}}{2 \sqrt{2}}
\end{aligned}
$$

(3) Example 2 Find the exact value of $\sin 15^{\circ}$

Answer

$$
\begin{gathered}
\sin 15^{\circ}=\sin \frac{30^{\circ}}{2} \quad \text { Use half angle formula } \\
\begin{aligned}
& \sin \left(\frac{\theta}{2}\right)=\sqrt{\frac{1-\cos \theta}{2}} \\
& \begin{aligned}
& \sin \left(\frac{30}{2}\right)=\sqrt{\frac{1-\cos 30}{2}} \quad \begin{array}{c}
\text { Take only positive square } \\
\text { falls in the first qua }
\end{array} \\
& \begin{aligned}
\sin \left(15^{\circ}\right) & =\sqrt{\frac{1-\frac{\sqrt{3}}{2}}{2}} \\
& =\sqrt{\frac{2-\sqrt{3}}{2} \div 2} \\
& =\sqrt{\frac{2-\sqrt{3}}{2} \div \frac{2}{1}} \\
& =\sqrt{\frac{2-\sqrt{3}}{2} \times \frac{1}{2}} \\
& =\frac{\sqrt{2-\sqrt{3}}}{\sqrt{4}}
\end{aligned} \\
& \therefore \sin \left(15^{\circ}\right)=\frac{\sqrt{2-\sqrt{3}}}{2}
\end{aligned}
\end{aligned} .
\end{gathered}
$$

(3) Example 3 If $\sin \theta=-\frac{1}{\sqrt{3}}$, find $\sec \boldsymbol{\theta}$, if θ is in quadrant III.

R Answer

Using SOH/CAH/TOA, the expression for $\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}=-\frac{1}{\sqrt{3}}$ Consider a right-angled triangle,

Quadrant II Sine +
AllQuadrant I Quadrant III

Use identity $\sec \boldsymbol{\theta}=\frac{1}{\cos \theta}$
First, get the expression for $\cos \theta$

$$
\begin{aligned}
\cos \theta & =\frac{\text { adjacent }}{\text { hypotenuse }} \\
& =-\sqrt{2} / \sqrt{3}
\end{aligned}
$$

cosine is negative in quadrant III

$$
\begin{aligned}
\boldsymbol{\operatorname { s e c }} \boldsymbol{\theta} & =\frac{1}{\cos \theta} \\
& =\frac{1}{-\sqrt{2} / \sqrt{3}} \\
& =1 \div-\frac{\sqrt{2}}{\sqrt{3}} \\
& =-\frac{\sqrt{3}}{\sqrt{2}}
\end{aligned}
$$

Exercise 4.1.2

1. Find the values of the following in simplest surd form:
a) $\cos 15^{\circ}$
b) $\sin 22 \frac{1}{2} \circ$
c) $\tan 75^{\circ}$
d) $\sin 105^{\circ}$
e) $\cos 105^{\circ}$
f) $\tan 15^{\circ}$
2. Find the exact value of R where, $R=8 \cos 75^{\circ}$.
3. Find the exact value of R where, $R=4 \cos 75^{\circ}-4 \cos 15^{\circ}$.
4. Suppose $\tan A=\frac{24}{7}, \tan B=\frac{9}{40}$ with A and B as acute angles, find the exact value of $\sin (A-B)$.
5. Suppose $\sin A=\frac{9}{41}$ and $\cos B=\frac{24}{25}$, find the exact value of $\cos (A-B)$.
6. If $\cos \theta=-\frac{1}{\sqrt{2}}$ and θ is in the second quadrant, find the following:
a) $\cos 2 \theta$
b) $\sec \theta$
c) $\tan \theta$
d) $\operatorname{cosec} \theta$
7. Suppose $\sin \theta=\frac{\sqrt{5}}{3}$ and θ is in the second quadrant, find the exact value of $\sin 2 \theta$.
8. Suppose θ is an angle in the fourth quadrant and $\cos \theta=\frac{20}{29}$. Find the exact value of $\sin 2 \theta$ and $\cos 2 \theta$

Trigonometry is used by astronomers to calculate the distance to the stars.
Trigonometry to measure distances between universe objects are at greater distances.
~ anonymous (http://math.tutorvista.com/trigonometry/applications-oftrigonometry.html)

NOTE
Amplitude and Period
Example
For graphs of the form

$$
\begin{aligned}
y & =a \sin b x+c \\
\text { and } y & =a \cos b x+c
\end{aligned}
$$

$$
\begin{aligned}
\text { amplitude } & =a \\
\text { period } & =\frac{360^{\circ}}{b}
\end{aligned}
$$

4.2.1 \quad Trigonometric Graphs

The general form is defined as

$$
y=A \operatorname{Sin}(B x \pm C) \pm k \quad \text { or } \quad y=A \operatorname{Cos}(B x \pm C) \pm k
$$

Example $1 \quad$ A trigonometric function is defined as $f(x)=3 \sin \left(x+\frac{\pi}{4}\right)$
(i) Write the period of the function $f(x)$.
ii) What is the amplitude of $f(x)$?
iii) Sketch $f(x)=3 \sin \left(x+\frac{\pi}{4}\right)$ for $0 \leq x \leq 2 \pi$
iv) Write down the coordinates of the maximum point of $f(x)$ for $0 \leq x \leq 2 \pi$

Answers

Compare with the general form

$$
\begin{aligned}
y & =A \operatorname{Sin}(B x \pm C) \pm k \\
f(x) & =3 \sin \left(1 x+\frac{\pi}{4}\right)
\end{aligned}
$$

i. period $=\frac{2 \pi}{B}=\frac{2 \pi}{1}=2 \pi$
ii. amplitude: $\mathrm{A}=3$
iii. C: Shift the graph $\frac{\pi}{4}$ units to the left or Shift the y - axis by $\frac{\pi}{4}$ units to the right

iv. maximum point: reading from the graph, it turns at $x=\frac{\pi}{4}$ and $y=3 \therefore\left(\frac{\pi}{4}, 3\right)$

Example 2 Sketch $y=3 \sin \left(x+\frac{\pi}{2}\right)+3$ for $0 \leq x \leq 2 \pi$

Answer

Method 1 - Sifting the axes
First sketch the basic graph $y=3 \sin x$,

Then shift y axis to right by $\frac{\pi}{2}$ to get $y=3 \sin \left(x+\frac{\pi}{2}\right)$.

Graph of $y=3 \sin \left(x+\frac{\pi}{2}\right)$.

Finally shift x - axis down by 3 unit.
\therefore graph of $y=3 \sin \left(x+\frac{\pi}{2}\right)+3$

Exercise 4.2.1

1. Sketch the following graphs for $0 \leq x \leq 2 \pi$.
a) $y=3 \sin x+2$
b) $y=-3 \sin x-1$
c) $f(x)=-3 \sin \left(x+\frac{\pi}{4}\right)+1$
d) $f(x)=3 \sin \left(2 x+\frac{\pi}{4}\right)-1$
e) $f(x)=3 \sin \left(x+\frac{\pi}{4}\right)+3$
f) $f(x)=3 \sin \left(x+\frac{\pi}{4}\right)-1$
2. Sketch the following graphs for $0^{\circ} \leq x \leq 360^{\circ}$.
a) $y=2 \cos x+1$
b) $y=1 / 2 \cos x-1$
c) $y=2 \cos \left(x+30^{\circ}\right)+1$
d) $y=2 \cos \left(x+90^{\circ}\right)-2$
e) $y=2 \cos \left(x+45^{\circ}\right)-2$
f) $y=2 \cos \left(x-45^{\circ}\right)+2$

4.3.1 Solving Trigonometric Equations

When solving any trigonometric equation, emphasis must be given to the quadrants.

Quadrant II Sine +	Quadrant I All +
Quadrant III +	Cosine +
Quadrant IV	

Mnemonic
All Science Teachers Cry
or
Add Sugar To Coffee

- If you look at the quadrants, the designated trig expressions will be positive, the others will be negative. Further simplifying,

Note: for complex equations, you may use the identities.

Example 1
Find the solution set for $2 \operatorname{Cos} \theta+\sqrt{3}=0,0^{\circ} \leq \theta \leq 360^{\circ}$

Answer

The angle to be between $0-360^{\circ}$
$2 \cos \theta-\sqrt{3}=0, \quad 0^{\circ} \leq \theta \leq 360^{\circ}$
$2 \cos \theta+\sqrt{3}-\sqrt{3}=0-\sqrt{3}$
$\frac{2 \cos \theta}{2}=\frac{-\sqrt{3}}{2}$
$\cos \theta=\frac{-\sqrt{3}}{2}$

We reached at the trig expression: Consider the two quadrants. But before that, find the acute angle by ignoring the negative sign (-). Note that calculator Mode to be in degrees.

- Acute angle:

$$
\begin{aligned}
& \theta=\operatorname{Cos}^{-1}\left(\frac{\sqrt{3}}{2}\right)=30^{\circ} \\
& \alpha=30^{\circ}
\end{aligned}
$$

When dealing with surds,
press the division sign (\div), that is Press

- Use quadrants to find the angles θ_{1} and θ_{2}. Consider negative sign (-) of Cos, that is in Q II / III

$$
\begin{aligned}
& \theta_{1}=180-30=150^{\circ} \\
& \theta_{2}=180+30=210^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \theta=150^{\circ}, 210^{\circ} o r \\
& \theta \in\left\{150^{\circ}, 210^{\circ}\right\}
\end{aligned}
$$

(4) Example 2 Solve the equation $3 \sin \left(x-45^{\circ}\right)=\frac{3 \sqrt{3}}{2}$ for $0 \leq x \leq 360^{\circ}$.

Answer

$$
3 \sin \left(x-45^{\circ}\right)=\frac{3 \sqrt{3}}{2} \quad 0 \leq x \leq 360^{\circ}
$$

$$
\sin \left(x-45^{\circ}\right)=\frac{3 \sqrt{3}}{3 \times 2}
$$

$$
\left(x-45^{\circ}\right)=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)
$$

We reached at the trig expression: Consider the two quadrants. But before that, find the acute angle. Note that calculator Mode to be in degrees.

- Acute angle:

$$
\begin{aligned}
\theta & =\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
& =60^{\circ}
\end{aligned}
$$

When dealing with surds,
press the division sign (\div), that is Press

Sine is positive, the angle lies in the $1^{\text {st }}$ and $2^{\text {nd }}$ quadrants of the $x y$ - plane.

- $\theta_{1}=60^{\circ}$

$$
\begin{aligned}
& \left(x-45^{\circ}\right)=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
& \left(x-45^{\circ}\right)=60^{\circ} \\
& x=60^{\circ}+45^{\circ}=105^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{2}=180-60=120^{\circ} \\
& \left(x-45^{\circ}\right)=\theta_{2} \\
& \left(x-45^{\circ}\right)=120^{\circ} \\
& x=120^{\circ}+45^{\circ}=165^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \theta=105^{\circ}, 165^{\circ} \text { or } \\
& \theta \in\left\{105^{\circ}, 165^{\circ}\right\}
\end{aligned}
$$

Example 3 Solve $\cos 2 x+\cos x=0$.

Answer

Using identity:

$$
\begin{aligned}
& 2 \cos ^{2} x-1+\cos x=0 \\
& (2 \cos x-1)(\cos x+1)=0 \\
& \text { Either } \quad \text { Or } \\
& (2 \cos x-1)=0
\end{aligned} \quad(\cos x+1)=0 \quad \begin{aligned}
& \cos x=-1 \\
& \cos x=1 / 2
\end{aligned} \quad x=\cos ^{-1}(-1)=\pi .
$$

\{ factorise trinomial \}

A Short-cut Method

Let k be $\cos x$

$\begin{gathered} 2 k^{2}+k-1 \\ \downarrow \text { factors } \downarrow \end{gathered}$	
${ }_{k}^{2 k}>_{1}^{-1}$	Cross mu middle te
$=(2 k-1)(k+1)$	
$=(2 \cos x-1)(\cos x+1)$	

From case 1, it can be seen that cosine is positive and hence it lies in the first and the fourth quadrant.

- Acute angle:

$$
\begin{aligned}
\theta= & \cos ^{-1}\left(\frac{1}{2}\right) \\
& =\frac{\pi}{3}
\end{aligned}
$$

- Cos is positive, the angle lies in the $1^{\text {st }}$ and $4^{\text {th }}$ quadrants of the $x y$ - plane.

$\theta_{2}=2 \pi-\frac{\pi}{3}=\frac{6 \pi-\pi}{3}=\frac{5 \pi}{3}$
(3) Example 4 Solve $\tan ^{2} \theta=\tan \theta$ for $0^{\circ} \leq \theta \leq 180^{\circ}$.

Answer

Rearranging and factorizing

$$
\begin{array}{ll}
\tan ^{2} \theta=\tan \theta & \\
\tan ^{2} \theta-\tan \theta=0 & \\
\tan \theta(\tan \theta-1)=0 & \text { Or } \\
\quad \text { Either } & \tan \theta-1 \\
\tan \theta=0 & \tan \theta=1 \\
\theta=\tan ^{-1} 0 & \theta=\tan ^{-1} \\
\theta=0 &
\end{array}
$$

Exercise 4.3.1

Solve the following trigonometric equations:

1. $\cos 2 \theta+\sin \theta=0$ for $0 \leq \theta \leq 2 \pi$.
2. $\cos 2 \theta+\cos \theta+1=0$ for $0 \leq \theta \leq 2 \pi$.
3. $3 \cos 2 \theta-\sin \theta=2$ for $0 \leq \theta \leq 2 \pi$.
4. $\cos \theta(2 \cos \theta+\sqrt{3})=0$ for $0^{\circ} \leq \theta \leq 180^{\circ}$.
5. $3 \sin 2 x-2 \sin x=0,0^{\circ} \leq x \leq 360^{\circ}$.
6. $\sin 2 \theta=\sin \theta$ for $0 \leq \theta \leq 2 \pi$.
7. $\tan ^{2} \theta \sec ^{2} \theta=9+\tan ^{2} \theta$ for $0 \leq \theta \leq 2 \pi$.
8. $2 \cos ^{2} \theta=\sin 2 \theta$ for $0 \leq \theta \leq 2 \pi$.

Original Expression Combined Expression

$a \sin \theta+b \cos \theta$	$R \sin (\theta+a)$
$a \sin \theta-b \cos \theta$	$R \sin (\theta-a)$
$a \sin \theta+b \cos \theta$	$R \cos (\theta-a)$
$a \sin \theta-b \cos \theta$	$R \cos (\theta+a)$

In each case, a, b and R are positive and α is an a
R is given by:

$$
R=\sqrt{a^{2}+b^{2}}
$$

4.4.1 Transformation of trigonometric expressions of the form $A \operatorname{Cos} \theta \pm B \operatorname{Sin} \theta$

Often trig expressions involve the sum of sine and cosine terms. It is more convenient to write such expressions using one single term by applying the addition formula:
(i) $a \operatorname{Cos} \theta \pm b \operatorname{Sin} \theta=r \operatorname{Cos}(\theta \pm \alpha)$
(ii) $a \operatorname{Cos} \theta \pm b \operatorname{Sin} \theta=r \operatorname{Sin}(\theta \pm \alpha)$
where α is an angle to be found and r is the modulus i.e. $r=\sqrt{a^{2}+b^{2}}$ and a and b are coefficients of $\operatorname{Cos} \theta$ and $\operatorname{Sin} \theta$ respectively.

This also enables us to solve certain types of trigonometric equations and find maximum and minimum points of complex trigonometric functions.

You will notice that this is very similar to converting rectangular to polar form in Complex Numbers. We can get α and r using calculator, similar to the way we did it in the complex numbers section.

Example 1 Express $2 \operatorname{Cos} \theta+3 \sin \theta$ in terms of $r \sin (\theta+\alpha)$.

Answer

$$
\begin{aligned}
& a=2, b=3 \therefore r=\sqrt{2^{2}+3^{2}} \\
& r=\sqrt{13}
\end{aligned}
$$

Apply Addition law: - $\sin (\mathrm{A} \pm \mathrm{B})=\sin \mathrm{A} \cos \mathrm{B} \pm \cos \mathrm{A} \sin \mathrm{B}$
$\sin (\theta+\alpha)=[\operatorname{Sin} \theta \operatorname{Cos} \alpha+\operatorname{Cos} \theta \operatorname{Sin} \alpha]$
$r \sin (\theta+\alpha)=r \sin \theta \cos \alpha+r \operatorname{Cos} \theta \operatorname{Sin} \alpha$
substituting r yields: $\sqrt{13} \sin \theta \operatorname{Cos} \alpha+\sqrt{13} \operatorname{Cos} \theta \operatorname{Sin} \alpha$
Thus in general form,

Compare Sine \& Cosine functions

$$
\begin{aligned}
& 2=\sqrt{13} \sin \alpha \\
& \sin \alpha=\frac{2}{\sqrt{13}} \\
& \alpha=\sin ^{-1}\left(\frac{2}{\sqrt{13}}\right) \\
& \alpha=33.69^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& 3=\sqrt{13} \cos \alpha \\
& \cos \alpha=\frac{3}{\sqrt{13}} \\
& \alpha=\cos ^{-1}\left(\frac{3}{\sqrt{13}}\right) \\
& \alpha=33.69^{\circ}
\end{aligned}
$$

Since both give the same value for α,

$$
\therefore \quad 2 \cos \theta+3 \operatorname{Sin} \theta=\sqrt{13} \sin \left(\theta+33.69^{\circ}\right)
$$

Example 2 Express $2 \cos \theta+3 \sin \theta$ in terms of $r \cos (\theta+\alpha)$.

Answer

$$
r=\sqrt{13}
$$

Apply Addition law: - $\cos (\mathrm{A} \pm \mathrm{B})=\cos \mathrm{A} \cos \mathrm{B} \mp \sin \mathrm{A} \sin \mathrm{B}$

$$
\cos (\theta+\alpha)=[\cos \theta \cos \alpha+\sin \theta \sin \alpha]
$$

$$
r \cos (\theta+\alpha)=r \cos \theta \cos \alpha+r \sin \theta \sin \alpha
$$

substituting r yields: $\sqrt{13} \cos \theta \cos \alpha+\sqrt{13} \sin \theta \sin \alpha$
Thus in general form,

$$
\begin{aligned}
& m, \quad{ }^{2} \cos \theta+\sqrt{3} \sin \theta \\
& =\sqrt{13} \underline{\cos \alpha} \cos \theta+\sqrt{13} \sin \alpha \sin \theta
\end{aligned}
$$

Compare Sine \& Cosine functions

$2=\sqrt{13} \cos \alpha$
$\cos \alpha=\frac{2}{\sqrt{13}}$
$\alpha=\cos ^{-1}\left(\frac{2}{\sqrt{13}}\right)$
$\alpha=56.31^{\circ}$
$3=\sqrt{13} \operatorname{Sin} \alpha$
$\sin \alpha=\frac{3}{\sqrt{13}}$
$\alpha=\sin ^{-1}\left(\frac{3}{\sqrt{13}}\right)$ $\alpha=56.31^{\circ}$

Since both give the same value for α,

$$
\therefore \quad 2 \cos \theta+3 \sin \theta=\sqrt{13} \cos \left(\theta+56.31^{\circ}\right)
$$

Example 3 Express $y=2 \cos \theta+\sqrt{2} \sin \theta$ in the form $R \cos (\theta+\alpha)$.

Answer

$$
\begin{aligned}
& \quad a=2, b=\sqrt{2} \therefore r=\sqrt{\sqrt{2}^{2}+2^{2}} \\
& \quad r=\sqrt{6} \\
& \text { Apply Addition law: } \quad \cos (\mathrm{A} \pm \mathrm{B})=\cos \mathrm{A} \cos \mathrm{~B} \mp \sin \mathrm{~A} \sin \mathrm{~B} \\
& \text { And substituting } r \text { yields: } \sqrt{6} \cos \theta \cos \alpha-\sqrt{6} \sin \theta \sin \alpha
\end{aligned}
$$

Thus in general form,

$$
z \sqrt{6} \cos \alpha] \cos \theta+[-\sqrt{6} \sin \alpha \sin \theta
$$

Compare Sine \& Cosine functions

$$
\begin{array}{l|l}
2=\sqrt{6} \cos \alpha & \sqrt{2}=-\sqrt{6} \sin \alpha \\
\cos \alpha=\frac{2}{\sqrt{6}} & \sin \alpha=\frac{\sqrt{2}}{-\sqrt{6}} \\
\alpha=\cos ^{-1}\left(\frac{2}{\sqrt{6}}\right) & \alpha=\sin ^{-1}\left(-\frac{\sqrt{2}}{\sqrt{6}}\right) \\
\alpha=35.26^{\circ} & \alpha=-35.26^{\circ}
\end{array}
$$

$$
\begin{aligned}
\alpha & =360-35.26 \\
& =324.74^{\circ} \text { or }-35.26^{\circ} \\
\therefore & \quad 2 \cos \theta+\sqrt{2} \sin \theta=\sqrt{6} \cos \left(\theta-35.26^{\circ}\right)
\end{aligned}
$$

Example 4 Using the previous example,
a) Give the coordinates of the maximum and minimum point on

$$
y=2 \cos \theta+\sqrt{2} \sin \theta \text { for } 0 \leq \theta \leq 360^{\circ}
$$

b) Find the x and y-intercepts.
c) Sketch the graph of $y=2 \cos \theta+\sqrt{2} \sin \theta$ for $0 \leq \theta \leq 360^{\circ}$

Answers

Since it was reduced to a single trig function i.e.
$2 \cos \theta+\sqrt{2} \sin \theta=\sqrt{6} \cos \left(\theta-35.26^{\circ}\right)$, so it is easier to analyze

$$
y=\sqrt{6} \cos \left(\theta-35.26^{\circ}\right)
$$

a) Coordinates of the maximum and minimum point for $0 \leq \theta \leq 360^{\circ}$

Cosine is maximum at 0°

$$
\begin{aligned}
& 2 \cos \theta+\sqrt{2} \sin \theta=\sqrt{ } \\
& \theta-35.26^{\circ}=0 \\
& \theta=35.26^{\circ}
\end{aligned}
$$

The maximum occurs at (35.26 ${ }^{\circ}, \sqrt{6}$)

Cosine is minimum at 180°
$2 \cos \theta+\sqrt{2} \sin \theta=\sqrt{6} \cos \left(\theta-35.26^{\circ}\right)$

$$
\begin{aligned}
\theta-35.26^{\circ} & =180^{\circ} \\
\theta & =215.26^{\circ}
\end{aligned}
$$

The minimum occurs at

$$
\left(215.26^{\circ},-\sqrt{6}\right)
$$

Let's find the x-intercept

By letting $y=0$

$$
\begin{gathered}
y=\sqrt{6} \cos \left(\theta-35.26^{\circ}\right) \\
0=\sqrt{6} \cos \left(\theta-35.26^{\circ}\right)
\end{gathered}
$$

Cosine is 0 at 90° and 270°
$\theta-35.26^{\circ}=90^{\circ}$

$$
\theta=125.26^{\circ}
$$

$$
\theta-35.26^{\circ}=270^{\circ}
$$

$$
\theta=305.26^{\circ}
$$

$$
\therefore x=125.26^{\circ}, 305.26^{\circ}
$$

c) Graph of $y=2 \cos \theta+\sqrt{2} \sin \theta$ for $0 \leq \theta \leq 2 \pi$ is shown below

Exercise 4.4.1

1. Express $y=2 \sin \theta-\cos \theta$ in the form $R \sin (\theta-\alpha)$.
2. Express $y=\sqrt{3} \cos \theta-\sin \theta$ in the form $R \sin (\theta-\alpha)$.
3. Express $y=\sqrt{3} \cos \theta+\sin \theta$ in the form $R \cos (\theta+\alpha)$.
4. Express $y=2 \sin \theta+\cos \theta$ in the form $R \cos (\theta+\alpha)$ and find the coordinates of the minimum and maximum points on the function for $0 \leq \theta \leq 360^{\circ}$
5. Express $y=\sin \theta-\sqrt{3} \cos \theta$ in the form $R \sin (\theta-\alpha)$ and find the coordinates of the minimum and maximum points on the function for $0 \leq \theta \leq 360^{\circ}$.
6. A function is given by $f(x)=7 \sin x+8 \cos x$
a) Express the function $f(x)$ in the form $R \cos (x+\alpha)$ where α is an acute angle.
b) Hence, sketch the graph of $f(x)=7 \sin x+8 \cos x$ for $0 \leq \theta \leq 360^{\circ}$
c) Solve the equation $7 \sin x+8 \cos x=6$ for $0 \leq \theta \leq 360^{\circ}$
7. A function is given by $f(x)=7 \cos x-6 \sin x$.
a) Express the function $f(x)$ in the form $f(x)=R \cos (x+\theta)$, where θ is an acute angle.
b) Hence, sketch the graph of $f(x)=7 \cos x-6 \sin x$ for $0 \leq \theta \leq 360^{\circ}$
c) Solve the equation $7 \cos x-6 \sin x=5$ for $0 \leq \theta \leq 360^{\circ}$
8. A function is given by $f(x)=4 \cos x+7 \sin x$.
a) Express the function $f(x)$ in the form $f(x)=R \sin (x+\theta)$, where θ is an acute angle.
b) Hence, sketch the graph of $f(x)=4 \cos x+7 \sin x$ for $0 \leq \theta \leq 360^{\circ}$
c) Solve the equation $4 \cos x+7 \sin x=-5$ for $0 \leq \theta \leq 360^{\circ}$

Trigonometry is the relationships between the sides and angles of triangles. Such relationships are involved in a wide range of engineering problems. Engineers of various types use the fundamentals of trigonometry to design bridges, build structures and solve scientific problems. Trigonometry is very important with engineers who deal with waves, magnetic and electric fields. ~ anonymous (http://math.tutorvista.com/trigonometry/applications-of-trigonometry.html)

Inverse Trigonometric Functions

4.5.1 Graphs of Inverse Trigonometric Functions

- The graph of inverse trig function is obtained by reflecting the graph in the line $y=x$.
- For example, the graph of $y=\sin ^{-1} x$ is obtained by reflecting the graph of $y=\sin x$ in the line $y=x$.

It can be seen that the graph of $y=\sin ^{-1} x$ is not a function. To make it a function we can restrict the range in the interval $\frac{-\pi}{2} \leq y \leq \frac{\pi}{2}$.

- Similarly the graph of $y=\cos ^{-1} x$ is not a function. To make it a function we can restrict the range in the interval $0 \leq y \leq \pi$
- Likewise the graph of $y=\tan ^{-1} x$ is not a function. To make it a function we can restrict the range in the interval $\frac{-\pi}{2}<y<\frac{\pi}{2}$

Summary

The inverse Trig graphs are shown below:

Equation	Shape	Domain	Range
$\begin{aligned} & y=\sin ^{-1} x \\ & y=\sin ^{-1}(x) \text { or } \\ & y=\arcsin (x) \end{aligned}$$\boldsymbol{x}$ \boldsymbol{y} -1 $-\frac{\pi}{2}$ 0 0 1 $\frac{\pi}{2}$		$-1 \leq x \leq 1$	$-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
$\begin{aligned} & y=\cos ^{-1} x \\ & y=\cos ^{-1}(x) \text { or } \\ & y=\arccos (x) \end{aligned}$$\boldsymbol{x}$ \boldsymbol{y} -1 π 0 $\frac{\pi}{2}$ 1 0		$-1 \leq x \leq 1$	$0 \leq y \leq \pi$
$\begin{aligned} y & =\tan ^{-1} x \\ y & =\tan ^{-1}(x) \\ y & =\arctan (x) \end{aligned}$$\boldsymbol{x}$ \boldsymbol{y} und $-\frac{\pi}{2}$ -1 $-\frac{\pi}{4}$ $\mathbf{0}$ \mathbf{o} $\mathbf{1}$ $\frac{\pi}{4}$ und $\frac{\pi}{2}$		$x \in R$	$-\frac{\pi}{2}<y<\frac{\pi}{2}$

4.5.2 Inverse Trigonometric Identities

1. $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$
2. $\sin \left(\cos ^{-1} x\right)=\sqrt{1-x^{2}}$
3. $\cos \left(\sin ^{-1} x\right)=\sqrt{1-x^{2}}$
4. $\tan \left(\cos ^{-1} x\right)=\frac{\sqrt{1-x^{2}}}{x}$
5. $\tan \left(\sin ^{-1} x\right)=\frac{x}{\sqrt{1-x^{2}}}$

Example $1 \quad$ Prove that $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$

Answer

Let $\theta_{1}=\sin ^{-1} x \Rightarrow \sin \theta_{1}=x \quad$ Let $\theta_{2}=\cos ^{-1} x \Rightarrow \cos \theta_{2}=x$

$$
=\frac{x}{1}=\frac{o p p}{h y p} \quad=\frac{x}{1}=\frac{a d j}{h y p}
$$

Consider a right-angled triangle

From the triangle $\theta_{1}+\theta_{2}=\frac{\pi}{2} \quad \therefore \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$
Example 2 Prove that $\cos \left(\sin ^{-1} x\right)=\sqrt{1-x^{2}}$

Answer

Let $\theta=\sin ^{-1} x$
then $\sin \theta=x$

$$
\sin \theta=\frac{x}{1}=\frac{\text { opposite }}{\text { hypotenuse }}
$$

Consider a right-angled triangle, with one side of length 1, and another side of length x

$$
\begin{aligned}
\cos \left(\sin ^{-1} x\right) & =\cos \theta \\
& =\frac{\text { adjacent }}{\text { hypotenuse }} \\
& =\frac{\sqrt{1-x^{2}}}{1} \\
\cos \left(\sin ^{-1} x\right) & =\sqrt{1-x^{2}}
\end{aligned}
$$

4.5.3 Inverse for the reciprocal trig Functions

The inverse reciprocal functions are $y=\csc ^{-1} x, y=\sec ^{-1} x$ and $y=\cot ^{-1} x$ Let's consider

$$
\begin{aligned}
& y=\csc ^{-1} x \\
& \csc y=x \\
& x=\csc y \\
& x=\frac{1}{\sin y} \\
& x \sin y=1 \\
& \sin y=\frac{1}{x} \\
& y=\sin ^{-1}\left(\frac{1}{x}\right) \quad \therefore \csc ^{-1} x=\sin ^{-1}\left(\frac{1}{x}\right)
\end{aligned}
$$

$$
\text { Similarly, } \quad \sec ^{-1} x=\cos ^{-1}\left(\frac{1}{x}\right) \quad \cot ^{-1} x=\tan ^{-1}\left(\frac{1}{x}\right)
$$

Example 2
Evaluate $\csc ^{-1}(-2)$

Answer

$$
\begin{aligned}
\csc ^{-1}(-2) & =\sin ^{-1}\left(-\frac{1}{2}\right) \\
& =-30^{\circ}
\end{aligned}
$$

Exercise 4.4

1. Evaluate
a) $\sec ^{-1}(\sqrt{2})$
b) $\cot ^{-1}(-3.903)$
2. Prove that
a) $\sin \left(\cos ^{-1} 3 x\right)=\sqrt{1-9 x^{2}}$
b) $\tan \left(\sin ^{-1} 2 x\right)=\frac{2 x}{\sqrt{1-4 x^{2}}}$
c) $\cos \left(\sin ^{-1} 5 x\right)=\sqrt{1-25 x^{2}}$

Review Exercise 4

1. Prove that $\frac{2 \tan \theta}{1+\tan ^{2} \theta}=\sin 2 \theta$
2. Solve $\cos ^{2} x-\cos x-2=0$ for $0^{\circ} \leq x \leq 360^{\circ}$
3. Sketch the graph of $y=2 \sin \left(x+30^{\circ}\right)-1$ for $0^{\circ} \leq x \leq 360^{\circ}$
4. Find the exact value of $\cos 22.5^{\circ}$
5. A function is given by $f(x)=6 \sin x+8 \cos x$
a) Express the function $f(x)$ in the form $R \sin (x+\alpha)$ where α is an acute.
b) Give the coordinates of the maximum and minimum values of the function $f(x)=6 \sin x+8 \cos x$ for $0^{\circ} \leq x \leq 360^{\circ}$
c) Hence, sketch the graph of $f(x)=6 \sin x+8 \cos x$ for $0^{\circ} \leq x \leq 360^{\circ}$, showing all the intercepts.
d) Solve the equation $6 \sin x+8 \cos x=4$ for $0^{\circ} \leq x \leq 360^{\circ}$
6. Sketch the graph of the function $y=\sin ^{-1} x$
7. Prove that $\sin \left(2 \sin ^{-1} x\right)=2 x \sqrt{1-x^{2}}$

LIMITS, CONTINUITY AND DIFFERENTIABILITY

SUB - STRAND 5.1

Limits of a Function

The Indeterminate Forms

$$
0 / 0 \text { and } \infty / \infty
$$

L'Hôpital's Rule

Let f and g be functions that are differentiable on an open interval (a, b) containing c , Assume that $\mathrm{g}^{\prime}(\mathrm{x}) \neq 0$ for all x in (a, b), except possibly at c itself. If the limit of $\frac{f(x)}{g(x)}$ as x approaches c produces the indeterminate form 0/0, then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

5.1.1 Computing Limits

$>$ To find limits of rational algebraic expressions, directly substitute in the expression.

If upon substitution you get:

- a / b, then this is the limit.
- $0 / b$, then the limit is 0 .
- $a / 0$, then the limit does not exist.
- $0 / 0$, then the limit may exist.

To find this limit,
\& Use Tables: take values closest to a and substitute it in place of the variables in the algebraic expression.

* Algebraic Simplification such as factorizing by common factors, factorize trinomials $\left(a x^{2}+b x+c\right)$ or difference of squares $\left(a^{2}-b^{2}=(a-b)(a+b)\right)$.
+ L' Hôpital's rule:
A useful technique of computing limits is using L' Hôpital's rule which involves the following steps:
- Step 1: Check that limit of $f(x) / g(x)$ is an indeterminate form of the type $0 / 0$.
- Step 2: Differentiate f and g separately.
- Step 3: Find the limit of $f^{\prime}(x) / g^{\prime}(x)$.

If this limit is finite, $+\infty$, or $-\infty$, then it is equal to the limit of $f(x) / g(x)$.

Example 1 Find $\lim _{x \rightarrow 0} \sin x$

Answer

Directly substitute 0 ,

$$
\begin{aligned}
& \lim _{x} \rightarrow 0 \\
& \sin x \\
&=\sin 0 \\
&=0
\end{aligned}
$$

(3) Example 2 Find $\lim _{x \rightarrow-3} \frac{x+3}{x-2}$
\& Answer
Directly substitute -3 ,

$$
\begin{aligned}
\lim _{x \rightarrow-3} & \frac{x+3}{x-2} \\
& =\frac{(-3)+3}{(-3)-2}=\frac{0}{-5} \\
& =0
\end{aligned}
$$

(3) Example 3 Evaluate $\lim _{x \rightarrow 2} \frac{x^{2}+4 x+3}{x-2}$

Answer
Directly substitute 2 ,

$$
\begin{aligned}
\lim _{x \rightarrow} & \frac{x^{2}+4 x+3}{x-2} \\
& =\frac{2^{2}+4(2)+3}{2-2} \\
& =\frac{4+8+3}{0} \\
& =\frac{15}{0}
\end{aligned}
$$

In this case, limit does not exist.
(3) Example 4 Evaluate $\lim _{x \rightarrow 1} \frac{1-x^{2}}{1-x}$

Answer

$$
\text { Directly substitute } 1, \lim _{x \rightarrow 1} \frac{1-x^{2}}{1-x}=\frac{0}{0}
$$

In this case, the limit may exist.
Method 1 L' Hôpital's rule

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{1-x^{2}}{1-x} & =\lim _{x \rightarrow 1} \frac{-2 x}{-1} \\
& =\frac{-2 \times 1}{-1} \\
& =2
\end{aligned}
$$

Method 2: Using Tables

Let's see what happens when we take values close to 1 and substitute it in place of x in the expression $\frac{1-x^{2}}{1-x}$

x	$\frac{1-x^{2}}{1-x}$	The values get closer and closer to 2 as x approaches 1 .
0.97	1.97	
0.98	1.98	
0.99	1.99	
1	undefined	
1.01	2.01	
1.02	2.02	
1.03	2.03	

It turns out that as x approaches $1, f(x)$ approaches 2 .
Thus, $\quad \lim _{x \rightarrow 1} \frac{1-x^{2}}{1-x}=2$

Method 3: Algebraic Manipulation

Factorize, simplify then substitute $x=1$,
$\lim _{x \rightarrow 1} \frac{1-x^{2}}{1-x} \quad$ using difference of 2 squares to factorise the numerator $\lim _{x \rightarrow 1} \frac{(1-x)(1+x)}{1-x}$
$\lim _{x \rightarrow 1} 1+x$

$$
=1+1
$$

$$
=2
$$

(3) Example 5 Evaluate $\lim _{x \rightarrow 4} \frac{2-\sqrt{x}}{4-x}$

Answer

Directly substitute the value $4, \quad \lim _{x \rightarrow 4} \frac{2-\sqrt{x}}{4-x}=\frac{0}{0}$

Using L' Hôpital's rule: Differentiate

$$
\begin{array}{ll}
f(x)=2-x^{\frac{1}{2}}, & f^{\prime}(x)=-\frac{1}{2} x^{-\frac{1}{2}} \\
g(x)=4-x & , \quad g^{\prime}(x)=-1
\end{array}
$$

Find limit of $f^{\prime}(x) / g^{\prime}(x)$:

$$
\begin{aligned}
& \lim _{x \rightarrow 4} \frac{-\frac{1}{2} x^{-\frac{1}{2}}}{-1} \\
& =\lim _{x \rightarrow 4} \frac{1}{2} x^{-\frac{1}{2}} \\
& =\lim _{x \rightarrow 4} \frac{1}{2 \sqrt{x}} \\
& =\frac{1}{2 \sqrt{4}} \\
& =\frac{1}{4}
\end{aligned}
$$

Exercise 5.1.1

1. Evaluate the following limits:
a. $\lim _{x \rightarrow 3} \frac{2 x^{2}-5 x-3}{x-3}$
b. $\lim _{x \rightarrow 10} x^{2}-10$
c. $\lim _{x \rightarrow 0} \cos x$
d. $\lim _{x \rightarrow 2} \sqrt{x}+1$
e. $\lim _{x \rightarrow 0} \frac{e^{x}}{x}$
f. $\quad \lim _{x \rightarrow 4} \frac{x^{2}-2 x-8}{x-4}$
g. $\lim _{x \rightarrow 4} \frac{4-\sqrt{x}}{x}$
h. $\lim _{x \rightarrow 3} \frac{3 x-5}{x-3}$
i. $\lim _{x \rightarrow \pi} \tan x$
j. $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{e^{x}-1}$
k. $\lim _{x \rightarrow 0} \frac{(1+x)^{2}-1}{x}$
I. $\lim _{x \rightarrow-1} \frac{3 x^{2}-3}{x+1}$
2. Find b if $\lim _{x \rightarrow 1} \frac{2 x-b x^{2}}{x+3 x^{3}}=2$

Real-life limits are used any time you have some type of real-world application approach a steady-state solution. As an example, we could have a chemical reaction in a beaker start with two chemicals that form a new compound over time. The amount of the new compound is the limit of a function as time approaches infinity. \sim Ifryerda

5.1.2 Limits of Trigonometric Functions

For the Indeterminate Form in trig functions, you probably have to use some Trig Identities to compute limits:

- $\cos ^{2} x+\sin ^{2} x=1$
- $\sin 2 x=2 \sin x \cdot \cos x$
- $\tan x=\frac{\sin x}{\cos x}$
- L' Hôpital's rule where applicable.

Some derivatives are given below:
 1
(3) Example 1 Evaluate $\lim _{x \rightarrow \pi} \frac{\sin ^{2} x+\cos ^{2} x}{x}$
\& Answer
Use identity $\cos ^{2} x+\sin ^{2} x=1$
$\lim _{x \rightarrow \pi} \frac{\sin ^{2} x+\cos ^{2} x}{x}$
$\lim _{x \rightarrow \pi} \frac{1}{x}$
Directly substitute π,
$\lim _{x \rightarrow \pi} \frac{1}{x}=\frac{1}{\pi}$
(3) Example 2 Evaluate $\lim _{\theta \rightarrow \pi} \frac{\sin \theta}{\sin 2 \theta}$

Answer
Directly substitute π,

$$
\lim _{\theta \rightarrow \pi} \frac{\sin \theta}{\sin 2 \theta}=\frac{0}{0}
$$

The limit may exist.

Method 1: Using Trig Identities

Use identity , cancel then substitute:

$$
\begin{aligned}
& \lim _{\theta \rightarrow \pi} \frac{\sin \theta}{\sin 2 \theta} \\
& \lim _{\theta \rightarrow \pi} \frac{\frac{\sin \theta}{2 \sin \theta \cos \theta}}{\lim _{\theta \rightarrow \pi}} \frac{1}{2 \cos \theta} \\
& \therefore \lim _{\theta \rightarrow \pi} \frac{1}{2 \cos \pi} \\
& \quad=-\frac{1}{2}
\end{aligned}
$$

Method 2: L' Hôpital's rule

Differentiate:

$$
\begin{aligned}
& f(x)=\sin \theta \Rightarrow f^{\prime}(x)=\cos \theta \\
& g(x)=\sin 2 \theta \Rightarrow g^{\prime}(x)=2 \cos 2 \theta
\end{aligned}
$$

$$
\text { Find limit } \begin{aligned}
& \lim _{\theta \rightarrow \pi} \frac{f^{\prime}(x)}{g^{\prime}(x)} \\
& \qquad \begin{aligned}
& =\frac{\cos \pi}{2 \cos 2 \pi} \\
& =-\frac{1}{2}
\end{aligned}
\end{aligned}
$$

(3) Example 3 Show that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
2. Answers Directly substitute $x=0$ we get $\frac{0}{0}$ so we can use L' Hôpital's rule

$$
\begin{aligned}
& f(x)=\sin x \Rightarrow f^{\prime}(x)=\cos x \\
& g(x)=x \Rightarrow g^{\prime}(x)=1 \\
& \lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)} \\
& \lim _{x \rightarrow 0} \frac{\cos x}{1} \\
&=\frac{\cos 0}{1} \\
&= 1
\end{aligned}
$$

Exercise 5.1.2

1. Find the following limits using identities:
a) $\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\cos \theta}{\sin 2 \theta}$
b) $\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{x^{2}}$
c) $\lim _{x \rightarrow \pi} \frac{\sin 2 x}{\tan x}$
2. Evaluate the following limits using L' Hôpital's rule:
a) $\lim _{x \rightarrow 0} \frac{3 \sin 2 x}{5 x}$
b) $\lim _{x \rightarrow 0} \frac{\cos x-1}{2 x}$

5.1.3 Limits at Infinity

Limits as $x \rightarrow \infty$:

- If r is a positive rational number and c is any real number, then

$$
\lim _{x \rightarrow \infty} \frac{c}{x^{r}}=0 \quad \text { Division by a very large number gives a very small result. }
$$

- To use the above property, divide the numerator and denominator by the highest power of x in the denominator.

Short Cut: cover up rule

- If $f(x)=a x^{n}+b x^{n-1}+\cdots+c \quad$ is a polynomial of degree n, where coefficient $a \neq 0$, and $g(x)=d x^{n}+e x^{n-1}+\cdots+f \quad$ is also a polynomial of degree n, where coefficient $d \neq 0$, then $\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}$ $\lim _{x \rightarrow \pm \infty} \frac{a x^{n}+b x^{n-1}+\cdots}{d x^{n}+e x^{n-1}+\cdots}=\frac{a}{b}$

In other words, use the cover up rule
(3) Example 1 Find $\lim _{x \rightarrow \infty} \frac{100}{x^{2}}$

Answer

$$
\lim _{x \rightarrow \infty} \frac{100}{x^{2}}=0 \quad
$$

$$
\begin{aligned}
& \text { Using: } \\
& \lim _{x \rightarrow \infty} \frac{c}{x^{r}}=0
\end{aligned}
$$

115

(3) Example 2 Find $\lim _{x \rightarrow \infty} \frac{8 x+3}{x^{2}-9}$

Answer

$\begin{aligned} \lim _{x \rightarrow \infty} \frac{8 x+3}{x^{2}-9} & =\lim _{x \rightarrow \infty} \frac{\frac{8 x}{x^{2}}+\frac{3}{x^{2}}}{\frac{x^{2}}{x^{2}}-\frac{9}{x^{2}}} \rightarrow \text { Dividing by the highest power of } x \text { in denominator } \\ & =\lim _{x \rightarrow \infty} \frac{\frac{8}{x}+\frac{3}{x^{2}}}{1-\frac{9}{x^{2}}}\end{aligned}$

$$
\begin{array}{ll}
=\frac{\frac{8}{\infty}+\frac{3}{\infty}}{1-\frac{9}{\infty}} & \begin{array}{l}
\text { Division by a very large number gives a very } \\
\text { small result } \approx 0 .
\end{array} \\
=\frac{0+0}{1-0} & \lim _{x \rightarrow \infty} \frac{1}{x}=0 \\
=0 &
\end{array}
$$

(3) Example 3 Find $\lim _{x \rightarrow+\infty}\left(4-\frac{3}{x+1}\right)$

$$
\begin{aligned}
& \text { Answer } \\
& \lim _{x \rightarrow+\infty} 4-\lim _{x \rightarrow+\infty} \frac{3}{x+1} \\
& \text { Dividing by the highest power of } x \\
& \lim _{x \rightarrow \pm \infty} c=c+=4-\lim _{x \rightarrow+\infty} \frac{3 / x}{x / x^{1} / x} \\
& =4-\lim _{x \rightarrow+\infty} \frac{3 / x}{1+1 / x} \\
& =4-\left(\frac{0}{1+0}\right) \\
& =4
\end{aligned}
$$

Exercise 5.1.3

Evaluate the following limits:
a) $\lim _{x \rightarrow \infty} \frac{5 x^{3}}{x\left(1-x^{2}\right)}$
b) $\lim _{x \rightarrow \infty} \frac{x^{5}-2 x^{4}}{x^{7}}$
c) $\lim _{x \rightarrow \infty} \frac{x^{2}+1}{x^{3}+4}$
d) $\lim _{x \rightarrow \infty} \frac{x(4 x-3)(7-5 x)}{\left(6 x^{2}-1\right)(8 x-3)}$
e) $\lim _{x \rightarrow \infty} \frac{\left(x^{3}-2 x\right)(x+3)}{\left(4 x^{2}-1\right)\left(7 x-2 x^{2}\right)}$
f) $\lim _{x \rightarrow \infty} \frac{5 x^{2}+3 x+1}{4 x^{2}}$

What is a Piecewise Function?

- A function that combines pieces of different equations.
- Each piece is for a different domain (set of x values).
- Example:
$f(x)= \begin{cases}-x+2, & \text { if } x<0 \\ 3 x-3, & \text { if } x>0\end{cases}$

5.2.1 Piecewise Functions

Piecewise Function is a function which is defined by multiple sub-functions, each sub-function applying to a certain interval.
Consider the function $f(x)$ defined below.

$$
f(x)= \begin{cases}x^{2} & , x<2 \\ 6 & , x=2 \\ 10-x, & 2<x \leq 6\end{cases}
$$

The graph representing the function is

Unshaded circle means that the point is not included Shaded circle means the point is included.

Example 1 Sketch the graph of $g(x)$ defined below

$$
g(x)= \begin{cases}x+5, & x \leq-2 \\ 1, & -2<x<-1 \\ x^{2}, & -1 \leq x<1 \\ 3-x, & x \geq 1\end{cases}
$$

Answer
Let's look at different x intervals:

Example 2 The graph of $f(x)$ is given below. Write the equation.

\& Answer

$$
f(x)= \begin{cases}4, & x<-2 \\ x^{2} & , \quad-2<x \leq 2\end{cases}
$$

Exercise 5.2.1

a) Sketch the following Functions:

1. $g(x)= \begin{cases}x+1, & x>2 \\ x-1, & x \leq 2\end{cases}$
2.

$$
f(x)= \begin{cases}2, & x \leq-2 \\ x^{2} & , \quad-2<x \leq 2 \\ 1, & x \geq 2\end{cases}
$$

3. $f(x)= \begin{cases}-2(x+4) & , x \leq-3 \\ -x^{2} & ,-3<x \leq 2 \\ -4 & , x \geq 2\end{cases}$
b) Give the equation of the function shown below

 Graphs

Differentiability Implies Continuity

Be able to find values that make a piecewise function differentiable at a given point (must be continuous AND differentiable)

Remember to use LIMITS to show differentiability and continuity!

5.3.1 Limits, continuity and differentiability of Piecewisedefined Functions

If we are interested in what is happening to the function $f(x)$ as x gets close to some value c from the right, we write $\lim _{x \rightarrow c^{+}} f(x)$. This is called the right handed limit.

Similarly, if we are interested in what is happening to the function $f(x)$ as x gets close to some value c from the left, we write $\lim _{x \rightarrow c^{-}} f(x)$. This is called the left handed limit.

- Discontinuity- A function is discontinuous if it has a jump or has a hole in the graph or has asymptotes. Otherwise, the function is continuous.
- A function is Non-differentiable if it is discontinuous or has a sharp corner or has end points.

Continuity:
Continuous graph since there is no jump or hole in the graph.

Not differentiable at
$x=1$ (sharp corner)
Limits:
Evaluate $\quad \lim _{x \rightarrow 1} f(x)$:
Look for the value that y gets close to as x approaches 1 from left and right side
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=2$
$\therefore \lim _{x \rightarrow 1} f(x)=2$

Continuity:
Discontinuous at $x=2$, since there is a hole in the graph.

Not differentiable at

 $x=2$ (discontinuous)Limits:
Evaluate $\quad \lim _{x \rightarrow 2} f(x)$:
Look for the value that y gets close to as x approaches 2
from left and right side
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=4$
$\therefore \lim _{x \rightarrow 2} f(x)=4$

Continuity:

Discontinuous at $x=4$, since there is a jump.

Not differentiable at
$x=4$ (discontinuous)
Limits:
Evaluate $\quad \lim _{x \rightarrow 4} f(x)$:
Look for the value that y gets close to as x approaches 4 from left and right side
$\lim _{x \rightarrow 4^{-}} f(x)=3 \neq$
$\lim _{x \rightarrow 4^{+}} f(x)=5$
$\therefore \lim _{x \rightarrow 4} f(x)$ does not exist.
(3) Example 1 Given below is the graph of $y=f(x)$

Find:
a) $\lim _{x \rightarrow 0} f(x)$
b) $\lim _{x \rightarrow 2} f(x)$

Answers

Look for the value that y gets
close to as x approaches 0 from left and right
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=1$
$\therefore \lim _{x \rightarrow 0} f(x)=1$

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=+\infty
$$

y becomes very large as x approaches 2
$\therefore \lim _{x \rightarrow 0} f(x)=+\infty$
(3) Example 2 The graph of $g(x)$ is given below. Use the graph to answer the questions that follow.

a) Find the following limits:
i. $\lim _{x \rightarrow-2^{-}} g(x)$
ii. $\lim _{x \rightarrow-2^{+}} g(x)$
iii. $\quad \lim _{x \rightarrow-2} g(x)$
b) For what values of x is
i. $\quad g(x)$ discontinuous?
ii. $\quad g(x)$ not differentiable?
iii. $\quad g(x)=1$?
iv. $\quad g(x)=3$?

Answers

a) i. $\lim _{x \rightarrow-2^{-}} g(x)=4$
ii. $\lim _{x \rightarrow-2^{+}} g(x)=3$
iii. Limit does not exist
b)
i. $\quad g(x)$ discontinuous: $\quad x \in\{-2,2\}$
ii. $\quad g(x)$ not differentiable: $\quad x \in\{-2,0,2\}$
iii. $\quad g(x)=1$ i.e $y=1$

Make a straight horizontal line and look at the places it cuts
$x \in\{-0.5,0.5,7.5\}$
iv. $\quad x=6$

Exercise 5.3.1

1. The graph of $g(x)$ is given below. Use the graph to answer the questions that

a) Find $\quad \lim _{x \rightarrow \infty} g(x)$
b) For what values of x is the function discontinuous?
2. The graph of $f(x)$ is given below.

For what value(s) of x is $f(x)$:
a) discontinuous
b) not differentiable
c) equal to zero
3. The graph of a function is shown below.

Use the graph to give the value(s) of x for which $f(x)$
a) is continuous but not differentiable.
b) does not have a limit.
c) is equal to 6 .

If you drop an ice cube in a glass of warm water and measure the temperature with time, the temperature eventually approaches the room temperature where the glass is stored. Measuring the temperature is a limit again as time approaches infinity. ~ Ifryerda

Review Exercise 5

1. Evaluate the following limits:
a) $\lim _{x \rightarrow 2} \frac{x^{2}-3}{x+2}$
b) $\lim _{x \rightarrow \infty} \frac{5 x(x-2)}{3 x^{2}-2 x+4}$
c) $\lim _{a \rightarrow 9} \frac{a-9}{\sqrt{a}-3}$
d) $\lim _{x \rightarrow \infty} \frac{4 x^{3}-x}{2 x^{3}-x}$
2. The graph of the function $f(x)$ is given below.

a) Use the graph to find the value (s) of x for which $f(x)$ is:
i. Discontinuous;
ii. Not differentiable;
iii. Equal to zero.
b) Evaluate $\lim _{x \rightarrow-4} f(x)$
c) Evaluate $\lim _{x \rightarrow 3^{-}} f(x)$
3. The graph of a piece-wise function, $g(x)$ is given below. Use the graph to answer the questions that follow.

a) For what values of x is $g(x)$ discontinuous?
b) For what values of x is $g(x)$ not differentiable?
c) For what values of x is $g(x)=1$?
d) Find $g(3)$

Sequence:

("term", "element" or "member" mean the same thing)

6.1.1 Sequences

(i) Sequence : is an ordered list of numbers.

$$
1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots \ldots \ldots
$$

(ii) Series : obtained by adding terms in a sequence.

$$
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+
$$

Partial Sum, S_{n}
The partial sum of a sequence is the sum of a finite number of consecutive terms beginning with the first term. The first four partial sums are computed below, where S_{n} represents the sum of the first n terms of the sequence.
$S_{1}=\mathrm{T}_{1}$
$S_{2}=\mathrm{T}_{1}+\mathrm{T}_{2}$
$S_{3}=\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}$
\vdots
Convergence and Divergence
Sequences which approach a definite value are said to converge. If a sequence converges we call the value it approaches the limit.
If a sequence has a limit, we say the sequence is convergent and that the sequence converges to the limit. Otherwise, the sequence is divergent.
(2) Example 1 A sequence is defined by $\mathrm{T}_{n}=2 n$.
a) Find the first four terms of this sequence.
b) Write as partial sum.

Answers

$$
\text { a) } \begin{array}{r}
\mathrm{T}_{n}=2 n \\
\mathrm{~T}_{1}=2(1)=2 \\
\mathrm{~T}_{2}=2(2)=4 \\
\mathrm{~T}_{3}=2(3)=6 \\
\mathrm{~T}_{4}=2(4)=8
\end{array}
$$

The terms of the sequence are $<2,4,6,8$, >.
b) $S_{1}=2$
$S_{2}=2+4=6$
$S_{3}=2+4+6=12$
$S_{4}=2+4+6+8=20$

The sequence of partial sum are $\langle 2,6,12,20, \ldots>$.
(2) Example 2 A sequence is defined as $a_{n}=\frac{1}{n}$.
a) List the first six terms.
b) What is the $\lim _{n \rightarrow \infty} \frac{1}{n}$?

Answers
a) The terms of the sequence $\frac{1}{n}=\{1,0.5,0.33,0.25,0.2,0.17 \ldots$.
b) $\lim _{n \rightarrow \infty} \frac{1}{n}=0$
(3) Example 3 Determine whether the sequence $a_{n}=\frac{7 n+3}{n-9}$ converge or diverge, and if it converges, give the value to which it converges to.

Answers
Let's find the limit:

Method 1:
Divide each term by variable with the highest power in the denominator

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{7 n+3}{n-9} & =\lim _{n \rightarrow \infty} \frac{\frac{7 n}{n}+\frac{3}{n}}{\frac{n}{n}-\frac{9}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{7+\frac{3}{n}}{1-\frac{9}{n}} \\
& =\frac{7+\frac{3}{\infty}}{1-\frac{9}{\infty}} \\
& =\frac{7+0}{1-0} \\
& =7
\end{aligned}
$$

Method 2:
L' Hôpital's Rule or Cover Up Rule to find the horizontal asymptote of the hyperbola

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{7 n+3}{n-9} \\
& =\lim _{n \rightarrow \infty} \frac{7}{1} \\
& =7
\end{aligned}
$$

This is clearly a converging sequence. It converges to 7 .
(3) Example 4 A sequence $<a_{n}>$ is defined by $a_{n}=2 n+1$
a) List the first six terms.
b) What is the limit of this sequence?
c) Determine whether the sequence converge or diverge.

Answers

a) The terms of the sequence $2 n+1=\{3,5,7,9,11,13 \ldots\}$
b)

$$
\lim _{n \rightarrow \infty} 2 n+1=2 \times \infty+1
$$

$$
=\infty
$$

c) The terms of the sequence increase without bounds (goes to infinity) so the sequence diverges.

Note: If the limit is infinity (positive or negative) the sequence diverges

8 Example 5 A sequence $<a_{n}>$ is defined by $a_{n}=\frac{n^{2}}{2 n+1}$
a) List the first three terms of the sequence.
b) List the first two terms of the sequence of partial sums.
c) Show that $a_{n}=\frac{n^{2}}{2 n+1}$ is divergent.

Answers

a)

$$
\begin{aligned}
a_{1} & =\frac{1^{2}}{2(1)+1} & a_{2} & =\frac{2^{2}}{2(2)+1}
\end{aligned} a_{2}=\frac{3^{2}}{2(3)+1}
$$

Hence the sequence is $\left\langle a_{n}\right\rangle=\left\langle\frac{1}{3}, \frac{4}{5}, \frac{9}{7}, \ldots \ldots \ldots\right.$.
b)

$$
\begin{array}{rlrl}
S_{1}=\mathrm{T}_{1} & S_{2} & =\mathrm{T}_{1}+\mathrm{T}_{2} \\
=\frac{1}{3} & & =\frac{1}{3}+\frac{4}{5} \\
& =\frac{17}{15}
\end{array}
$$

Hence the sequence of partial sum is $\left\langle S_{n}\right\rangle=\left\langle\frac{1}{3}, \frac{17}{15}, \ldots \ldots\right\rangle$
c) Find the limit: Apply L' Hôpital's Rule

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n^{2}}{2 n+1} & =\lim _{n \rightarrow \infty} \frac{2 n}{2} \\
= & \lim _{n \rightarrow \infty} n=\infty
\end{aligned}
$$

This is clearly a diverging sequence since the limit is infinity.

Exercise 6.1.1

1. A sequence $<a_{n}>$ is defined by $a_{n}=\frac{7 n+3}{n-9}$
a) Find the first four terms of the sequence.
b) Find the first three terms of the sequence of partial sums.
c) Find $\lim _{n \rightarrow \infty} \frac{7 n+3}{n-9}$
d) Explain why the sequence converges.
2. A sequence $<a_{n}>$ is defined by $a_{n}=\frac{n+2}{4 n+1}$
a) Find the first four terms of the sequence.
b) Determine whether a sequence converges or diverges, and if it converges, give the value to which it converges to.
3. A sequence $<a_{n}>$ is defined by $a_{n}=\frac{n+2}{n^{2}}$
a) Find the first two terms of the sequence of partial sums.
b) Determine whether a sequence converges or diverges, and if it converges, give the value to which it converges to.
4. A sequence $<a_{n}>$ is defined by $a_{n}=\frac{12 n+1}{3 n+2}$
a) How many terms of the sequence are less than 3.99 ?
b) State the limit of the sequence.
c) Does it converge or diverge. Explain
5. A sequence $<a_{n}>$ is defined by $a_{n}=3 n+4$ Does it converge or diverge. Explain

6.2.1 Mathematical Induction

Mathematical Induction is a method of proving statements that involves a variable which takes on the values of the Natural numbers, N.
Also note that $\sum_{i=1}^{n} t_{i}=t_{1}+t_{2}+t_{3}+\ldots+t_{n}$

Basically there are 4 steps involved in proving a statement:

Step 1: Prove that it is true for $n=1$
Step 2: Assume that it is true for $n=k$
Step 3: Prove that it is true for $n=k+1$
Step 4: Conclusion

Example 1

$$
\text { Prove that } 1+2+3+\ldots+n=\frac{1}{2} n(n+1) \text { for } \mathrm{n} \geq 1 \text {. }
$$

\& Answer

Step 1: Prove that the statement is true for $n=1$.

$$
\begin{array}{cl}
\text { LHS }= & n \quad \begin{aligned}
R H S & =1 / 2 n(n+1) \\
=1 & \\
& =1 / 2 \times 1 \times(1+1) \\
& =1 / 2 \times 2 \\
& \\
& =1
\end{aligned} \\
\therefore \text { LHS }=\text { RHS } &
\end{array}
$$

Step 2: Assume that the statement is true for $n=k$.

$$
1+2+3+\ldots+k=\frac{1}{2} k(k+1)
$$

Step 3: Prove that it is true for $n=k+1$

$$
\begin{aligned}
& \overbrace{1+2+3+\ldots+k+(k+1)}^{\text {LHS }} \overbrace{\frac{1}{2}(k+1)(k+1+1)}^{\text {RHS }} \\
& 1+2+3+\ldots+k+(k+1)=1 / 2(k+1)(k+2)
\end{aligned}
$$

$$
\begin{aligned}
\text { LHS } & =\underbrace{1+2+3+\ldots+k}_{\text {From step } 2}+(k+1) \\
& =\frac{1}{2} k(k+1)+(k+1) \\
& =(\mathrm{k}+1)[1 / 2 \mathrm{k}+1] \quad \text { factorise }(\mathrm{k}+1) \\
& =1 / 2(\mathrm{k}+1)(\mathrm{k}+2) \\
& =\text { RHS }
\end{aligned}
$$

Step 4: Conclusion

Thus by mathematical induction the formula is valid for all $n \in N$.
(8) Example 2 Prove that $\sum_{r=1}^{n} 5 r-3=\frac{1}{2} n(5 n-1)$.

Answer

$$
2+7+\ldots+5 n-3=\frac{1}{2} n(5 n-1)
$$

Step 1: Prove that the statement is true for $n=1$.

$$
\begin{aligned}
\text { LHS }= & (5 n-3) & \text { RHS } & =1 / 2 n(5 n-1) \\
& =5 \times 1-3 & & =1 / 2 \times 1(5 \times 1-1) \\
& =5-3 & & =1 / 2(5-1) \\
& =2 & & =2
\end{aligned}
$$

Step 2: Assume that the statement is true for $n=k$.
$2+7+\ldots+5 k-3=\frac{1}{2} k(5 k-1)$

Step 3: Prove that it is true for $n=k+1$

Step 4: Conclusion

Thus by mathematical induction the formula is valid for all $n \in N$.

Exercise 6.2

Prove by mathematical induction that:

1. $3+7+11 \ldots+(4 n-1)=n(2 n+1) \quad$ is true for $n \in N$.
2. $1^{2}+2^{2}+3^{2}+\ldots .+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ is true for $n \in N$.
3. $1 \cdot 2+2 \cdot 3+\ldots .+n(n+1)=\frac{n(n+1)(n+2)}{3} \quad$ is true for $n \in N$.
4. $1+3+5 \ldots .+(2 n-1)=n^{2} \quad$ is true for $n \in N$.
5. $\sum_{r=1}^{n} 2^{r+1}=2^{2}\left(2^{n}-1\right)$ is true for $n \in N$.
6. $\frac{1}{2} \sum_{r=1}^{n} 2^{r}=2^{n}-1 \quad$ is true for $n \in N$.
7. $\sum_{r=1}^{n} 3 r^{2}+r=n(n+1)^{2}$ is true for $n \in N$.

A truly real-life example of mathematical induction is the sinking of the Titanic: The crew of the Titanic realized that the ship was doomed when they realized that the bulkhead that was being flooded would be completely flooded, and that when a given bulkhead was completely flooded, the next bulkhead would undergo the same fate, thus sinking the whole ship. ~ S. Shenoy (https://www.quora.com/What-is-the-use-of-Mathematical-Induction-in-reallife)

6.3.1 Binomial Theorem

$>$ Factorial !
The factorial of a number (symbol $n!$) is defined as:

$$
n!=n \times(n-1) \times(n-2) \times(n-3) \ldots .3 \times 2 \times 1, n \in N
$$

Example $\quad 5!=5 \times 4 \times 3 \times 2 \times 1=120$
This can be directly found using the calculator which has the key ! Press 5 != \qquad
$>$ Combinations ${ }^{n} c_{r}$
A combination is a selection of a certain number of elements from a set where the order of elements is not taken into account. The number of possible combinations of " r " elements from " n " things is denoted by:

$$
{ }^{n} c_{r}=\binom{n}{r}=\frac{n!}{(n-r)!r!}
$$

$$
\text { (3) Example }{ }^{5} C_{2}=\frac{5!}{(5-2)!2!}=10
$$

This can also be found using the ${ }^{n} c_{r}$ key on the calculator.
Press $5{ }^{n} c_{r} 2=$ \qquad
> The Binomial Theorem

The binomial theorem provides a useful method for raising any binomial to a nonnegative integral power:

$$
(x+a)^{n}=\binom{n}{0} x^{n-0} a^{0}+\binom{n}{1} x^{n-1} a^{1}+\binom{n}{2} x^{n-2} a^{2}+\ldots . .+\binom{n}{n} x^{n-n} a^{n}
$$

Note:

- The power of x decreases from n to 0 while the power of a increases from 0 to n.
- The number of terms in the expansion is one greater than the power
- The sum of the powers of x and a (first and second term) always equals the power of the binomial n.
- The $(r+1)^{\text {th }}$ term which is the general term is given by $\mathrm{T}_{r+1}=\binom{n}{r} x^{n-r_{a} r}$ and $\binom{n}{r}$ is the binomial coefficient.
(3) Example 1 Evaluate the following using calculator or otherwise:
a) $\frac{7!}{4!}$
b) ${ }^{10} C_{6}$

Answers
a) $\frac{7!}{4!}=\frac{7 \cdot 6 \cdot 5 \cdot 4!}{4!}=210$
b) ${ }^{10} C_{6}=\frac{10!}{(10-6)!6!}=210$

(8) Example 2 Expand $(x+a)^{3}$ using the binomial theorem.

\& Answer

$$
\begin{aligned}
(x+a)^{3} & =\binom{3}{0} x^{3-0} a^{0}+\binom{3}{1} x^{3-1} a^{1}+\binom{3}{2} x^{3-2} a^{2}+\binom{3}{3} x^{3-3} a^{3} \\
& =1 \times x^{3} \times 1+3 \times x^{2} \times a+3 \times x^{1} \times a^{2}+1 \times 1 \times a^{3} \\
& =x^{3}+3 x^{2} a+3 x a^{2}+a^{3}
\end{aligned}
$$

(3) Example 3 Expand $\left(2 x-\frac{1}{x^{2}}\right)^{3}$ using binomial theorem

Answer

$$
\begin{aligned}
\left(2 x-\frac{1}{x^{2}}\right)^{3} & =\binom{3}{0}(2 x)^{3}\left(-\frac{1}{x^{2}}\right)^{0}+\binom{3}{1}(2 x)^{2}\left(-\frac{1}{x^{2}}\right)^{1}+\binom{3}{2}(2 x)^{1}\left(-\frac{1}{x^{2}}\right)^{2}+\binom{3}{3}(2 x)^{0}\left(-\frac{1}{x^{2}}\right)^{3} \\
& =1.8 x^{3} \cdot 1 \quad+3 \cdot\left(4 x^{2}\right)\left(-\frac{1}{x^{2}}\right)+3 \cdot(2 x) \cdot\left(\frac{1}{x^{4}}\right)+\left(-\frac{1}{x^{6}}\right) \\
& =8 x^{3}-12+\frac{6}{x^{3}}-\frac{1}{x^{6}}
\end{aligned}
$$

(8) Example 4 A term in an expansion of $(a+b)^{n}$ is $\binom{p}{k}\left(x^{2}\right)^{3}\left(-\frac{2}{x}\right)^{5}$.
Find a, b, n, p and k
\& Answer
The general term in the expansion of $(a+b)^{n}$ is $\binom{n}{k} a^{n-k} b^{k}$.
Now, comparing with the term $\quad\binom{p}{k}\left(x^{2}\right)^{3}\left(-\frac{2}{x}\right)^{5}$
we have $a=x^{2}, \quad b=-\frac{2}{x}, k=5$ and

$$
\begin{aligned}
n-k & =3 \\
\Rightarrow n=p & =8
\end{aligned}
$$

Exercise 6.3.1

1. Use the binomial theorem to expand and simplify $(x+y)^{4}$
2. Expand and simplify $\left(2 x-\frac{1}{2}\right)^{4}$
3. Use the binomial theorem to find the first three terms of $\left(\frac{3 x^{3}}{4}-\frac{2}{x^{2}}\right)^{5}$
4. Use the binomial theorem to expand and simplify $\left(2 x-\frac{1}{x^{2}}\right)^{3}$
5. A term in an expansion of $(a+b)^{c}$ is $\binom{n}{k}\left(3 x^{2}\right)^{4}(-2 y)^{3}$.
a) Give the values of a, b, c, n and k.
b) Write out the given term in simplified form.

Binomial theorem is used in forecast services. The disaster forecast also depends upon the use of binomial theorems. Moreover, it allows engineers, to calculate the magnitudes of the projects and thus delivering accurate estimates of not only the costs but also time required to construct them. For contractors, it is a very important tool to help ensuring the costing projects is competent enough to deliver profits. \sim Y. Bhalgat (https://www.quora.com/What-are-some-real-world-examples-of-the-use-of-the-binomial-theorem)

6.3.2 Finding particular terms, coefficients and the independent term

To find a particular term in $(x+a)^{n}$, use the general formula and substitute the values of power $(n), r, a$ and b.

$$
T_{r+1}=\binom{n}{r} x^{n-r} a^{r}
$$

To Find the coefficient of variables with desired power or independent term

- Use the general formula mentioned above and simplify
- Equate power of the variable, with the desired power. In case of constant / independent term, equate power of variable to zero.
- Solve for r
- Go back and substitute in the original formula the value of r to find the answer

Finding a particular term

(3) Example 1 What is the third term of $(a-3)^{10}$?

Answer

The general term in the expansion of $(x+a)^{n}$ is given by $\quad \mathrm{T}_{r+1}=\binom{n}{r} x^{n-r_{a} r}$
For the third term $r=2$,

$$
\begin{aligned}
\mathrm{T}_{2+1} & =\binom{10}{2} a^{10-2}(-3)^{2} \\
\mathrm{~T}_{3} & =45 \times a^{8} \times 9 \\
& =405 a^{8}
\end{aligned}
$$

Finding the coefficient

(8) Example 2 Use the binomial theorem to find coefficient of x^{4} in the expansion of $(x+1)^{10}$.

Answer

Use the general formula mentioned above and simplify

$$
T_{r+1}=\binom{10}{r} x^{10-r}(1)^{r}
$$

Equate power of the variable x, with the desired power.

$$
\begin{gathered}
x^{10-r}=x^{4} \\
10-r=4
\end{gathered}
$$

Solve for r, the term

$$
\begin{gathered}
10-r+r=4+r \\
r=10-4 \\
r=6
\end{gathered}
$$

Go back and substitute into the original formula the value of r
The required term is $T_{6+1}=\binom{10}{6} x^{10-6}(1)^{6}$

$$
\begin{aligned}
& =\binom{10}{6}(x)^{4}(1)^{6} \\
& =(210) x^{4}(1)
\end{aligned}
$$

\therefore Coefficient is 210

Finding Constant Term (term independent of x)

Example 3 Finding the term independent of x in the expansion of

$$
\left(3 x^{2}-\frac{1}{x}\right)^{12}
$$

Answer

Use the general formula mentioned above and simplify

$$
\begin{aligned}
T_{r+1} & =\binom{12}{r}\left(3 x^{2}\right)^{12-r} \times\left(-\frac{1}{x}\right)^{r} \\
& =\binom{12}{r} \cdot 3^{12-r} \cdot x^{24-2 r} \cdot \frac{(-1)^{r}}{x^{r}}
\end{aligned}
$$

$$
\begin{aligned}
T_{r+1} & =\binom{12}{r} \cdot 3^{12-r} \cdot x^{24-2 r} \cdot x^{-r} \cdot(-1)^{r} \\
& =\binom{12}{r} \cdot 3^{12-r} \cdot x^{24-2 r-r} \cdot(-1)^{r} \\
& =\binom{12}{r} \cdot 3^{12-r} \cdot x^{24-3 r} \cdot(-1)^{r}
\end{aligned}
$$

Equate power of the variable x to zero.

$$
\begin{aligned}
& x^{24-3 r}=x^{0} \\
& 24-3 r=0
\end{aligned}
$$

Solve for r, the term

$$
\begin{aligned}
& 24-3 r=0 \\
& 24=3 r \\
& \frac{3 r}{3}=\frac{24}{3} \\
& r=8
\end{aligned}
$$

Go back and substitute in the original formula the value of r

$$
\begin{aligned}
T_{8+1} & =\binom{12}{8} \cdot 3^{12-8} \cdot x^{24-3 \times 8} \cdot(-1)^{8} \\
& =495 \cdot 81 \\
& =40095
\end{aligned}
$$

Exercise 6.3.2

1. Find the constant term in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{6}$
2. Use the binomial theorem to find the coefficient of x^{-2} in the expansion

$$
\text { of }\left(x^{2}+\frac{1}{x}\right)^{8}
$$

3. Find the 15 th term of $\left(3 x^{2}-\frac{1}{x}\right)^{15}$
4. Find the coefficient of x^{10} in the expansion of $\left(2 x-3 x^{2}\right)^{7}$.

Partial Fractions

Partial fraction decomposition table

Type	Factor example	Decomposition
Linear factor	$(x-4)$	$\frac{A}{x-4}$
Repeated linear factor	$(x-4)^{2}$	$\frac{A}{(x-4)}+\frac{B}{(x-4)^{2}}$
Quadratic irreducible factor	$\left(x^{2}+4\right)$	$\frac{A x+B}{\left(x^{2}+4\right)}$

6.4.1 Denominator with distinct linear factors

If we add $\frac{1}{(x+4)}+\frac{2}{(x-3)}$, we get $\frac{3 x+5}{(x+4)(x-3)}$
The reverse process i.e. $\frac{3 x+5}{(x+4)(x-3)}$ splitting as $\frac{1}{(x+4)}+\frac{2}{(x-3)}$ is known as decomposition into partial fractions.

If the denominator of the terms in the partial fraction is linear, we make the numerator a constant.

Follow the following steps while decomposing into partial fraction with distinct linear factors:

1. Factorize the denominator so that you get the distinct linear factors
2. Separate the factors in denominator. Let their constant to be A, B, C, etc
3. Make denominators same.
4. Equate the numerators.
5. Solve for the variables.

Example 1 Express $\frac{3 x+5}{x^{2}+x-12}$ as a sum of partial fractions.

Answer

$$
\frac{3 x+5}{x^{2}+x-12}=\frac{3 x+5}{(x+4)(x-3)} \quad \text { Factorize the denominator }
$$

$\frac{3 x+5}{(x+4)(x-3)}=\frac{A}{(x+4)}+\frac{B}{(x-3)}$	Separate the factors in denominator. Let their constant to be A and B
$\frac{3 x+5}{(x+4)(x-3)}=\frac{A(x-3)+B(x+4}{(x-3)(x+4)}$	Make denominators same

$$
3 x+5=A(x-3)+B(x+4) \quad \begin{aligned}
& \text { Since the denominator on both sides is } \\
& \text { same we can eauate the numerators }
\end{aligned}
$$ same, we can equate the numerators

Let $x=3$ as it will eliminate A;
$3 x+5=A(x-3)+B(x+4)$
$3(3)+5=A(3-3)+B(3+4)$
$14=7 B$
$B=2$

Let $x=-4$ as this will eliminate B; $3 x+5=A(x-3)+B(x+4)$ $3(-4)+5=A(-4-3)+B(-4+4)$ $-7=-7 \mathrm{~A}$ $A=1$

$$
\therefore \frac{3 x+5}{x^{2}+x-12}=\frac{1}{(x+4)}+\frac{2}{(x-3)}
$$

Method 2: Equating Coefficients

$3 x+5=A(x-3)+B(x+4)$
$3 x+5=A x-3 A+B x+4 B$
Consider coefficients of $x: 3=A+B$.
Consider constants : $\quad 5=-3 A+4 B$

Solve simultaneously:

$$
\begin{array}{ll}
3=A+B & \rightarrow A=3-B
\end{array} \quad\left[\text { for first equation, Make } A \text { the subject } \begin{array}{ll}
5=-3 A+4 B & \text { and substitute in second equation }] \\
5=-3(3-B)+4 B & \\
5=-9+7 B & \\
B=2 &
\end{array}\right.
$$

$A=3-B \quad$ [go back and substitute in any equation]

$$
A=3-2
$$

$$
=1
$$

$$
\therefore \frac{3 x+5}{x^{2}+x-12}=\frac{1}{(x+4)}+\frac{2}{(x-3)}
$$

(3) Example 2 Express $\frac{-2\left(x^{2}+4 x+7\right)}{\left(x^{2}-1\right)(x+3)}$ as a sum of partial fractions.

Answer

$$
\begin{aligned}
\frac{-2\left(x^{2}+4 x+7\right)}{\left(x^{2}-1\right)(x+3)} & =\frac{A}{x+1}+\frac{B}{x-1}+\frac{C}{x+3} \\
& =\frac{A(x-1)(x+3)+B(x+1)(x+3)+C(x+1)(x-1)}{\left(x^{2}-1\right)(x+3)} .
\end{aligned}
$$

Since the denominator on both sides is the same, we can equate the numerators

$$
-2\left(x^{2}+4 x+7\right)=A(x-1)(x+3)+B(x+1)(x+3)+C(x+1)(x-1)
$$

Let $x=1$,

$$
\begin{aligned}
& -2\left(1^{2}+4(1)+7\right)=A(1-1)(1+3)+B(1+1)(1+3)+C(1+1)(1-1) \\
& -24=8 B \quad \Rightarrow B=-3
\end{aligned}
$$

Let $x=-3$,

$$
\begin{aligned}
& -2\left((-3)^{2}+4(-3)+7\right)=A(-3-1)(-3+3)+B(-3+1)(-3+3)+C(-3+1)(-3-1) \\
& \quad-8=8 C \quad \Rightarrow C=-1
\end{aligned}
$$

Now substitute any other value for x to solve for A.

$$
\begin{aligned}
& \text { let } x=0 \\
& -2\left(0^{2}+4(0)+7\right)=A(0-1)(0+3)-B(0+1)(0+3)-C(0+1)(0-1) \\
& \Rightarrow-14=-3 A+3 B-C \\
& \Rightarrow-14=-3 A+3(-3)-(-1) \text { (recall that } B=-3 \text { and } C=-1) \\
& -14=-3 A-9+1 \\
& \Rightarrow A=2
\end{aligned}
$$

Therefore, $\frac{-2\left(x^{2}+4 x+7\right)}{\left(x^{2}-1\right)(x+3)}=\frac{2}{x+1}-\frac{3}{x-1}-\frac{1}{x+3}$

6.4.2 Repeated linear factors

Repeated linear factors refer to a factor in the denominator that occurs more than once.
The process for repeated factors is slightly different from the process for distinct linear. For each non-repeated factor in the denominator, follow the process for distinct linear factors.

Given

$$
f(x)=\frac{P(x)}{(x-r)^{n}}
$$

- Where polynomial $P(x)$ has degree $<n$
then $f(x)$ can be decomposed into

$$
\frac{A_{1}}{x-r}+\frac{A_{2}}{(x-r)^{2}}+\ldots+\frac{A_{n}}{(x-r)^{n}}
$$

(3) Example 3 Express $\frac{3 x+2}{(x+1)(x-1)^{2}}$ as a sum of partial fractions.

Answer

$$
\begin{aligned}
& \frac{3 x+2}{(x+1)(x-1)^{2}}=\frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{C}{(x-1)^{2}} \\
& \frac{3 x+2}{(x+1)(x-1)^{2}}=\frac{A(x-1)^{2}+B(x+1)(x-1)+C(x+1)}{(x+1)(x-1)^{2}}
\end{aligned}
$$

Since the denominator on both sides is same, we can equate the numerators:

$$
3 x+2=A(x-1)^{2}+B(x+1)(x-1)+C(x+1)
$$

Carefully select x values to obtain the values of the coefficients that makes the expression zero.

$$
3 x+2=A(x-1)^{2}+B(x+1)(x-1)+C(x+1)
$$

Let $x=1$,
$3(1)+2=A(1-1)^{2}+B(1+1)(1-1)+C(1+1)$
$3(1)+2=A(1-1)^{2}+B(1+1)(1-1)+C(1+1) \quad 3(-1)+2=A(-1-1)^{2}+B(-1+1)(-1-1)+C(-1+1)$
$5=2 C$

$$
-1=4 A
$$

$C=\frac{5}{2}$

$$
A=-\frac{1}{4}
$$

Let $x=0$,
$3 x+2=A(x-1)^{2}+B(x+1)(x-1)+C(x+1)$
$3(0)+2=A(0-1)^{2}+B(0+1)(0-1)+C(0+1)$
$2=A-B+C$
$2=-\frac{1}{4}+\frac{5}{2}-B$
$B=\frac{1}{4}$

Therefore $\frac{3 x+2}{(x+1)(x-1)^{2}}=-\frac{1}{4(x+1)}+\frac{1}{4(x-1)}+\frac{5}{2(x-1)^{2}}$

Example 4 Express $\frac{6 x^{2}-x-2}{x^{2}(x+1)}$ as a sum of partial fractions.

Answer

$$
\frac{6 x^{2}-x-2}{x^{2}(x+1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1}
$$

Make denominators same

$$
\frac{6 x^{2}-x-2}{x^{2}(x+1)}=\frac{A x(x+1)+B(x+1)+C x^{2}}{x^{2}(x+1)} .
$$

Since the denominator on both sides is same, we can equate the numerators:

$$
6 x^{2}-x-2=A x(x+1)+B(x+1)+C x^{2}
$$

Let $x=0$, then
$6\left(0^{2}\right)-0-2=B(0+1)$ Let $x=-1$, then
$\Rightarrow B=-2$

$$
6(-1)^{2}-(-1)-2=C(-1)^{2}
$$

$$
\Rightarrow C=5
$$

Let $x=1$, then
$6\left(1^{2}\right)-1-2=A(1)(1+1)+B(1+1)+C\left(1^{2}\right) \Rightarrow 3=2 A+2 B+C$
$\Rightarrow 3=2 A+2(-2)+5$ (recall that $B=-2$ and $C=5) \quad \Rightarrow A=2 / 2=1$

Therefore, $\frac{6 x^{2}-x-2}{x^{2}(x+1)}=\frac{1}{x}-\frac{2}{x^{2}}+\frac{5}{x+1}$

6.4.3 Quadratics which cannot be factorised

Quadratics which cannot be factorized refers to a quadratic that is in the denominator that cannot be factored.
When setting up the partial fraction decomposition, the numerator should have a linear term $A x+B$.
This is because the degree of the denominator is 2 , so the degree of the numerator should be 1 (linear term).

Example 5 Express $\frac{x^{2}-1}{\left(x^{2}+1\right)(x-2)}$ as a sum of partial fractions.

Answer

$$
\begin{aligned}
& \frac{x^{2}-1}{\left(x^{2}+1\right)(x-2)}=\frac{A x+B}{\left(x^{2}+1\right)}+\frac{C}{(x-2)} \\
& \frac{x^{2}-1}{(x-2)\left(x^{2}+1\right)}=\frac{(x-2)(A x+B)+C\left(x^{2}+1\right)}{(x-2)\left(x^{2}+1\right)}
\end{aligned}
$$

Since the denominator on both sides is same, we can equate the numerators.

$$
x^{2}-1=(x-2)(A x+B)+C\left(x^{2}+1\right)
$$

$$
\begin{array}{l|l}
\text { Let } x=2, & \text { Let } x=0, \\
2^{2}-1=(2-2)(A \times 2+B)+C\left(2^{2}+1\right) & 0^{2}-1=(0-2)(A(0)+B)+C\left(0^{2}+1\right) \\
3=5 C & -1=-2 B+C \\
C=\frac{3}{5} & -1=-2 B+\frac{3}{5} \\
& B=\frac{4}{5}
\end{array}
$$

Let $x=1$,

$$
\begin{aligned}
& (1)^{2}-1=(1-2)(A+B)+C\left(1^{2}+1\right) \\
& 0=-1\left(A+\frac{4}{5}\right)+2\left(\frac{3}{5}\right) \\
& =-A-\frac{4}{5}+\frac{6}{5} \\
& 0=-A+\frac{2}{5} \\
& A=\frac{2}{5}
\end{aligned}
$$

Hence $\frac{x^{2}-1}{\left(x^{2}+1\right)(x-2)}=\frac{2 x+4}{5\left(x^{2}+1\right)}+\frac{3}{5(x-2)}$

Example 6 Express $\frac{2 x+1}{(x-2)\left(x^{2}+1\right)}$ as a sum of partial fractions.

Answer

Make denominators same
$\frac{2 x+1}{(x-2)\left(x^{2}+1\right)}=\frac{A}{x-2}+\frac{B x+C}{\left(x^{2}+1\right)}=\frac{A\left(x^{2}+1\right)+(B x+C)(x-2)}{(x-2)\left(x^{2}+1\right)}$

Since the denominator on both sides is same, we can equate the numerators
$2 x+1=A\left(x^{2}+1\right)+(B x+C)(x-2)$

$$
\begin{array}{l|l}
\text { Let } x=2, & \text { Let } x=0, \\
\begin{array}{cl}
2(2)+1=A\left((2)^{2}+1\right)+(B(2)+C)(2-2) & 2(0)+1=1\left((0)^{2}+1\right)+(B(0)+C)(0-2) \\
5=5 A \Rightarrow A=1 & 1=1-2 C \quad \Rightarrow C=0
\end{array}
\end{array}
$$

Let $x=1$,

$$
\begin{aligned}
& 2(1)+1=A\left((1)^{2}+1\right)+(B(1)+C)(1-2) \\
& \Rightarrow 3=2 A-B-C \quad \Rightarrow 3=2(1)-B+0 \quad \text { (recall that } \mathrm{A}=1 \text { and } C=0) \\
& 3=2-B \quad \Rightarrow B=-1
\end{aligned}
$$

Therefore
$\frac{2 x+1}{(x-2)\left(x^{2}+1\right)}=\frac{1}{x-2}-\frac{x}{\left(x^{2}+1\right)}$

Exercise 6.4

Express as a sum of partial fractions.

1. $\frac{-4 x^{2}+11 x-6}{x^{2}(x-3)}$
2. $\frac{15-4 x-x^{2}}{(x+1)(x-2)^{2}}$
3. $\frac{3 x+2}{(x+1)(x-1)^{2}}$
4. $\frac{8 x+11}{x^{2}-x-2}$
5. $\frac{3}{(x-1)\left(x^{2}+2 x+1\right)}$
6. $\frac{-x-2}{x\left(x^{2}+1\right)}$
7. $\frac{10 x+24}{(x-3)\left(x^{2}+9\right)}$
8. $\frac{-x-2}{x\left(x^{2}-4\right)}$

Review Exercise 6

1. Use mathematical induction to prove that the following formula is valid for all positive integers, n.
$8+72+$ \qquad $+8 \times 9^{n-1}=9^{n}-1$
2. Prove by induction that $5+10+15+20+\ldots \ldots+5 n=\frac{5 n(n+1)}{2}$
3. Express the following as a sum of partial fractions:
a) $\frac{2 x}{(x-3)(x-5)}$
b) $\frac{2 x}{(x-3)^{2}(x-5)}$
c) $\frac{2 x}{\left(x^{2}-9\right)(x-5)}$
4. Find the values of the constants \mathbf{A} and \mathbf{B} in the expression

$$
\frac{5 x}{(x+2)\left(x^{2}+1\right)}=\frac{\mathbf{A}}{x+2}+\frac{2 x+\mathbf{B}}{x^{2}+1}
$$

5. An expression is given as $\left(3 x^{2}-\frac{1}{x}\right)^{12}$
a) Find the term independent of x in the expansion of $\left(3 x^{2}-\frac{1}{x}\right)^{12}$
b) Use the binomial theorem to find the coefficient of x^{-2} in the expansion

$$
\text { of }\left(3 x^{2}-\frac{1}{x}\right)^{12}
$$

c) Find the $5^{\text {th }}$ term of $\left(3 x^{2}-\frac{1}{x}\right)^{12}$

PROBABILITY AND INFERRENTIAL STATISTICS

Probability

enn diagrams are a popular visual method of reresenting sets and their relations and intersection
\sqcup Probability is used in gambling, sports, the gaming industry. It is used in weather forecasting, and in scientific research.
ЈThe most important use of probability is to help us make decisions as we go through life!

7.1.1 Types of Events

7.1.1.1 Complementary events

- The complement of event A (symbol A^{\prime}) means every outcome which is not in event A.
(3) Example If event A is getting a pass in a test, then A^{\prime} is getting a fail in a test.
- Two events are complementary if their probabilities add up to one.

$$
P(\mathrm{~A})+P\left(\mathrm{~A}^{\prime}\right)=1
$$

7.1.1.2 Mutually exclusive events

Mutually Exclusive Events have no outcomes in common.

- Intersection

Since no outcome is common, then there will not be any intersection, i.e.

$$
\mathrm{A} \cap B=\emptyset \text { or }\} \text { null set } \quad P(A \cap B)=0
$$

- Union

$$
P(A U B)=P(A)+P(B)
$$

Example 1 Given $P(A)=0.15$ and $P(B)=0.43$. Find $P(A \cup B)$ given events A and B are mutually exclusive?

Answer

$$
\begin{aligned}
\boldsymbol{P}(\boldsymbol{A} \mathbf{U} \boldsymbol{B}) & =\boldsymbol{P}(\boldsymbol{A})+\boldsymbol{P}(\boldsymbol{B}) \\
& =0.15+0.43 \\
& =0.58
\end{aligned}
$$

7.1.1.3 Independent events

Events A and B are independent if their occurrence do not affect each other.
\Rightarrow Can happen together

- Probability of A and B occurring together

$$
P(A \cap B)=P(A) \cdot P(B)
$$

Example $2 \quad$ Given $P(A)=0.3, P(B)=0.4$ and $P(A \cap B)=0.12$. Are events A and B independent?

Answer

$$
\begin{aligned}
P(A \cap B) & =P(A) . P(B) \\
& =0.3 \times 0.4 \\
& =0.12
\end{aligned}
$$

Since $P(A \cap B)=P(A) . P(B)$, the events A and B are Independent.

7.1.2 Addition rule

If A and B are not disjoint then

$$
P(A U B)=P(A)+P(B)-P(A \cap B)
$$

(8) Example $3 \quad P(A)=0.2, P(B)=0.3$ and $P(A \cap B)=0.06$.

Find:
a) $P\left(A^{\prime}\right)$
b) $\quad P(A \cup B)$

Answers

$$
\text { a) } \begin{aligned}
& P\left(A^{\prime}\right) \\
= & 1-P(A) \\
= & 1-0.2 \\
= & 0.8
\end{aligned}
$$

b) $P(A \cup B)$
$=P(A)+P(B)-P(A \cap B)$
$=0.2+0.3-0.06$
$=0.44$

Exercise 7.1.1

1. The probability that event A occurs is 0.60 while the probability that event B occurs is 0.25 . The probability that both A and B occur is 0.12 .
a) Explain why events A and B are not independent.
b) Find the probability of neither A nor B occurring.
2. The National Bank has 2 computers. The probability that Computer A will break down once in a month is 0.05 . The probability that Computer B will break down once in a month is 0.1 . In a given month and assuming that the events are independent,
a) what is the probability that either Computer A or Computer B will break down?
b) what is the probability that neither Computer A nor Computer B will break down?
3. An experiment consists of rolling 2 fair dice. Event A is "the number on the first die is 5 " and event B is "the sum of the numbers is 10 ".
a) Explain why events A and B are not mutually exclusive.
b) What is the probability that event A or B occurs?
4. Box A and $B o x B$ contain identical items. Box A has 10 items while $B o x B$ has 8 . Three items from each box are defective.
If an item is drawn from each box, find the probability that:
a) both items are good.
b) only one of the items is defective.

SUB - STRAND 7.2

9 Inverse Normal Problems

Inverse Normal Distribution

\square The inverse normal distribution is used to find z values given an area/probability.

1. Draw a sketch and find the area to the left based on which case you have

Table: Find the area in the body of the table and list the corresponding z-score (you may need to convert to an x value)

7.2.1 Inverse Normal Distribution

Table to be used:
INVERSE NORMAL DISTRIBUTION

For a listed value of P, the table gives the value of z such that the standardised normal variate Z has a probability P of lying between 0 and z. e.g. $P=0.30, z=.8416$ means $P(0<z<0.8416)=.30$											
P	z	P	z	P	z	P	z	P	I	P	z
. 00	. 0000	. 10	. 2533	. 20	. 5244	. 30	. 8416	. 40	1.2816	. 470	1.8808
. 01	. 0251	. 11	. 2793	. 21	. 5534	. 31	. 8779	. 41	1.3408	.471	1.8957
. 02	. 0502	. 12	. 3055	. 22 .	. 5828	. 32	. 9154	. 42	1.4051	. 472	1.9110
. 03	. 0753	. 13	. 3319	. 23	. 6128	. 33	. 9542	. 43	1.4758	. 473	1.9268
. 04	. 1004	. 14	. 3585	. 24	. 6433	. 34	. 9945	. 44	1.5548	. 474	1.9431
. 05	. 1257	. 15	. 3853	. 25	. 6745	. 35	1.0364	. 45	1.6449	. 475	1.9600
. 06	. 1510	. 16	. 4125	. 26	. 7063	. 36	1.0803	. 46	1.7507	. 476	1.9774
. 07	. 1764	. 17	. 4399	. 27	. 7388	. 37	1.1264			. 477	1.9954
. 08	. 2019	. 18	. 4677	. 28	. 7722	. 38	1.1750			. 478	2.0141
. 09	. 2275	. 19	. 4959	. 29	. 8064	. 39	1.2265			. 479	2.0335
		P	z	P	z	P	z	P	z	P	z
		. 480	2.0537	. 485	2.1701	. 490	2.3263	. 495	2.5758	. 4995	3.2905
		. 481	2.0749	. 486	2.1973	. 441	2.3656	. 496	2.6521	. 4999	3.7190
		. 482	2.0969	. 487	2.2262	. 492	2.4089	. 497	2.7478	. 49995	3.8906
		. 483	2.1201	. 488	2.2571	. 493	2.4573	. 498	2.8782	. 49999	4.2649
		. 484	2.1444	. 489	2.2904	. 494	2.5121	. 499	3.0902		

> Conversion formula

$$
z=\frac{x-\mu}{\sigma}
$$

(3) Example $1 \quad X$ has a normal distribution with mean $=70$.

Given $P(X>80)=0.11$, find the standard deviation.

Answer

$$
\begin{aligned}
& P(X>80)=0.11 \\
& \mathrm{P}\left(\mathrm{z}>\frac{x-\mu}{\sigma}\right)=1.2265 \\
& \mathrm{z}=1.2265, \text { substituting values } \\
& 1.2265=\frac{80-70}{\sigma} \quad \text { Solve } \sigma
\end{aligned}
$$

$$
1.2265 \times \sigma=80-70
$$

$$
\sigma=\frac{10}{1.2265}
$$

$$
\sigma=8.15
$$

Example 2 Intelligence quotient (IQ) scores of people are normally distributed with standard deviation of 10 . The probability that a person, selected at random, has an IQ greater than 95 is 0.69. Calculate the mean IQ score.

Answer

$$
\begin{aligned}
& P(X>95)=0.69 \\
& P\left(z>\frac{x-\mu)}{\sigma}=0.69\right. \\
& P\left(z>\frac{95-\mu}{10}\right)=0.69
\end{aligned}
$$

Look for $\mathrm{P}=0.19$ in the inverse table

$$
\begin{aligned}
& z=-0.4959, \text { substituting values } \\
& -0.4959=\frac{95-\mu}{10} \quad \text { Solve } \mu \\
& -0.4959 \times 10=95-\mu \\
& \mu=95+4.959 \\
& \mu=99.96
\end{aligned}
$$

INVERSE NORMAL DISTRIBUTION			
P	z	P	
. 00	. 0000	. 10	. 2533
. 01	. 0251	11	. 2793
. 03	. 0.0753	.13	. 33519
. 04	. 1004	14	. 3585
. 05	. 1257	. 15	- 3853
.07	. 17515	.17	. 4.439
. 08	. 2019	. 18	6637
. 09	. 2275	. 19	. 4959

Not all P values are given in the inverse normal table, so we have to use the normal distribution table as shown below.

The tabulated value is the probability that the standardized
normal variate Z (with $\mu=0, \sigma=1$) lies between 0 and z.
e.g. $P(0<Z<1.43)=42.36 \%$

z	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
0.0	. 0000	. 0040	. 0080	. 0120	. 016	. 019	. 023	. 0279	. 0319	. 0359	4	8	12	16	20	24	28	32	36
0.1	. 0398	. 0438	. 0478	. 0517	. 0557	. 0596	. 0636	. 0675	. 0714	. 0754	4	8	12	16	20	24	28	32	36
0.2	. 0793	. 0832	. 0871	. 0910	. 0948	. 0987	. 1026	. 1064	. 1103	. 1141	4	8	12	15	19	22	27	31	35
O. 3	- 1179	1217 -1591	+.1255	+1293	- 1331	. 1368	. 1406	1443 -1808	1480 .1844	. 1517	4 4 4	${ }_{7}^{8}$	11	15	19	22	26	20	34
0.5	. 1915	. 1950	- 1985	. 20	. 2054	. 208				22	3	7	10	14	17	21	24		
0.6	. 2258	. 2291	. 2324	. 2357	. 2389	. 2422	. 2454	. 2486	. 2518	. 2549	3	6	10	13	16	19	23	26	29
0.7	. 2588	. 2612	. 2642	. 2673	. 2704	. 2734	. 2764	. 2794	. 2823	. 2852	3	6	9	12	15	18	21	24	27
	. 2881	. 2310	. 2939	. 2967	. 2996	. 3023	. 3051	. 3078	. 3106	. 3133	3	6	8	11		17	19	22	25
0.9	. 3159	. 3186	. 3212	. 3238	. 3264	. 3289	. 3315	. 3340	. 3365	. 3389	3	5	8	10	13	15	18	20	23
1.0	. 3413	. 3438	. 3461	. 3485	. 3508	. 3531	. 3554	. 3577	. 3599	. 3621	2	5		9	12	14	16	18	21
1.7 1.2	.3643 .3849	.3665 .3869	- 368888	.3708 .3907	- 3729	- .3744	- 37780	- 37989	- 3810	- 3830	2	4	5	8		12	14	16	19
1.3	\bigcirc	. 4049	4066	. 4082	. 4099	. 4115	. 4131	- 4147	4162	. 4177	2	3	5	7	8	10	11	13	14
1.4	. 4192	. 4207	. 4222	. 4236	. 4251	. 4265	. 4279	. 4292	. 4306	. 4319	1	3	4	6	7	8	10	$1:$	13
1.5 1.6	.4332 $: 4452$.4345 .4463	: 4357 474 15	43370 .4484	4382 .4495	.4394 .4505	. 4406	4	4429 4535	.4441 .4545	i	$\frac{2}{2}$	3	4		$\begin{aligned} & 7 \\ & 6 \end{aligned}$	8	-	1
1.7	. 4554	. 4564	. 4573	- 4588	4591	. 45	. $\mathrm{}$.	. 24616	. 4625	. .4633	1	2	3	4		5	7	7	${ }_{8}^{9}$
1.8	. 4641	. 4649	. 4656	. 4664	. 4671	. 4678	. 4686	. 4693	. 4699	. 4706	1	1	2	3	4	4	5	6	6
1.9	. 4713	. 4719	. 4726	. 4732	. 4738	. 4744	. 4750	. 4756	. 4761	. 4767	1	1	2	2	3	4	4	5	5
2.0	. 4772	. 4778	. 4783	. 4788	. 4793	4798	. 4803	. 4808	. 4812	. 4817	0	1	1	2	2	3	3		4
2.1	. 4821	. 4826	. 4830	. 4834	. 4838	. 4842	. 4846	. 4850	. 4854	. 4857	0	1	1	2	2	2	3		4
2.2	. 4861	. 4864	. 4868	. 4871	. 4875	. 4878	. 4881	. 4884	. 4887	. 4890	0	1	1	1	2	2	2		3
2.3	. 4893	. 4896	. 4898	. 4901	. 4904	. 4906	. 4909	. 4931	. 4913	. 4916	0	0	1	1	1	2	2	2	
2.4	. 4918	. 4920	. 4922	. 4925	. 4927	. 4929	. 4931	. 4932	. 4934	. 4936	0	0	1	1	1	1	1	,	,
2.5	. 4938	. 4940	. 4941	. 4943	. 4945	. 4946	. 4948	. 4949	. 4951	. 4952	0	0		1	1	1		\}	,
2.6	. 4953	. 4955	. 4956	. 4957	. 4959	. 4960	. 4961	. 4962	. 4963	. 4964	0	0	0	0	1	1	1	1	,
2.7	. 4965	. 4966	. 4967	. 4968	. 4969	. 4970	. 4971	. 4972	. 4973	. 4974	0	0	0	0	0	1	1	1	1
2.8	. 4974	. 4975	. 4976	. 4977	. 4977	. 4978	. 4979	. 4979	. 4980	. 4981	0	0	0	0	0	0	0	0	1
2.9	. 4981	. 4982	. 4982	. 4983	. 4984	. 4984	. 4985	. 4985	. 4986	. 4986	0	0	0	0	0	0	0	0	1
3.0	. 4987	. 4987	. 4987	. 4988	. 4988	. 4989	. 4989	. 4989	. 4990	. 4990	0	0	0	0	0	0	0	0	0
3.1	. 4990	. 4991	. 4991	. 4991	. 4992	. 4992	. 4992	. 4992	. 4993	. 4993	0	0	0	0	0	0	0	0	0
3.2	. 4993	. 4993	. 4994	. 4994	. 4994	. 4994	. 4994	. 4995	. 4995	. 4995	0	0	0	0	0	0	0	0	0
3.3	. 4995	. 4995	. 4995	. 4996	. 4996	. 4996	. 4995	. 4996	. 4996	. 4997	0	0	0	0	0	0	0	0	0
3.4	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4998	0	0	0	0	0	0	0	0	0
3.5	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	0	0	0		0	0	0	0	0
3.6	. 4998	. 4998	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	0	0	0	0	0	0	0	0	0
3.7	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	0	0	0	0	0	0	0	0	0
3.8	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	. 4999	0	0	0	0	0	0	0	0	0
3.9	. 5000	. 5000	. 5000	. 5000	. 5000	. 5000	. 5000	. 5000	. 5000	. 5000	0	0	0	0	0	0	0	0	0

EXAMPLE 3: Fifteen thousand students sat an exam and their marks were normally distributed with a mean of 64% and a standard deviation of 12 .

If one in eight students failed, what was the minimum mark required for a pass?

Answer

$\mathrm{p}($ students failed $)=\frac{1}{8}$ or $0.125, x=$?

2	0	1	2	3	4	5		7	8	9	1	2	3	4	5	6	7	8	9
0.0	. 0000	. 0040	. 0080	. 0120	. 0160	. 0199	. 0239	. 0279	. 0319	. 0359	4	8	12		20			32	36
0.1	. 0398	. 0438	. 0478	. 0517	. 0557	.0596	. 0636	. 0675	. 0714	. 0754	4	8	12	16	20	24		32	36
0.2	. 0793	. 0832	. 0871	. 0910	. 0948	. 0987	. 1026	. 1064	. 1103	. 1141	4	8		15	19	22	27	31	35
0.3	. 1179	. 1217	. 1255	. 1293	. 1331	.1368	. 1406	. 1443	. 1480	. 1517	4	8		15		22		30	34
0.4	. 1554	. 1591	. 1628	. 1664	. 1700	.1/36	. 1772	. 1808	. 1844	. 1879	4	7		14	18	22		29	32
0.5	. 1915	. 1950	. 1985	. 2019	. 2054	. 2088	. 2123	. 2157	. 2190	. 2224	3	,	10	14		21		27	31
0.6	. 2258	. 2291	. 2324	. 2357	. 2389	. 2222	. 2454	. 2486	. 2518	. 2549	3	6	10	13	16	19	23	26	29
0.7	. 2580	. 2612	. 2642	. 2673	. 2704	.2734	. 2764	. 2794	. 2823	. 2852	3	6	9	12	15	18		24	27
0.8	. 2881	. 2910	. 2939	. 2967	. 2996	. 3023	. 3051	. 3078	. 3106	. 3133	3	6	8	11	14	17	19	22	25
0.9	.3159	. 3186	. 3212	. 3238	. 3264	. 3289	. 3315	. 3340	. 3365	. 3389	3	5	8		13	15	18	20	23
+9	. 3413	. 3438	. 3461	. 3485	. 3508		. 3554	. 3577	. 3599	. 3621	2	5	7						21
1.1				270	-3729	. 3749	. 3770	. 3790	. 3810	. 3830	2	4	6	8	10	12			19
4	. 3849	.3869	. 3888	. 3907	. 3925	. 3944	. 3962	. 3980	. 3997	. 4015	2	4	5	7		11			16
1.3 1.4	. 4032	. 4049	. 4066	. 4082	. 4099	. 4115	. 4131	. 4147	. 4162	. 4177	2	3	5	6	8	10		13	14
1.4	. 4192	. 4207	. 4222	. 4236	. 4251	. 4265	. 4279	. 4292	. 4306	. 4319	1	3	4	6	7	8	10	11	13

The closest entry below 0.375 is 0.3749 which corresponds to z value of 1.15 . This differs from 0.375 by 0.0001 . The closest value to 0.0001 in the difference column on the right is ' 2 ' in the column headed ' 1 '.

$$
z=1.151
$$

Thus $z=-1.151$, use formula to find the minimum mark, x

$$
\begin{aligned}
z & =\frac{x-\mu}{\sigma} \\
-1.151 & =\frac{x-64}{12} \\
x & =50.19
\end{aligned}
$$

Therefore, the minimum mark required for a pass is 50.19%

Exercise 7.2.1

1. The final exam marks of a class of 500 students are normally distributed with a mean of 62 marks \& standard deviation of 15 marks.
a) What is the cut - off mark for A grade if the top 16.6% of the students in the class are awarded an A grade?
b) The E grade is the lowest grade in the examination. What is the cut - off mark for E grade if 2.55% of the students in the class are awarded an E grade?
2. Find k if $P(0<z<k)=0.12$
3. A normal random variable X has mean of 70 . Given that $\mathrm{P}(X>80)=0.05$, find the standard deviation.
4. A normal random variable X has mean of 50 . Given that $P(X<80)=0.75$, find the standard deviation.
5. A normal random variable X has standard deviation of 50 . Given that $P(X<50)=0.01$, find the mean.
6. A normal distribution, X, has a standard deviation of 4 . Given that $P(X<70)=0.7$, calculate the mean.
7. The marks for a college examination are normally distributed with a mean of 56 . If 6% of all the students who sat for the examination had marks greater than $\mathbf{8 0}$, find the standard deviation for the distribution.

Probabilities are based on long-term percentages (over thousands of trials), so when you apply them to a group, the group has to be large enough (the larger DID you? the better, but at least 1,500 or so items or individuals) for the probabilities to
KNOW really apply. Here's an example where long-term interpretation makes sense in place of short-term interpretation. \sim anonymous (http://catalogimages.wiley.com/images/db/pdf/0471751413.excerpt.pdf)

Binomial Distribution

Formula of Binomial Probability Distribution

$$
P(X=x)=C_{x}^{n} p^{x}(1-p)^{n-x}=C_{x}^{n} p^{x} q^{n-x}, \text { where } x=0,1,2, \cdots, n
$$

Where
p : probability of success
q : probability of failure
note: $\quad q=1-p$
n : number of trials
x : number of successes

7.3.1 \quad Binomial probabilities

The binomial distribution has two possible outcomes (the prefix "bi" means two).
(3) Example: A coin has only two possible outcomes: heads or tails and taking a test has two possible outcomes: pass or fail.
The two outcomes are called success or failure.
$>$ Properties of Binomial Experiment:

1. The experiment consists of ' n ' repeated trials
2. Only two possible outcomes (Success or Failure)
3. Probability of success is the same for each trial.
4. Each trial is independent of each other

The binomial distribution formula is:

$$
P(X=x)=\binom{n}{x} p^{x} q^{n-x} \quad, x=0,1,2,3
$$

where:
$P=$ binomial probability
$x=$ total number of "successes"
$p=$ probability of success
$q=$ probability of failure $(q=1-p)$
$n=$ number of trials

Example 1 If 20% of the bulbs produced by a factory are faulty, determine the probability that out of sample of 12 randomly chosen bulbs, one will be faulty.

Answer

Given : $n=12, p=20 \%=0.20, q=1-0.20=0.80$, $x=1$ (one will be faulty)

Probability $=\binom{n}{x} p^{x} q^{n-x}$
$=\binom{12}{1}(0.2)^{1}(0.8)^{12-1}$
$=0.2062$

7.3.2 Table of Binomial probabilities for Individual terms

∞
 BINOMIAL DISTRIBUTION; INDIVIDUAL TERMS

Tabulated values are $P(X=x)=\binom{n}{x} \pi^{x}(1-\pi)^{n-x}$ for certain values of n, π. If ∇ > .50 use $P(Y=\gamma)=\binom{n}{y} \pi_{i}^{y}\left(1-x_{1}\right)^{n-y}$ where $\pi_{1}=1-\pi, y=n-x$.

$n \times$	π										
	. 01	. 05	. 10	. 15	20	. 25	. 30	. 35	. 40	. 45	. 50
108					. 0001	. 0004	. 0014	. 0043	. 0106	. 0229	. 0439
9							. 0001	. 0005	. 0016	. 0042	. 0098
10									. 0001	. 0003	. 0010
$11 \begin{gathered}0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11\end{gathered}$	$\begin{array}{r} .8953 \\ .0995 \\ .0050 \\ .0002 \end{array}$	$\begin{aligned} & .5688 \\ & .3293 \\ & .0867 \\ & .0137 \\ & .0014 \\ & .0001 \end{aligned}$	$\begin{aligned} & .3138 \\ & .3835 \\ & .2731 \\ & .0710 \\ & .0158 \\ & .0025 \\ & .0003 \end{aligned}$. 1673	. 0859	. 0422	. 0198	. 0088	. 0036	. 0014	. 0005
				. 3248	. 2362	. 1549	. 0932	. 0518	. 0266	. 0125	. 0054
				. 2866	. 2953	. 2581	. 1998	. 1395	. 0887	. 0513	. 0269
				. 1517	. 2215	. 2531	. 2558	. 2254	. 1774	.125y	. 0806
				. 0536	.1:07	. 1721	. 2201	. 2428	. 2365	. 2060	. 1611
						. 0803	. 1321	. 1830	. 2207	. 2360	. 2256
				$\begin{aligned} & .0132 \\ & .0023 \\ & .0003 \end{aligned}$. 0098	. 0268	. 0566	. 0985	. 1471	. 1931	. 2256
					$\begin{aligned} & .0017 \\ & .0002 \end{aligned}$. 0064	. 0173	. 0379	. 0701	. 1128	. 1611
				$\begin{aligned} & .0023 \\ & .0003 \end{aligned}$		$\begin{aligned} & .0011 \\ & .0001 \end{aligned}$	$\begin{array}{r} .0037 \\ .0005 \end{array}$.0102 .0018 .0002	. 0234	. 0462	. 0806
					0002				$\begin{array}{r} .0052 \\ .0007 \end{array}$. 0126	. 0269
										. 0021	. 0054
										. 0002	. 0005
120	$\begin{aligned} & .8864 \\ & .1074 \\ & .0060 \\ & .0002 \end{aligned}$. 5404	. 2824	. 1422	. 0687	. 0317	. 0138	.0057.0368	. 0022	. 0008	
		. 3413	. 3766	. 3012		. 1267	. 0712				
2		. 0988	. 2301	. 2924	. 2835	. 2323	. 1678	. 1008	. 0639	. 0339	. 0161
3		. 0173	. 0852	$\begin{aligned} & .1720 \\ & .0683 \end{aligned}$. 2362	. 2581	. 2397	. 1954	. 1419	. 0923	. 0537
4		. 0021	. 0213		. 1329	. 1936	. 2311	. 2367	. 2128	. 1700	. 1208
5		. 0002	. 0038	$\begin{array}{r} .0683 \\ .0193 \end{array}$. 0532	. 1032	. 1585	. 2039	. 2270	. 2225	. 1934
6			. 0005	. 0040	. 0155	$\begin{aligned} & .0401 \\ & .0115 \end{aligned}$. 0792	. 1281	. 1766	. 2124	. 2256
7				$\begin{aligned} & .0006 \\ & .0501 \end{aligned}$	$\begin{aligned} & .0033 \\ & .0005 \\ & .0001 \end{aligned}$. 0291	. 0591	. 1009	. 1489	. 1934
8						$\begin{aligned} & .0115 \\ & .0024 \\ & .0004 \end{aligned}$. 0078	. 0199	. 0420	. 0762	. 1208
9							$\begin{array}{r} .0015 \\ .0002 \end{array}$	$\begin{aligned} & .0048 \\ & .0008 \\ & .0001 \end{aligned}$	$\begin{aligned} & .0125 \\ & .0025 \\ & .0003 \end{aligned}$.0537.0161.0029
10											
11											
12	. 0001 . 0002										
$15 \begin{array}{r}0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15\end{array}$	$\begin{aligned} & .8601 \\ & .1303 \\ & .0092 \\ & .0004 \end{aligned}$	$\begin{aligned} & .4633 \\ & .3658 \\ & .1348 \\ & .0307 \\ & .0049 \\ & .0006 \end{aligned}$. 2059		$\begin{aligned} & .0352 \\ & .1319 \end{aligned}$	$\begin{array}{r} .0134 \\ .0668 \end{array}$. 0016	. 0005	. 0001	
			. 3432					. 0126	. 0047	$\therefore .0016$. 0005
			. 2669	$\begin{array}{r} .2312 \\ .2856 \end{array}$. 2309	. 1559	$\begin{array}{r} .0305 \\ .0916 \end{array}$. 0476	. 0219	. 0090	. 0032
			. 1285	. 2184	$\begin{aligned} & .2501 \\ & .1876 \end{aligned}$. 2252	$\begin{aligned} & .0916 \\ & .1700 \end{aligned}$. 11110	$\begin{aligned} & .0634 \\ & .1268 \end{aligned}$. 0318	$.0139$
			. 0428	$\begin{aligned} & .1156 \\ & .0449 \end{aligned}$			$\begin{aligned} & .1700 \\ & .2186 \end{aligned}$. 1792		. 0780	. 317
			. 0105		$\begin{array}{r} 1032 \\ .0 ヶ 30 \end{array}$	$.1651$.2186 .2061	. 2123	.1859	. 1404	. 0916
			. 0019	$\begin{array}{r} .0132 \\ .0030 \end{array}$. 0917	. 1472	. 1906	. 2066	. 191'	$!527$
			. 0003		. 0138	. 0393	. 0811	. 1319	. 1771	. 2013	. 1964
				. 0005	. 0035	. 0131	. 0348	. 0710	. 1181	. 1647	. 1964
				. 0001	. 0007	. 0034	. 0116	. 0298	. 0612	. 1048	. 1527
					. 0001	. 0007	. 0030	. 0096	. 0245	. 0515	. 0916
						. 0001	. 0006	. 0024	. 0074	. 0191	. 0417
							. 0001	. 0004	. 0016	. 0052	. 0139
								. 0001	. 0003	. 0010	. 0032
										. 0001	. 0005
200	. 8179	. 3585	. 1216	. 0388	. 0115	. 0032	. 0008	. 0002			
	. 1652	. 3774	. 2702	. 1368	. 0576	. 0211	. 0068	. 0020	. 0003	. 0001	
2	. 0159	. 1887	. 2852	. 2293	. 1369	. 0669	. 0278	. 0100	. 0031	. 0008	. 0002
3	. 0010	. 0596	. 1901	. 2428	. 2054	. 1339	. 0716	. 0323	. 0123	. 0040	. 0011
4		. 0133	. 0898	.1821	. 2182	. 1897	.1304	. 0738	. 0350	. 0139	. 0046
5		. 0022	. 0319	. 1028	. 1746	. 2023	. 1789	.1272	. 0746	. 0365	. 0148
6		. 0003	. 0089	. 0454	. 7091	. 1686	. 1916	.1712	. 1244	. 0746	. 0370
7			. 0020	. 0160	. 0545	. 1124	. 1643	. 1844	. 1659	. 1221	. 0739
8			. 0004	. 0046	. 0222	. 0609	.1744	. 1614	. 1797	. 1623	. 1201
9			. 0001	. 0011	. 0074	. 0271	. 0654	. 1158	. 1597	. 1771	. 1602
- 10				. 0002	. 0020	. 0099	. 0308	. 0686	. 1171	. 1593	. 1762
11					. 0005	. 0030	. 0120	. 0336	. 0710	. 1185	. 1602
12					. 0001	. 0008	. 0039	. 0136	. 0355	. 0727	. 1201
13						. 0002	. 0010	. 0045	. 0146	. 0366	. 0739
14							. 0002	. 0012	. 0049	. 0150	. 0370
15								. 0003	. 0013	. 0049	. 0148
16									. 0003	. 0013	. 0046
17										. 0002	. 0011
18											. 0002
19 20											

Example 1 For the previous example, use the table to find the probability.
Answer
Given : $n=12, p$ or $\pi=20 \%=0.20, q=1-0.20=0.80, x=1$

		π	
n	x	0.20	
12	0	\downarrow	
	$1 \longrightarrow 0.2062$		
	\cdot		
	11		

\therefore Probability $=0.2062$

Example $\mathbf{2}$ If 20% of the bulbs produced by a factory are faulty, determine the probability that out of sample of 12 randomly chosen bulbs, at least 8 will be faulty.

Answer

Given : $\mathrm{n}=12, \mathrm{p}=20 \%=0.20, \mathrm{x}=(8,9,10,11,12)$
Reading Probability from the table of individual terms and add up the probability values corresponding to $x=8$ to $x=12$.

n	x	$\begin{aligned} & \pi \\ & 0.20 \end{aligned}$
12	8 9 10 11 12	$\begin{gathered} \cdot \\ \dot{\cdot} \\ 0.0005 \\ 0.0001 \end{gathered}$

Probability $=0.0005+0.0001$
$=0.0006$

You may also use the Cumulative Binomial distribution table:

CUMULATIVE BINOMIAL DISTRIBUTION

Tabulated values are $P(x \geq x)$ for cerzain values of
n, п. $\quad \mid f \pi>.50$ use $P(Y \leq y)=1-P(Y \geq y+1)$,
where $y=n-x, \pi_{1}=t-\pi$.

(8) Example 1 For the previous example 2, use the Cumulative Binomial distribution table to find the probability.

Answer

n	x	π 0.20
12	$8-$ 9 10 11 12	$\begin{gathered} \downarrow \\ \downarrow .0006 \end{gathered}$

(3) Example 2

There are 12 equivalent units in the Lagoon Motel. The manager knows that the probability that a unit will be occupied on any one night is 0.40 . Find the probability that at most 10 units will be occupied on any one night.
\& Answer
Let X be the number of units occupied on any one night.
$p=0.4, q=1-0.4=0.6$ and $n=12$.

$$
\begin{aligned}
P(X \leq & 10)=1-P(X>10) \\
& =1-[P(X=11)+P(X=12)] . \\
& =1-[0.0003+0.0000] \\
& =0.9997
\end{aligned}
$$

Using the binomial distribution individual terms

		π
n	x	0.40
12	\cdot	\cdot
	\cdot	\cdot
	\cdot	
	$11 \rightarrow 0.0003$	

(3) Example 3

A shop owner has found out that 85% of the people who come to this shop on any day buy something. If in one day 15 people go to this shop, find the probability that 11 of them will be buying something.

Answer
Method 1
$n=15 p=0.85, x=11$
0.85 is not in the tables, so using the formula

- $P(X=x)=\binom{n}{x} p^{x} q^{n-x}$

$$
\begin{aligned}
& =\binom{15}{11} 0.85^{11} 0.15^{15-11} \\
& =0.1156
\end{aligned}
$$

Method 2:

$$
\mathrm{n}=15 \mathrm{p}=0.85, \mathrm{x}=11
$$

0.85 is not in the tables, so instead we find the probability that 4 do not buy something (which is exactly the same as 11 buying something) with probability 0.15
$\mathrm{n}=15, \quad \mathrm{p}=0.15, \quad \mathrm{X}=4$
$P(X=4)=0.1156$ from the tables

(3) Example 4

The probability that Roy scores a goal in a soccer game is 0.30 . What is the probability that Roy scores a goal in at least $\mathbf{3}$ of the next 5 soccer games?

Answer

Using the binomial distribution individual terms
to derive the probability.
Since $\mathrm{p}=0.3$ and $n=5$, we have:

$$
\begin{aligned}
P(X \geq 3) & =P(X=3)+P(X=4)+P(X=5) \\
& =0.1323+0.0283+0.0024=0.163
\end{aligned}
$$

Note this can be directly obtained from cumulative distribution table.

Exercise 7.3

1. A maths teacher sets up study groups in her maths class. Each study group has 3 students. If 20% of the maths students in her class are females, what is the probability that at least one member of a group is a female?
2. A hospital with a heart transplant unit finds that the probability that a patient is still alive after 3 years is 30%. Find the probability that if the unit operates on 10 patients in a year, more than seven patients will not live up to 3 years after the operation.
3. A survey in a country shows that 95% of the people love listening to music. What is the probability that from 12 people interviewed on the streets, at least 11 will be found to have love for music?
4. A shop owner has found out that 80% of the people who come to this shop on any day buy something. If in one day 20 people go to this shop, find the probability that at least 75% of them will be buying something.
5. A primary student is going to guess the answers to all the questions in a 10 question multiple choice test where there are 5 choices for each answer. What is the probability of getting at least 8 correct answers?
6. A survey on the streets of Suva on a sunny day showed that 80% of the people wore sunglasses. What is the probability that exactly 10 out of 15 people will be wearing sunglasses on a particular sunny day?
7. A student is going to guess the answers to all the questions on a 5 question -multiple-choice test where there are four choices for each answer. What is the probability of getting at least four correct answers?
8. It is found that 20% of light bulbs produced in a factory are faulty. In a random sample of 10 bulbs, what is the probability that less than four bulbs are faulty?

9

Estimation

Central Limit Theorem

| Confidence level | Z value |
| :---: | :---: | :---: |
| 90% | 1.65 |
| 95% | 1.96 |
| 99% | 2.58 |
| $99,9 \%$ | 3.291 |

7.4.1 Estimation

> Central limit theorem

If a random sample of size n is drawn from a large or infinite population with mean, μ and standard deviation, σ, then the distribution of sample mean, \bar{x}, is approximately normally distributed with $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}$ and $\mu_{\bar{x}}=\mu$.

Hence

$$
z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}
$$

One very important application of central limit theorem is the determination of the reasonable values of the population mean. Hypothesis testing and estimation will use the central limit theorem.

> Interval Estimate for the population mean μ

Since we know something about the distribution of sample mean $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}$ and $\mu_{\bar{x}}=\mu$, we can make statements about how confident we are that the true mean is within a given interval about our sample mean.

Statisticians use α to represent the probability that μ does not lie between the upper and the lower limits in the interval. The probability that the μ lies between the upper and the lower limits is then $1-\alpha$

Suppose k and m are the lower and upper limits respectively of the interval: $k<\mu<m$ then $P(k<\mu<m)=1-\alpha$ for $0<\alpha<1$
So we have a probability of $1-\alpha$ that the population mean lies between k and m. This is the $(1-\alpha) 100 \%$ confidence interval

$z_{\frac{\alpha}{2}}$ is the z-value leaving an area of $\frac{\alpha}{2}$ to the right

7.4.2 Confidence Interval

To calculate the Confidence Interval, use the formula

$$
\bar{x}-\mathrm{z}_{\underline{\alpha}}^{2} \times \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+\mathrm{z}_{\underline{\alpha}} \times \frac{\sigma}{\sqrt{n}}
$$

where:
\bar{x} : sample mean
$\sigma:$ standard deviation
n : sample size
$z_{\sigma / 2}: z$-value leaving an area of $\frac{\alpha}{2}$ to the right in a standard normal distribution
$>$ If $\alpha=0.05$ we have 95% confidence interval for μ (population mean)
In summary,
99\% Confidence Interval for μ is

95\% Confidence Interval for μ is

90\% Confidence Interval for μ is

$\bar{x}-2.576 \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+2.576 \frac{\sigma}{\sqrt{n}}$
$\bar{x}-1.96 \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+1.96 \frac{\sigma}{\sqrt{n}}$
$\bar{x}-1.645 \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+1.645 \frac{\sigma}{\sqrt{n}}$

Example 1 A sample of 500 Year 13 students showed that the average time they spent studying math is 35 minutes with a standard deviation of 12 minutes. Find a 90% confidence interval for estimating the average time a student will spent studying math. Assume the sample is taken from a normal population.

Answer

$$
\bar{x}=35 ; \sigma=12 ; n=500, \alpha=10 \%(0.1), \frac{\alpha}{2}=0.05
$$

Look for $\mathrm{P}=0.45$ in the inverse normal table to get $z_{\sigma / 2}=1.6449$

$$
\begin{gathered}
\bar{x}-\mathrm{z}_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+\mathrm{z}_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} \\
35-1.6449 \times \frac{12}{\sqrt{500}}<\mu<35+1.6449 \times \frac{12}{\sqrt{500}}
\end{gathered}
$$

$34.12<\mu<35.88$

There is a probability of 0.90 that the population mean would fall between 34.12 and 35.88 .

Note:
When the population standard deviation σ is not known we can use the sample standard deviation s if the sample size is ≥ 30
(3) Example 2 When a sample of 500 coconuts is graded, a mean weight of 200 g is recorded. The standard deviation of the weight of these coconuts is known to be 12 g . Find a 95% confidence interval for the mean of coconuts. [Give your answer to 1 decimal place.]
\& Answer
$n=500 \quad \bar{x}=200$

$$
\begin{gathered}
\alpha=0.05 \Rightarrow \alpha / 2=0.025 \text { and } z_{\alpha / 2}=1.96 \\
\bar{x}-\mathrm{z}_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+\mathrm{z}_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} \\
200-1.96 \times \frac{12}{\sqrt{500}}<\mu<200+1.96 \times \frac{12}{\sqrt{500}} \\
\Rightarrow 198.9 \mathrm{~g}<\mu<201.1 \mathrm{~g}
\end{gathered}
$$

7.4.3 Choosing a sample size for estimating the population mean

How large a sample should we take to obtain a reliable estimate of the population mean?

The sample size can be calculated by the formula:

$$
n=\left(\frac{z_{\frac{\alpha}{2}} \sigma}{e}\right)^{2}
$$

where
$\sigma=$ standard deviation
$n=$ sample size
$e=$ error
$z_{\frac{\alpha}{2}}=$ the z - value leaving an area of $\frac{\alpha}{2}$ to the right
The sample size in the formula is the smallest sample size that will satisfy the accuracy requirement. Any larger sample size will also satisfy the requirements.

When finding the sample size, n, all fractional values are rounded up to the next whole number. This will reduce the error.

Example 3 A population has a standard deviation of 16 . What minimum sample size should be taken to estimate the mean within 2 units of true value with 95% confidence?

Answer

$\sigma=4 ; \quad e=2 ; \quad 95 \%=0.95 \Rightarrow \alpha=0.05 ; \frac{\alpha}{2}=0.025$
Using the inverse normal table with $\mathrm{P}=0.475 \quad\left(1-\frac{\alpha}{2}\right) \quad \Rightarrow z_{\sigma / 2}=1.960$

$$
\begin{aligned}
n & =\left(\frac{z_{\frac{\alpha}{2}} \sigma}{e}\right)^{2} \\
& =\left(\frac{1.96 \times 4}{2}\right)^{2}=15.37
\end{aligned}
$$

$$
\begin{array}{l|l}
=16 & \text { rounded up to the next whole number }
\end{array}
$$

Exercise 7.4

1. A sample of 100 students took a mean time of 40 minutes with a standard deviation of 10 minutes to travel to school. Determine the 95% confidence interval for the mean time taken by the students to travel to school.
2. A sample of size 120 items is taken from a population with an unknown mean mass, μ, and standard deviation 7.7 g . The sample mean mass is found to be 562 g . Construct a 99% confidence interval for the population mean mass, μ.
3. A sample of 225 students of Lomavata High school took a mean time of 30 minutes, with a standard deviation of 6 minutes, to travel to school. Determine the 98% confidence interval for the mean time taken by the students to travel to school.
4. A car reaches a speed of $100 \mathrm{~km} / \mathrm{h}$ on a straight narrow road and then suddenly it had to stop. If the standard deviation of the length taken to stop is 15 m , find how large a sample is required to be 95% confident that the error in the estimated mean will not exceed 2 m .
5. A population of adult height has a normal distribution with a standard deviation of 3.6 cm . Determine the sample size that is required to allow the mean of population to be estimated within 0.3 cm with 98% confidence.
6. Determine the sample size that is required to estimate the mean weight of boys in Class 2, with a standard deviation of 3 kg , if we want the estimate to be accurate to within 1 kg , with 95% confidence.
7. Determine the sample size that is required from a population of light bulbs with a bulb life that has a standard deviation of 20 hours, to estimate the mean bulb life to within 5 hours with 98% confidence.
8. Determine the sample size required to estimate weight of Form Seven Boys to within 1.0 kg with 95% confidence. Assume that the standard deviation of such weights is 3.0 kg .

7.5.1 Hypothesis Testing

- A hypothesis test is a statistical test where a sample data is used to decide whether statements made about population parameters are true or false.
(3) Examples of the type of statements to be tested are
- The average price of a school bag in Fiji is $\$ 10.90$
- The mean wage of workers in Fiji is $\$ 42$ per week.

These statements are examples of hypothesis.
$>$ An assumption about the existing situation or value of a population parameter is called the null hypothesis $\left(H_{0}\right)$. This is expressed in the form
$H_{0}: \mu=42$, if the assumption is that the mean wage of workers is $\$ 42$.
$>$ The alternative hypothesis $\left(H_{a}\right)$ is a new belief about the population parameter which one will have to accept if there is a significant difference between the sample results and the expected results. This is expressed in either of the forms shown below

$$
H_{a}: \mu \neq 42 \text { or } H_{a}: \mu>42 \text { or } H_{a}: \mu<42
$$

Significance level of the test

The probability of rejecting the null hypothesis when it is in fact correct is the significance level of the test. The significance level of the test is denoted by α.

- Type I Error

Rejecting a null hypothesis when in fact it is true
The probability of Type I Error is α
It is also called level of significance of the test

- Type II Error

Accepting a null hypothesis when in fact it is false

7.5.2 One-tailed and two-tailed test

> CASE 1: One - tailed test

- When a ' <' sign appears in the alternative hypothesis, the test is called a left-tailed test, i.e.

- When a ' > ' sign appears in the alternative hypothesis, the test is called a right-tailed test, i.e.

> CASE 2: Two- tailed test
An alternate hypothesis with a ' \neq ' sign is called a two-tailed test.

7.5.3 Steps in hypothesis Testing

Steps for Hypothesis testing:

- List down all given variables
- Set up the acceptance and rejection regions. Check the alternative hypothesis $\left(H_{A}\right)$ and decide on the type of graph to sketch.
- Use the inverse normal table to find the z-score. (If $\mu>\mu_{o}$ or $\mu<\mu_{o}$ find ' z_{α} ' else if $\mu \neq \mu_{\mathrm{o}}$ find $z_{\frac{\alpha}{2}}$)
- Calculate the value of z :

$$
z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}
$$

where
\bar{x} : sample mean
μ : population mean
$\sigma:$ standard deviation
n : sample size

- State the conclusion.

Example 1 A manufacturer of sports equipment has developed a new fishing line that he claims has a mean breaking strength of 10 kg with a standard deviation of 0.6 kg .
Test the null hypothesis $H_{0}: \mu=10 \mathrm{~kg}$ against the alternative hypothesis $H_{a}: \mu>10 \mathrm{~kg}$ if a random sample of 100 lines is tested and found to have a mean breaking strength of 10.2 kg . Use 0.01 level of significance and state your conclusion clearly.

Answer

$\bar{x}=10.2 \mathrm{~kg} ; \quad \sigma=0.6 ; \mathrm{n}=100 ; \alpha=0.01$;
$\mathrm{H}_{0}: \mu=10 \mathrm{~kg}$
$\mathrm{H}_{\mathrm{a}}: \mu>10 \mathrm{~kg}$

$\mathrm{z}=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}=\frac{10.2-10}{0.6 / \sqrt{100}}=3.33$
Since z value of 3.33 falls on the rejection region we ,therefore, reject the null hypothesis.

Example 2 A researcher claims that Fijian families use an average of 20 coconuts per month with standard deviation of 6 . Test the null hypothesis $H_{0}: \mu=20$ against the alternative hypothesis $H_{a}: \mu<20$ if a random sample of 64 Fijian families is found to consume an average of 19 coconuts per month. Use a 0.05 level of significance and state your conclusion.

Answer

$$
Z_{\alpha}=-1.6449
$$

Critical region: Reject H_{0} if $z<-1.6449$

$$
\begin{aligned}
\mathrm{Z} & =\frac{\bar{x}-\mu}{\sigma / \sqrt{\mathrm{n}}} \\
& =\frac{19-20}{6 / \sqrt{64}} \\
& =-1.33
\end{aligned}
$$

Since z value of -1.33 falls on the acceptance region we therefore, accept the null hypothesis
(8) Example 3 The mean lifetime of a sample of 150 torch bulbs produced by a company is computed to be 400 hours with a standard deviation of 80 hours. If μ is the mean lifetime of all the bulbs produced by the company, test the hypothesis $\mu=450$ hours against $\mu \neq 450$ hours at 5% level of significance.

Answer
$\bar{x}=400$ hours; $\sigma=80 ; \mathrm{n}=150 ; \alpha=5 \%=0.05 ; \frac{\alpha}{2}=0.025$
$H_{0}: \mu=450 ;$
$H_{A}: \mu \neq 450$;

Using the table $z_{\sigma / 2}=1.96$ (Using the inverse normal table with $\mathrm{P}=0.475\left(1-\frac{\alpha}{2}\right)$

Critical region: Reject H_{0} if $z<-1.96$ or $z>1.96$

$$
z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}=\frac{400-450}{80 / \sqrt{150}}=-7.65
$$

Since z value of -7.65 falls in the rejection region hence we reject H_{0}.

Exercise 7.5

1. Sometime ago, surveys of very large tuna fish caught showed a mean weight of 40 kg with a standard deviation of 2.1 kg . Fishermen claimed that because of pollution, the net weight of tuna caught has decreased. A sample of 80 tuna fish were weighed.
Construct a test in terms of the weight (kg) at a 1% level of significance to determine whether the null hypothesis $H_{0}: \mu=40 \mathrm{~kg}$ can be accepted given the alternative hypothesis, $H_{A}: \mu<40 \mathrm{~kg}$. What conclusion would be reached if the sample mean is 32 kg ?
2. A farmer claims that each bundle of dalo has an average weight of 8 kg with a standard deviation of 0.5 kg . A sample of 50 bundles is chosen. It is found that the average weight is 7.8 kg .

Construct a hypothesis test at a 5% level of significance to confirm whether the mean is less than $8 \mathrm{~kg}\left(H_{0}: \mu=8, H_{a}: \mu<8\right)$.
3. A researcher claims that Fijian families use an average of 20 coconuts per month with standard deviation of 7 .
Test the null hypothesis $H_{0}: \mu=20$ against the alternative hypothesis $H_{a}: \mu>20$ if a random sample of 64 Fijian families is found to consume an average of 21 coconuts per month. Use a 0.03 level of significance and state your conclusion clearly.
4. A farmer supplies 500 bundles of long beans to the market every week. He claims that each bundle has an average of 20 long beans with a standard deviation of 4 long beans. A sample of 50 bundles is chosen and the beans counted. It is found that the average number of long bean is 21 .
Test the null hypothesis, $H_{0}: \mu=20$ long beans against the alternative hypothesis, $H_{A}: \mu>20$ long beans at a 1% significance level and state your conclusion.
5. A company has developed a fishing line that it claims has a mean breaking strength of 9 kg with a standard deviation of 0.6 kg . A random sample of 50 lines is tested and found to have a mean breaking strength of 8.9 kg . Construct a hypothesis test at 5% level of significance to determine whether the null hypothesis $H_{0}: \mu=9 \mathrm{~kg}$ can be accepted given the alternative hypothesis, $H_{A}: \mu \neq 9 \mathrm{~kg}$ and state your conclusion.
6. A chicken farmer weighed a random sample of 55 chicken from his farm. He wanted to test the claim that the mean weight of chicken at 6 weeks of age in a chicken farm is 1.95 kg with a standard deviation of 0.4 kg .

Construct a test at 1% significance level to determine whether the null hypothesis $H_{0}: \mu=1.95 \mathrm{~kg}$ can be accepted given the alternative hypothesis $H_{A}: \mu \neq 1.95 \mathrm{~kg}$. If the sample mean is 2.3 kg , what is your conclusion?

As far as the laws of mathematics refer to reality, they are not certain; and as far
(https://www.stat.berkeley.edu/~aldous/Real-World/cover.html)

Review Exercise 7

1. Calculate the minimum sample size that is required to estimate the mean weight of a population, with standard deviation of 0.9 kg , if we want the estimate to be within 0.2 kg of its true value with 99% confidence.
2. The probability of Ruci winning a game is $\mathbf{0 . 4 5}$. If she plays $\mathbf{1 2}$ games, what is the probability that she wins 10 games?
3. An experiment consists of rolling 2 fair dice. Event \mathbf{A} is "the number on the first die is 5 " and event \mathbf{B} is "the sum of the numbers is 9 ".
a) Are events \mathbf{A} and \mathbf{B} mutually exclusive? Give a reason for your answer.
b) What is the probability that event \mathbf{A} or \mathbf{B} occurs?
4. A normal random variable X has standard deviation of 4 . Given that $P(X>150)=0.025$, find the mean.
5. A manufacturer of sports equipment has developed a new fishing line that has an average breaking strength of 8 kg with a standard deviation of 0.6 kg .

Test the null hypothesis, $H_{0}: \mu=8 \mathrm{~kg}$ against the alternative hypothesis, $H_{A}: \mu<8 \mathrm{~kg}$ if a random sample of 100 lines is tested and found to have a mean breaking strength of 7.8 kg . Use 2% significance level and state your conclusion clearly.

8.1.1 Common Derivatives

$>$ To differentiate, $y=k x^{n}$, multiply the coefficient k by the power n and then reduce the power by one.

$$
\begin{aligned}
y & =x^{n} \\
y^{\prime} \text { or } \frac{d y}{d x} & =n \cdot x^{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=a x^{n} \\
& f^{\prime}(x)=(n \times a) x^{n-1}
\end{aligned}
$$

> Derivative of a constant is equal to zero.
$\Rightarrow \quad y=e^{x}$ has a special property that its derivative is the function itself.

$$
\begin{aligned}
y & =e^{x} \\
\frac{d y}{d x} & =e^{x}
\end{aligned}
$$

$>$ Derivatives of trigonometric and logarithmic functions

$y=f(x)$	$\frac{d y}{d x}{\text { or } f^{\prime}(x)}^{\mid \ln x}$
$\sin x$	$\frac{1}{x}$
$\cos x$	$-\sin x$
$\tan x$	$\sec ^{2} x$

Example 1 Find the derivative of $f(x)=x^{2}-1$
Answer

$$
\begin{aligned}
& f(x)=x^{2}-1 \\
& f^{\prime}(x)=2 x^{2-1}-0 \\
& \quad=2 x
\end{aligned}
$$

(3) Example 2 Differentiate $g(x)=3 x^{2}+\sqrt[3]{x}$

Answer

$$
\begin{aligned}
g(x) & =3 x^{2}+x^{\frac{1}{3}} \\
g^{\prime}(x) & =3 \times 2 x^{2-1}+\frac{1}{3} x^{\frac{1}{3}-1} \\
& =6 x+\frac{1}{3} x^{-\frac{2}{3}}
\end{aligned}
$$

(3) Example 3 Find the derivative of $y=4 x^{2}+3 e^{x}$

R Answer
Differentiate term by term

(2) Example 4 Find the derivative of $y=\sin x+\ln x$
\& Answer
Differentiate term by term

$$
\begin{aligned}
& y=\sin x+\ln x \\
& y^{\prime}=\cos x+\frac{1}{x}
\end{aligned}
$$

Exercise 8.1.1

Find the derivative of the following:
a) $y=\frac{1}{x^{2}}+3 \sqrt{x}-20$
b) $g(x)=\frac{1}{3 x^{3}}-5 \cos x$
c) $f(x)=3 x^{2}+e^{x}-42$
d) $h(x)=\tan x+\ln x$

Many aspects of civil engineering require calculus. Derivation of the basic fluid mechanics equations. All hydraulic analysis program that aids in the design of storm drain and open channel systems, uses calculus numerical methods to obtain the results ~ Michael Ocampo

8.1.2 Product and Quotient Rule

Example 1 Differentiate
a) $y=\left(x^{2}-1\right)(x+2)$
b) $y=(\sqrt{x}-1)\left(x^{2}+4\right)$

Answers

Use the product rule

$$
\begin{aligned}
& y=\left(x^{2}-1\right)(x+2) \\
& \downarrow \downarrow \\
& y=\quad f \times g
\end{aligned}
$$

Compute the derivatives of f and g

$$
\begin{array}{ll}
f=x^{2}-1 & g=x+2 \\
f^{\prime}=2 x & g^{\prime}=1
\end{array}
$$

Substitute in the formula:

$$
\begin{aligned}
& \frac{d y}{d x}=f^{\prime} g+g^{\prime} f \\
& =2 x(x+2)+1\left(x^{2}-1\right) \\
& =2 x^{2}+4 x+x^{2}-1 \\
& =3 x^{2}+4 x-1
\end{aligned}
$$

$$
\begin{gathered}
y=(\sqrt{x}-1)\left(x^{2}+4\right) \\
\downarrow=\quad f \times g
\end{gathered}
$$

Compute the derivatives of f and g

$$
\begin{array}{ll}
f=\sqrt{x}-1 & g=x^{2}+4 \\
f^{\prime}=1 / 2^{-1 / 2} & g^{\prime}=2 x
\end{array}
$$

Substitute in the formula:

$$
\begin{aligned}
\frac{d y}{d x} & =f^{\prime} g+g^{\prime} f \\
& =1 / 2 x^{-1 / 2}\left(x^{2}+4\right)+2 x(\sqrt{x}-1) o r \\
& =\frac{\left(x^{2}+4\right)}{2 \sqrt{x}}+2 x(\sqrt{x}-1)
\end{aligned}
$$

(8) Example 2 Differentiate $f(x)=\frac{-3 x+2}{x+1}$
\& Answer

$$
f(x)=\frac{-3 x+2}{x+1}=\frac{f}{g}
$$

Compute the derivatives of f and g

$$
\begin{array}{ll}
f=-3 x+2 & g=x+1 \\
f^{\prime}=-3 & g^{\prime}=1
\end{array}
$$

Substitute in the formula:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{g f^{\prime}-f g^{\prime}}{g^{2}} \\
f^{\prime}(x) & =\frac{(x+1)(-3)-(-3 x+2)(1)}{(x+1)^{2}} \\
f^{\prime}(x) & =\frac{-5}{(x+1)^{2}}
\end{aligned}
$$

Exercise 8.1.2

1. Differentiate the following:
a) $y=x^{2}(4 x+1)$
b) $g(x)=2 x \cdot \sqrt{x+1}$
c) $f(x)=3 x^{2} \cdot \sqrt[3]{x}$
d) $y=3 e^{x} \cdot \sqrt{x}$
e) $f(x)=\sin x \cos x$
f) $y=\ln x \sin x$.
2. Find the derivative of the following:
a) $y=\frac{2 x+7}{3 x-5}$
b) $g(x)=\frac{\sqrt{x}+1}{3 x^{3}}$
c) $f(x)=\frac{e^{x}}{\sqrt{x}}$
d) $y=\frac{\sin x}{\cos x}$
e) $f(x)=\frac{e^{x}}{\ln x}$
f) $y=\frac{e^{x}}{\cos x}$

8.1.3 Chain rule

This method is used only for composite functions. Suppose that y is the function consisting of variable u and u is the function consisting of variable x, then
$\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$
Left side is exactly what results if we cancel the $d u$'s on the right side

The following steps can be used to find the derivative:

- Let inside function be u and differentiate to get $\frac{d u}{d x}$
- Write y in terms of u and differentiate to get $\frac{d y}{d u}$
- Multiply $\frac{d y}{d u}$ with $\frac{d u}{d x}$ to get $\frac{d y}{d x}$
- Rewrite back in terms of x.
- Short Cut method

$$
\begin{aligned}
& y=f(g(x)) \\
& \frac{\mathrm{d} y}{\mathrm{~d} x}=f^{\prime}(g(x)) \times g^{\prime}(x)
\end{aligned}
$$

$$
\begin{aligned}
& y=[f(x)]^{n} \\
& \frac{d y}{d x}=n \times[f(x)]^{n-1} \times f^{\prime}(x)
\end{aligned}
$$

Find the derivative of the outside function evaluated at the inside function times the derivative of the inside function.
(8) Example 1 Find the derivative of $y=\left(x^{2}+2 x\right)^{4}$

Answer

Let function inside the bracket to be \boldsymbol{u} and differentiate

$$
\begin{aligned}
& u=\left(x^{2}+2 x\right) \\
& \frac{d u}{d x}=2 x+2
\end{aligned}
$$

Write y in terms of u and differentiate

$$
\begin{aligned}
& y=u^{4} \\
& \frac{d y}{d u}=4 u^{3}
\end{aligned}
$$

Multiply and write back in terms of x.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=4 u^{3} \times 2 x+2 \\
& =4\left(x^{2}+2 x\right)^{3} \times(2 x+2)
\end{aligned}
$$

(3) Example 2

Differentiate $\quad y=e^{2 x^{2}+1}$
\& Answer

$$
\begin{aligned}
\frac{d y}{d x} & =e^{2 x^{2}+1} \times 4 x \quad \begin{array}{l}
\quad e^{f(x)} \Rightarrow \text { chain rule }: \\
\\
\\
\end{array}=4 x e^{2 x^{2}+1} \quad \text { derivative of outer } e^{f(x)} \times \text { derivative of inner } 2 x^{2}+1
\end{aligned}
$$

(3) Example 3 Differentiate $y=\cos \left(2 x^{2}\right)$

Answer

$$
\begin{aligned}
\frac{d y}{d x} & =-\sin \left(2 x^{2}\right) \times 4 x \quad \text { Derivative of outer function }(\cos) \times \text { derivative of inner } \\
& =-4 x \sin \left(2 x^{2}\right)
\end{aligned}
$$

Finding Derivatives Using Combination of Rules

(3) Example 1 Find the derivative of $y=x \ln 2 x$
\& Answer Product rule

Compute the derivatives of f and g

$$
\begin{array}{rlrl}
f=x & g & =\ln 2 x \\
f^{\prime}=1 & g^{\prime} & =\frac{1}{2 x} \times 2 \\
& & =\frac{1}{x}
\end{array}
$$

Substitute in the formula:

$$
\begin{aligned}
& \frac{d y}{d x}=f^{\prime} g+g^{\prime} f \\
& =1 \times \ln 2 x+\frac{1}{x} \times x \\
& =\ln 2 x+1
\end{aligned}
$$

(3) Example 2 Find the derivative of $y=x^{2} e^{-2 x}$
\& Answer Product rule

Compute the derivatives of f and g

$$
\begin{array}{rlrl}
f=x^{2} & & g & =e^{-2 x} \\
f^{\prime}=2 x & g^{\prime} & =e^{-2 x} \times-2 \\
& & =-2 e^{-2 x}
\end{array}
$$

Substitute in the formula:

$$
\begin{aligned}
& \frac{d y}{d x}=f^{\prime} g+g^{\prime} f \\
& =2 x e^{-2 x}+x^{2}\left(-2 e^{-2 x}\right) o r \\
& =2 x e^{-2 x}(1-x)
\end{aligned}
$$

(2) Example 3 Differentiate $y=\frac{4 e^{-2 x}}{\cos 2 x}$

Answer using quotient rule:
$y=\frac{4 e^{-2 x}}{\cos 2 x}=\frac{f}{g}$
Compute the derivatives of f and g

$$
\begin{aligned}
f & =4 e^{-2 x} & & g=\cos 2 x \\
f^{\prime} & =4 e^{-2 x} \times-2 & g^{\prime} & =-\sin 2 x \times 2 \\
& =-8 e^{-2 x} & & =-2 \sin 2 x
\end{aligned}
$$

Substitute in the formula:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{g f^{\prime}-f g^{\prime}}{g^{2}} \\
f^{\prime}(x) & =\frac{-8 e^{-2 x}(\cos 2 x)+8 e^{-2 x} \sin 2 x}{(\cos 2 x)^{2}}
\end{aligned}
$$

Exercise 8.1.3

1. Differentiate the following:
a) $y=(2-3 x)^{-1}$
b) $y=(3-4 x)^{\frac{3}{2}}$
c) $y=4(3-2 x)^{-2}$
d) $y=3\left(x^{2}-5 x\right)^{2}$
2. Differentiate the following with respect to x.
a) $y=-3 \cos \frac{x}{2}$
b) $f(x)=\ln x \sin ^{2}(x-3)$
c) $g(x)=\tan \sqrt{x}$
d) $y=\frac{\cos 2 x}{\sin x^{3}}$
e) $y=\frac{x+1}{e^{3 x}}$
f) $y=\sin ^{2}\left(e^{2 x}\right)$
3. Given that $y=e^{x} \sin \sqrt{x^{2}+1}$, find $\frac{d y}{d x}$.
4. Given that $y=\frac{\sin x}{\cos x}$, use the quotient rule to show that $\frac{d y}{d x}=\frac{1}{\cos ^{2} x}$.
5. Differentiate the following with respect to x.
a) $f(x)=e^{x^{3}}+5 x$
b) $g(x)=\sqrt{e^{x}}+\frac{1}{5 x}$
c) $y=\frac{x^{2}}{e^{2 x}}$
6. Differentiate the following with respect to x.
a) $y=\sqrt{x} \ln x$
b) $f(x)=e^{-3 x^{2}} \ln x$

In business, Calculus can help by providing an accurate and measurable way to record changes in variables using numbers and mathematics. Derivatives are

8.1.4 Logarithmic differentiation

Logarithmic function is the inverse function of $y=e^{x}$. Note that $y=\log _{e} x$ is often written as $y=\ln x$.

$$
\text { If } \begin{aligned}
y & =\ln x \\
\frac{d y}{d x} & =\frac{1}{x}
\end{aligned} \quad \begin{aligned}
y & =\ln f(x) \\
\frac{d y}{d x} & =\frac{1}{f(x)} \times f^{\prime}(x)
\end{aligned}
$$

Logarithmic differentiation: differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f, the technique is often performed in cases where it is easier to differentiate the logarithm of a function rather than the function itself.

Example 1 Use logarithmic differentiation to differentiate

$$
y=\frac{(x-1)}{(x+3)^{2}}
$$

Answer

$$
\begin{aligned}
& y=\frac{(x-1)}{(x+3)^{2}} \\
& \ln y=\ln \frac{(x-1)}{(x+3)^{2}}
\end{aligned}
$$

$$
\text { Using } \ln \frac{a}{b}=\ln a-\ln b
$$

$$
\ln y=\ln (x-1)-\ln (x+3)^{2}
$$

$$
\ln y=\ln (x-1)-2 \ln (x+3) \quad \text { Using } \ln a^{n}=n \ln a
$$

$$
\frac{1}{y} \frac{d y}{d x}=\frac{1}{x-1}-2 \times \frac{1}{x+3}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\left(\frac{1}{x-1}-\frac{2}{x+3}\right) \times y \Rightarrow \text { substitute } y \\
& \frac{d y}{1}=\left(\frac{1}{2}\right) \times-(x-1)
\end{aligned}
$$

$$
\frac{d y}{d x}=\left(\frac{1}{x-1}-\frac{2}{x+3}\right) \times \frac{(x-1)}{(x+3)^{2}}
$$

$$
=\frac{(x+3)-2(x-1)}{(x-1)(x+3)}
$$

$$
\frac{d y}{d x}=\frac{-x+5}{(x-1)(x+3)} \times \frac{(x-1)}{(x+3)^{2}}
$$

$$
=\frac{x+3-2 x+2}{(x-1)(x+3)}
$$

$$
\frac{d y}{d x}=\frac{-x+5}{(x+3)^{3}}
$$

$$
=\frac{-x+5}{(x-1)(x+3)}
$$

(2) Example 2 Use logarithmic differentiation to differentiate

$$
y=(x-1)^{3}(x+3)^{2}
$$

Answer

$$
\left.\begin{array}{rl}
y & =(x-1)^{3}(x+3)^{2} \\
\ln y & =\ln \left[(x-1)^{3}(x+3)^{2}\right]
\end{array} \quad \text { Using } \ln a b=\ln a+\ln b\right) ~ \begin{array}{ll}
\ln y=\ln (x-1)^{3}+\ln (x+3)^{2} & \text { Using } \ln a^{n}=n \ln a
\end{array}
$$

$$
\begin{array}{l|}
\frac{1}{y} \frac{d y}{d x}=3 \times \frac{1}{x-1}+2 \times \frac{1}{x+3} \\
\frac{d y}{d x}=\left(\frac{3}{x-1}+\frac{2}{x+3}\right) \times y \Rightarrow \text { substitute } y \\
\frac{d y}{d x}=\left(\frac{3}{x-1}+\frac{2}{x+3}\right) \times(x-1)^{3}(x+3)^{2} \\
\frac{d y}{d x}=\frac{5 x+7}{(x-1)(x+3)} \times(x-1)^{3}(x+3)^{2} \\
\frac{d y}{d x}=(5 x+7)(x-1)^{3-1}(x+3)^{2-1}
\end{array} \begin{aligned}
& \frac{3}{x-1}+\frac{2}{x+3} \\
& =\frac{3(x+3)+2(x-1)}{(x-1)(x+3)} \\
& =\frac{3 x+9+2 x-2}{(x-1)(x+3)} \\
& =\frac{5 x+7}{(x-1)(x+3)}
\end{aligned}
$$

$$
\frac{d y}{d x}=(5 x+7)(x-1)^{2}(x+3)
$$

(8) Example 4 Use logarithmic differentiation to differentiate $y=(x+1)^{\sin x}$

\& Answer

$y=(x+1)^{\sin x}$
$\ln y=\ln (x+1)^{\sin x} \quad \Rightarrow$ take \ln on both sides
$\ln y=\sin x \ln (x+1) \quad \Rightarrow \ln a^{n}=n \ln a$
Use the product rule on right hand side

$$
\begin{array}{ll}
f=\sin x & g=\ln (x+1) \\
f^{\prime}=\cos x & g^{\prime}=\frac{1}{x+1}
\end{array}
$$

$\frac{1}{y} \frac{d y}{d x}=\cos x \ln (x+1)+\sin x \times \frac{1}{x+1}$
$\frac{d y}{d x}=\left(\cos x \ln (x+1)+\sin x \times \frac{1}{x+1}\right) \times y \Rightarrow$ substitute y
$\frac{d y}{d x}=\left(\cos x \ln (x+1)+\frac{\sin x}{x+1}\right) \times(x+1)^{\sin x}$
(2) Example 5 Differentiate $y=\log _{3} x$
\& Answer

$$
\begin{aligned}
y & =\log _{3} x \\
3^{y} & =x \quad \text { [Write in base index form] } \\
\ln 3^{y} & =\ln x \quad \text { [Take } \ln \text { on both sides] } \\
y \ln 3 & =\ln x \\
\ln 3 \frac{d y}{d x} & =\frac{1}{x} \\
\frac{d y}{d x} & =\frac{1}{(\ln 3) x}
\end{aligned}
$$

Exercise 8.1.4

Use logarithmic differentiation to find the derivatives of the following.
a) $y=\sqrt{(x-1)}(x+3)^{2}$
b) $y=3^{-x}$
c) $y=\frac{(x-1)^{2}}{(x+3)}$
d) $y=x^{x}$
e) $y=\left(x^{3}-2 x\right)^{\ln x}$
f) $y=\pi^{\sin x y}$
g) $y=(\cos x)^{x}$
h) $y=2^{x}$
i) $y=\log _{3} x$
j) $y=\log x$
k) $y=\log _{2} x$
I) $y=\log 2 x$

8.1.5 Implicit differentiation

This type of questions will include both x and y on both or one side of the equation.

- When differentiating with respect to the variable y attach $\frac{d y}{d x}$
- Make $\frac{d y}{d x}$ the subject by collecting all $\frac{d y}{d x}$ on one side of the equation.

Example 1 Use implicit differentiation to find $\frac{d y}{d x}$ given that $3 x^{2}+5 y^{4}=x$
Answer

$$
\begin{aligned}
& 5 x^{2}+\begin{aligned}
y^{4} & =x
\end{aligned} \\
& 6 x+20 y^{3} \frac{d y}{d x}=1 \\
& 20 y^{3} \frac{d y}{d x}=1-6 x \\
& \frac{d y}{d x}=\frac{1-6 x}{20 y^{3}}
\end{aligned}
$$

(3) Example 2 Use implicit differentiation to find $\frac{d y}{d x}$ given that $x^{2}+y^{2}=x y$

Answer

For each term:

(8) Example 3 Find $\frac{d y}{d x}$ if $\sin y+y^{2} e^{x}=x^{3}$.

Answer

For each term:

Make $\frac{d y}{d x}$ the subject:
$\cos y \frac{d y}{d x}+2 y e^{x} \frac{d y}{d x}=3 x^{2}-y^{2} e^{x}$
$\frac{d y}{d x}\left(\cos y+2 y e^{x}\right)=3 x^{2}-y^{2} e^{x}$
$\frac{d y}{d x}=\frac{3 x^{2}-y^{2} e^{x}}{\cos y+2 y e^{x}}$

Exercise 8.1.5

Find $\frac{d y}{d x}$ for the following:

1. $y^{3}-3 x=12$
2. $\sin y-x+1=y$
3. $x^{2} e^{y}-3 x=20$
4. $x y+5=\cos y$
5. $\sin (x y)-5 x=1$
6. $\ln y-3 x y=2 e^{x}$
7. $x \ln y^{2}-x e^{x}=12 y$
8. $x^{2} e^{y}-3 y+\cos x=\frac{2}{x}$

Isaac Newton developed the use of calculus in his laws of motion and gravitation. Astronomical Science and space technology deeply depend on calculus. Also, calculus is used in building tracks ~ Michael Ocampo

Applications of

 DifferentiationMaximum and Minimum Value
See the figure below

Points A, B and C are called stationary points on the graph. From the first derivative curve, we see that for stationary points

```
For stationary points, A, B, C: }\frac{\textrm{d}y}{\textrm{d}x}=
```


8.2.1 Concavity, Points of inflection and Turning Points

A piece of the graph of f is concave upward if all the tangents on the interval are below the curve. The curve is bent upward, like an upright bowl or cup.

Or
A piece of the graph of f is concave downward if all the tangents on the interval are above the curve. The curve is bent down, like an upside down bowl.

Or

A point at which the graph changes from being concave up to concave down, or vice versa, is called a point of inflection.

The concavity of a graph and the points of inflections can be determined by using the second derivative.
(a) If $\mathrm{f}^{\prime \prime}(x)>0$ for all x of an interval, then the graph of f is concave upward on the interval.
(b) If $\mathrm{f}^{\prime \prime}(x)<0$ for all x of an interval, then the graph of f is concave downward on the interval.
(c) If $\mathrm{f}^{\prime \prime}(x)=0$ and the concavity changes, there is a point of inflection.

To find Turning Points:

- Find $f^{\prime}(x)$.
- Put $f^{\prime}(x)=0$ and solve for x.
- Find the y-values by substituting the x-values you got from solving $f^{\prime}(x)=0$ into $y=f(x)$.
For cubic polynomials, the turning point with a bigger y-value is the local maximum point
(3) Example 1: Find intervals of concavity and inflection points if any of

$$
y=3 x^{2}-9 x+9
$$

Answer

First, the second derivative is just $f^{\prime \prime}(x)=6$
Since this is never zero, there are no points of inflection. And the value of $f^{\prime \prime}(x)$ is always 6 , so is always >0 so the curve is entirely concave upward. Since concavity does not change, there is no point of inflection.
(8) Example 2: Find turning points, intervals of concavity, inflection points of $f(x)=x^{3}-1.5 x^{2}-6 x+5$ and sketch its graph.

Answer

To find turning points

$$
f^{\prime}(x)=3 x^{2}-3 x-6
$$

At turning point

$$
\begin{aligned}
& f^{\prime}(x)=0 \\
& 3 x^{2}-3 x-6=0 \\
& 3\left(x^{2}-x-2\right)=0 \\
& \left(x^{2}-x-2\right)=0 \\
& (x+1)(x-2)=0 \\
& x=-1,2
\end{aligned}
$$

Substitute x values in $f(x)=x^{3}-1.5 x^{2}-6 x+5$ to get y values.
The coordinates of the turning points are $(-1,8.5)$ and $(2,-5)$

Concave upward

$$
f^{\prime \prime}(x)=6 x-3
$$

Solving $f^{\prime \prime}(x)>0$

$$
6 x-3>0
$$

$$
6 x>3
$$

$$
x>0.5
$$

Thus it is concave upward in the interval $x>0.5$

Concave Downwards

Solving $f^{\prime \prime}(x)<0$

$$
\begin{aligned}
6 x-3 & <0 \\
6 x & <3 \\
x & <0.5
\end{aligned}
$$

Thus it is concave downward in the interval $x<0.5$.

Point of inflection

The graph has an inflection point at $x=0.5$ since the concavity changes at this point.

$$
\begin{aligned}
f(0.5) & =0.5^{3}-1.5 \times 0.5^{2}-6 \times 0.5+5 \\
& =1.75
\end{aligned}
$$

The coordinates of point of inflection $=(0.5,1.75)$

Graph showing key features

Exercise 8.2.1

1. Find turning points, intervals of concavity, coordinates of point of inflection, y-intercept and sketch the graph of the curves:
a) $y=x^{3}-6 x^{2}-15 x+20$
b) $y=x^{3}-9$
c) $f(x)=x^{3}-3 x^{2}$
d) $f(x)=(x-1)^{3}+2$
2. Find the x value of the point of inflection of the graph with the equation $y=2 x^{-1}-2 x^{2}$.
3. Find c and d so that $f(x)=c x^{3}+d x^{2}+1$ has a point of inflection at $(-1,2)$.

8.2.2 Applied Maximum and Minimum problems

Applied problems in which we have to find the maximum or minimum are sometimes called optimization problems.

Steps to solve optimization problems :

- List the information: Read the question carefully and extract the relevant information.
- Develop a function that describes the situation algebraically: These are usually the quantities asked for in the problem. Draw appropriate diagrams where applicable.
- Find the derivative of the function, equate to zero and solve for the quantity.
- Determine whether it is a maximum or minimum and answer the question that has been asked.
(3) Example 1 A closed cylindrical container with volume $1000 \mathrm{~cm}^{3}$ is to be made out of a rectangular piece of aluminum sheet. What should the dimensions of the cylinder be (radius and height) such that minimum amount of aluminum is used?

Answer

$$
\begin{aligned}
& \text { volume } 1000 \mathrm{~cm}^{3} \\
& \text { Volume }=\pi r^{2} h \\
& 1000=\pi r^{2} h \\
& h=\frac{1000}{\pi r^{2}}
\end{aligned}
$$

Surface Area $=2\left(\pi r^{2}\right)+2 \pi r h$

$$
\begin{aligned}
S & =2\left(\pi r^{2}\right)+2 \pi r\left(\frac{1000}{\pi r^{2}}\right) \\
S & =2 \pi r^{2}+2000 r^{-1}
\end{aligned}
$$

Find the derivative, equate to zero and solve for r :

$$
\begin{aligned}
& S^{\prime}=0 \\
& S=2 \pi r^{2}+2000 r^{-1} \\
& S^{\prime}=4 \pi r-2000 r^{-2}=0 \\
& 4 \pi r=2000 r^{-2}
\end{aligned}
$$

$$
\begin{gathered}
4 \pi r=\frac{2000}{r^{2}} \\
4 \pi r^{3}=2000 \\
r=5.42 \\
h=\frac{1000}{\pi r^{2}}=10.84
\end{gathered}
$$

Thus, radius and height are 5.42 cm and 10.84 cm
(8) Example 2 A rectangular field is to be fenced for the storage area of a company. The field is to have an area of $2000 \mathrm{~m}^{2}$. The material for the front side costs $\$ 3$ per metre while the material for the other three sides costs $\$ 2$ per metre.

Find the dimensions for the field that will minimize the cost of fencing.

Answer

Area of 2000
Area $=l \times w$
$2000=x y$

$$
y=\frac{2000}{x}
$$

The cost of material

$$
\begin{aligned}
& C=3 x+2 y+2 y+2 x \\
& C=5 x+4 y \\
& C=5 x+4\left(\frac{2000}{x}\right) \\
& C=5 x+8000 x^{-1}
\end{aligned}
$$

Find the derivative, equate to zero and solve for x :

$$
\begin{aligned}
& C^{\prime}(x)=0 \\
& C(x)=5 x+8000 x^{-1} \\
& C^{\prime}(x)=5-8000 x^{-2}=0 \\
& 5=\frac{8000}{x^{2}} \\
& x^{2}=\frac{8000}{5} \\
& \quad=1600 \\
& x=40 m \\
& y=\frac{2000}{x}=\frac{2000}{40}=50 m
\end{aligned}
$$

Thus, length and width are 40 m and 50 m respectively.

Exercise 6.3.2

1. A closed rectangular container with square base is to have a volume of $2000 \mathrm{~cm}^{3}$. The material for the top and bottom will cost $\$ 2$ per cm^{2} and the material for the side will cost $\$ 3$ per cm^{2}. Find the dimensions of the container of least cost.
2. A box in the shape of a cuboid with a square base is to be made so that the sum of its dimensions is 20 cm . Find the maximum volume.
3. A field is shown below. It is to be divided into three paddocks and fenced using 1200 m of fence. Find the length and width of the field that will give a maximum area.

4. A farmer wishes to fence off a rectangular enclosure. Two existing hedges at right angles to each other will form two sides of the enclosure, so that he has to fence the other two sides. What is the maximum area that he can enclose using 100 m of fencing.
5. A packaging firm is designing boxes modeled by a cuboid. The cross-section of the box is to be a rectangle with length twice the width. If the volume of the box is to be $8 \mathrm{~m}^{3}$, determine the minimum Surface Area.
6. A rectangular lot is bounded at the back by a river. No fence is needed along the river. If the fence along the front costs $\$ 1.50$ per foot, along the sides $\$ 1$ per foot, find the dimensions of the largest lot which can be fenced in for \$300.
7. Find the maximum volume of a cone if the sum of its height and radius is 10 cm .

In medicine, calculus can be used to find the amount of blood pumped through the heart per unit time. Doctors often use calculus in the estimation of the progression of the illness. In biology, it is utilized to formulate rates such as birthand death rates. Also, calculus is used to find out the rate of change of the surface area for a rapidly growing adolescent. \sim Michael Ocampo

8.2.3 Related Rate problems

The usual context for rates of change is with respect to t. [time]

Steps

1. Identify the known rate of change and the rate of change to be found.
2. Write an equation that relates the quantities in step 1.

To develop your equation, you will probably use:
i. a simple geometric fact (like the relation between a circle's area and its radius, or the relation between the volume of a cone and its baseradius and height); or
ii. a trigonometric function (like $\tan \theta=$ opposite/adjacent); or
iii. the Pythagoras theorem; or
iv. similar triangles.
3. Take the derivative with respect to time of both sides of your equation.
4. Solve for unknown

Example 1 A stone is dropped into a pool of water. The radius of the circular ripple formed increases at $3 \mathrm{~m} / \mathrm{s}$. Calculate the rate at which the area of the ripple is increasing when radius is 8 m .

Answer

$$
\text { Radius increases at } 3 \mathrm{~m} / \mathrm{s} \Rightarrow \frac{d r}{d t}=3 \mathrm{~m} / \mathrm{s}
$$

$$
\frac{d A}{d t}=?, \text { when } r=8
$$

$$
A=\pi r^{2}
$$

Find the derivative of the function with respect to \mathbf{t}

$$
\begin{array}{rlr}
\frac{d A}{d t} & =2 \pi r \frac{d r}{d t} & \\
& =(2 \pi r) \times 3 & \\
& =6 \pi r & \\
& =6 \pi(8) & \text { Substitute } r=8 \mathrm{~m} \\
& =48 \pi \mathrm{~m}^{2} / \mathrm{s} &
\end{array}
$$

(8) Example 2 The radius of a conical filter is 4 cm and its height is 16 cm . Initially it is full of liquid.

As the liquid flows out, the volume decreases at a constant rate, $\frac{d V}{d t}=-2 \mathrm{~cm}^{3}$ per second. At what rate will the depth of the liquid change when $h=8 \mathrm{~cm}$ deep?

Answer

$$
\begin{aligned}
& \frac{d V}{d t}=-2 \mathrm{~cm}^{3} / \mathrm{s} \\
& \frac{d h}{d t}=?, \text { when } h=8
\end{aligned}
$$

Finding the expression for r using similar triangles.

$$
\begin{aligned}
& \frac{r}{h}=\frac{4}{16} \Rightarrow r=\frac{4}{16} h \\
& r=\frac{h}{4} \\
& \mathrm{~V}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h} \\
& \mathrm{~V}=\frac{1}{3} \pi\left(\frac{\mathrm{~h}}{4}\right)^{2} \times \mathrm{h} \\
& \mathrm{~V}=\frac{\pi \mathrm{h}^{3}}{48}
\end{aligned}
$$

Find the derivative with respect to h.

$$
\begin{aligned}
& \mathrm{V}=\frac{\pi}{48} \mathrm{~h}^{3} \\
& \frac{d \mathrm{~V}}{d \mathrm{~h}}=\frac{\pi}{48}\left(3 \mathrm{~h}^{2}\right)=\frac{3 \pi \mathrm{~h}^{2}}{48}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d h}{d t}=?, \text { when } h=8 \\
& \begin{aligned}
& \frac{d \mathrm{~h}}{d t}=\frac{d \mathrm{~h}}{d \mathrm{~V}} \times \frac{d \mathrm{~V}}{d \mathrm{t}} \\
&\left.\frac{d \mathrm{~h}}{d t}\right|_{h=8}=\frac{48}{3 \pi \mathrm{~h}^{2}} \times-2 \\
&=\frac{48}{3 \pi\left(8^{2}\right)} \times-2 \\
&=\frac{-1}{2 \pi} \mathrm{~cm} / \mathrm{s} \\
& \text { Substitute } h=8 \mathrm{~cm}
\end{aligned}
\end{aligned}
$$

Negative sign indicates that h is decreasing.

Exercise 8.2.3

1. A 5 m long ladder is learning against a wall, making an angle Θ with the ground.

If the top of the ladder slides down the wall at a rate of $0.5 \mathrm{~m} / \mathrm{s}$, at what rate:
a) will the angle between the ladder and the ground change when the top is 4 m above the ground?
b) will the foot of the ladder move along the ground when the top of the ladder is 3 m above the ground?
2. The surface area of a large spherical balloon is increasing at a constant rate of $\pi \mathrm{m}^{2} / \mathrm{s}$. At what rate is the diameter increasing when radius is 2.0 m ?
3. A manufacturer finds that the profit (in dollars) received from making and selling x quantities of her product is given by $P(x)=\left(x^{2}+x\right)^{2}$. If the rate of production is kept at 5 units per month, what is the rate of change of profit when 20 units have been made?
4. An object is dropped in water and generates a circular wave. If the area enclosed by the wave increases at a rate of $5 \mathrm{~m}^{2}$ per second, find the rate of change of the radius of the wave when the area is $15 \mathrm{~m}^{2}$.
5. Sand is poured onto the ground and forms a conical pile whose altitude is twice the radius of the base. If sand is being poured at a $2 \mathrm{~m}^{3} /$ minute, find the rate at which the radius is increasing when the radius is 1 m .
6. The radius of the base of an inverted cone is 10 cm and its altitude is 20 cm . if water is poured into the cone at a rate of $100 \mathrm{~cm}^{3}$ per second, find the rate at which the water is rising when it is 15 cm deep.
7. A boy who is 1.25 m tall is walking away from a lamp post which is 3 m high at a speed of $1.6 \mathrm{~m} / \mathrm{s}$. At what speed is the tip of his shadow moving when he is 10 m from the pole.

In Economics, calculus can be used when working on concepts like margins. Calculus are used to determine the most opportune time to buy or sell goods or when considering the effects of price on how much consumers purchase. Economic research uses calculus functional relationships, relation of income, market prediction and so on. Differentiation is used to find optimum solutions of economics. Credit card companies use calculus for monthly payments ~ Michael Ocampo

8.2.4 Kinematics using Differentiation

Displacement(s) refers to straight line distance in a particular direction.
$>$ Velocity (v) is the rate of change of displacement. It is a speed in a specified direction.
$>$ Acceleration (a) describes the rate of change of velocity.

$$
\begin{array}{ll}
s=\text { displacement } & \text { measured in } m \\
v=\text { velocity } & \text { measured in } \mathrm{m} / \mathrm{s} \\
a=\text { acceleration } & \text { measured in } \mathrm{m} / \mathrm{s}^{2} \\
t=\text { time } & \text { measured in } s
\end{array}
$$

Common terms

The term initially means when the time $t=0$
If the velocity $v=0$ the object is stationary or at rest. It is not moving.
(3) Example 1 The displacement in meters of a particle after t seconds is given by $s=3 t^{2}-6 t+7$.
a) Find the expression for velocity.
b) Find the initial velocity.
c) Calculate the velocity after 3 s .
d) When is the particle at rest?
e) Find the acceleration.

Answer

a) Expression for the velocity: Differentiate displacement equation $s=3 t^{2}-6 t+7$

$$
\begin{aligned}
\frac{d s}{d t} & =(3 \times 2) t^{2-1}-(6 \times 1) t^{1-1}+0 \\
v & =6 t-6
\end{aligned}
$$

b) Initial velocity means velocity at $t=0$

$$
\begin{aligned}
\Rightarrow v & =6 \times 0-6 \\
v & =-6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

c) Velocity after 3 s :

$$
\text { At } t=3 \Rightarrow \quad \begin{aligned}
v & =6 t-6 \\
v & =6 \times 3-6 \\
& =12 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

d) At rest means the particle is not moving so velocity $=0$

$$
\begin{aligned}
& v=6 t-6 \\
& 6 t-6=0 \\
& t=1 s
\end{aligned}
$$

e) Find the acceleration: differentiate velocity expression

$$
\begin{aligned}
\Rightarrow v & =6 t-6 \\
a & =6 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Exercise 8.2.4

1. The displacement, s, in meters of a particle is given by $s=80 t-12 t^{2}$.
a) Find the expression for velocity.
b) Find the initial velocity.
c) When is the particle stationary?
2. The velocity, v, in m / s of a particle after t seconds is given by $v=7-3 t^{2}+6 t^{3}$.
a) What is the initial velocity?
b) Calculate the velocity after 5 s .
c) Find an expression for acceleration.
d) Calculate the acceleration after 3 s .
3. The displacement, s, in meters of a particle after t seconds is given by $s=\frac{3}{t^{3}}-6 t^{2}+7$.
a) Find an expression for velocity.
b) Find an expression for acceleration.
c) Calculate the acceleration after 3 s .
4. Complete:

Initially means when \qquad $=0$.
"At rest" means $\quad=0$.

In business, Calculus can help by providing an accurate and measurable way to record changes in variables using numbers and mathematics. Derivatives are used to determine the maximum profit, minimum cost, rate of change of cost and how to maximize profit or minimize cost and production. ~ Michael Ocampo

Review Exercise 8

1. Find $\frac{d y}{d x}$ given $y=\frac{2 e^{3-x}}{3 \sin x}$
2. Given $y=2 x(\ln x-1)+7 e^{3}$, find $\frac{d y}{d x}$
3. Use implicit differentiation to find $\frac{d y}{d x}$:
a) $3 x^{2}+5 y^{4}=x+3$
b) $2 x^{4}-x^{2} \cos y+3 y^{2}=-4$
4. The slant edge of a right circular cone is 6 cm in length. Find the height of the cone when the volume is a maximum.
5. A triangle has hypotenuse of fixed length 61 cm . The length of the base and height is variable.

The angle, θ, between the hypotenuse and the base is increasing at a constant rate. Initially θ is 0.09 radians. After 5 seconds, θ increases to 0.14 radians.

Find the rate at which the height of the triangle is increasing after 10 seconds. Assume that at this instant the triangle is right-angled.

9.1.1 Evaluate integrals using u substitution.
9.1.2 Evaluate integrals using partial fractions.
9.1.3 Evaluate integrals using trigonometric identities.

9.1.1 Algebraic Substitution

9.1.1.1 Type I and Type II

> Integration by u Substitution: an u substitution transforms the given integrals into easier ones.

Steps:

1. Make an appropriate choice for u. Usually we take u to be an expression whose derivative appears as a factor of the integrand.
2. Compute $\frac{d u}{d x}$.
3. Make $d x$ the subject.
4. Substitute u and $d x$ from 3 . Check that the integral is now in terms of u. This new integral should be easier than the initial one.
If not, then your u Substitution is incorrect. Go back to step 2 and come up with another substitution.
5. Evaluate the resulting integral.
6. Do not forget that the answer is a function of x. You should substitute back the initial variable x.

For some special cases (Type II), there is a need to convert the integrand to an expression that can be easily integrated.

All the steps are similar to u Substitution but with one change:

- Need to make x the subject from the " u " equation

Also, note if $\quad f(x)=x^{n}, \quad \int f(x) d x=\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$
The definite integral of $f(x)$ between a (lower limit) and b (upper limit) can be defined as follows:

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =[\mathrm{F}(x)]_{a}^{b} \\
& =\mathrm{F}(b)-\mathrm{F}(a)
\end{aligned}
$$

(3) Example 1 Find $\int \frac{2 x}{x^{2}-3} d x$

\& Answer: Type I Substitution

Take u to be the denominator since its derivative appears in the numerator.

$$
\begin{aligned}
& \text { Let } u=x^{2}-3 \\
& \frac{d u}{d x}=2 x \\
& d u=2 x d x \\
& \frac{d u}{2 x}=d x
\end{aligned}
$$

Write integral in terms of u.

$$
\begin{aligned}
\int \frac{2 x}{x^{2}+3} d x & =\int \frac{2 x}{u} \frac{d u}{2 x} \\
& =\int \frac{1}{u} d u
\end{aligned}
$$

$$
\begin{aligned}
& \text { Evaluate the resulting integral } \\
& \qquad \frac{1}{u} d u=\ln |u|+C \\
& \therefore \int \frac{2 x}{x^{2}-3} d x=\ln \left|x^{2}-3\right|+C
\end{aligned}
$$

Short cut: If the derivative of the denominator = numerator then take the
I $l n$ of the absolute value of denominator.
For example $\int \frac{3 x^{2}}{x^{3}-2} d x=\ln \left|x^{3}-2\right|+C$
(9) Example 2 Find $\int \frac{x^{2}}{\sqrt{x^{3}+9}} d x$

Answer: Type I Substitution

Take u to be $x^{3}+9$ since its derivative appears in the numerator.

$$
\begin{aligned}
u & =x^{3}+9 \\
\frac{d u}{d x} & =3 x^{2} \\
d u & =3 x^{2} d x \quad \Rightarrow \frac{d u}{3 x^{2}}=d x
\end{aligned}
$$

Write integral in terms of u.

$$
\begin{aligned}
\int \frac{x^{2}}{\sqrt{x^{3}+9}} d x & =\int \frac{x^{2}}{\sqrt{u}} \frac{d u}{3 x^{2}} \\
& =\int \frac{d u}{3 \sqrt{u}} \\
& =\frac{1}{3} \int \frac{1}{\sqrt{u}} d u
\end{aligned}
$$

Evaluate the resulting integral.

$$
\begin{aligned}
& \frac{1}{3} \int \frac{1}{\sqrt{u}} d u \\
&= \frac{1}{3} \int u^{-\frac{1}{2}} d u \\
&= \frac{1}{3}\left(\frac{u^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}\right)=\frac{1}{3}\left(\frac{u^{\frac{1}{2}}}{\frac{1}{2}}\right)+C \\
& \quad=\frac{2}{3} \sqrt{u}+C \\
& \therefore \quad \int \frac{x^{2}}{\sqrt{x^{3}+9}} d x=\frac{2}{3} \sqrt{x^{3}+9}+C
\end{aligned}
$$

(3) Example 3 Find $\int x(3 x+1)^{9} d x$

Answer: Type II Substitution

Take u to be the expression in the brackets.

$$
\begin{aligned}
& \begin{array}{l}
u=3 x+1 \\
\frac{d u}{d x}=3 \\
\frac{d u}{3}=d x
\end{array} \quad \text { Make "dx" the subject. }
\end{aligned}
$$

Substitute

$$
\begin{aligned}
\int x(3 x+1)^{9} d x & =\int x u^{9} \frac{d u}{3} & \begin{array}{l}
\text { In this case } x \text { do not cancel as } \\
\text { in examples } 1 \text { and } 2 .
\end{array} \\
& =\frac{1}{3} \int x u^{9} d u &
\end{aligned}
$$

To remove x, make x the subject from the " u " equation

$$
x=\frac{u-1}{3}
$$

Substitute x to write integral in terms of u. Simplify

$$
\begin{aligned}
\int x(3 x+1)^{9} \cdot d x & =\int \frac{u-1}{3} \cdot u^{9} \frac{1}{3} d u \\
& =\int \frac{u^{10}-u^{9}}{9} d u \\
& =\frac{1}{9} \int u^{10}-u^{9} \cdot d u
\end{aligned}
$$

Evaluate the resulting integral

$$
\begin{aligned}
\frac{1}{9} \int u^{10}-u^{9} \cdot d u & =\frac{1}{9}\left(\frac{u^{11}}{11}-\frac{u^{10}}{10}\right)+C \\
& =\frac{u^{11}}{99}-\frac{u^{10}}{90}+C \\
\therefore \int x(3 x+1)^{9} d x & =\frac{(3 x+1)^{11}}{99}-\frac{(3 x+1)^{10}}{90}+C
\end{aligned}
$$

Example 4 Evaluate $\int_{0}^{2} x\left(x^{2}+1\right)^{3} d x$

Answer

$$
\begin{aligned}
& \text { Let } u=x^{2}+1 \\
& \frac{d u}{d x}=2 x \\
& \Rightarrow \frac{d u}{2 x}=d x \\
& \int x\left(x^{2}+1\right)^{3} d x=\int x u^{3} \frac{d u}{2 x} \\
&=\int \frac{u^{3}}{2} d u \\
&=\frac{u^{4}}{8}+\mathrm{C}
\end{aligned}
$$

Method 1: Find the limits of integration in terms of u

$$
\text { When } \begin{array}{rlr}
x & =0 & \text { When } x \\
u & =2 \\
u & =x^{2}+1 \\
u & =0^{2}+1 & \begin{aligned}
u & =x^{2}+1 \\
& =1
\end{aligned} \\
u & =2^{2}+1 \\
& =5
\end{array}
$$

$$
\begin{aligned}
{\left[\frac{u^{4}}{8}\right]_{1}^{5} } & =\frac{5^{4}}{8}-\frac{1^{4}}{8} \\
& =78
\end{aligned}
$$

Method 2: Evaluate in terms of x

$$
\begin{aligned}
\frac{u^{4}}{8} & =\frac{\left(x^{2}+1\right)^{4}}{8} \\
{\left[\frac{\left(x^{2}+1\right)^{4}}{8}\right]_{0}^{2} } & =\frac{\left(2^{2}+1\right)^{4}}{8}-\frac{\left(0^{2}+1\right)^{4}}{8} \\
& =78
\end{aligned}
$$

Exercise 9.1.1.1

1. Evaluate the following:
a) $\int \frac{3}{2 x+1} d x$
b) $\int_{2}^{10} \frac{1}{x+2} d x$
c) $\int \frac{1}{2 x-1} d x$
d) $\int \frac{3 x}{x^{2}-2} d x$
e) $\int \frac{3 x^{2}+2}{x^{3}+2 x} d x$
f) $\int_{1}^{2} \frac{2 x}{x^{2}+1} d x$
2. Evaluate the following:
a) $\int_{1}^{9} x\left(x^{2}+1\right)^{5} d x$
b) $\int 18 x^{5}\left(x^{6}+2\right)^{2} d x$
c) $\int x^{2} \sqrt{x^{3}+1} d x$
d) $\int \frac{x}{\sqrt{5+x}} d x$
e) $\int x \sqrt{x-4} d x$
f) $\int \frac{x}{(x+3)^{5}} d x$

Calculus was initially developed for better navigation system. Engineers use calculus for building skyscrapers and bridges. In robotics, calculus is used on how robotic parts will work on given commands. Also, calculus is used to improve safety of vehicles. ~ Michael Ocampo

9.1.1.2 Trigonometric, Exponential and Hyperbolic Function

The derivative and integration are opposite process.

- Hyperbola

$$
\int \frac{1}{x} d x=\ln |x|+C
$$

- The exponential function

$$
\int e^{x} d x=e^{x}+C \Rightarrow \int e^{a x} d x=\frac{e^{a x}}{a}+C
$$

- Trigonometric function

$$
\begin{aligned}
& \int \cos x d x=\sin x+C \\
& \int-\sin x d x=\cos x+C \\
& \int \sin x=-\cos x+C
\end{aligned}
$$

$$
\int \sec ^{2} x=\tan x+C
$$

(9) Example 1 Find $\int \frac{1}{5 x} d x$

Answer

$$
\begin{aligned}
\int \frac{1}{5}\left(\frac{1}{x}\right) \quad d x & =\frac{1}{5} \int \frac{1}{x} d x \\
& =\frac{1}{5} \ln |x|+C
\end{aligned}
$$

(3) Example 2 Find $\int \sin 3 x d x$

Answer

$$
\begin{aligned}
& \quad \begin{aligned}
u=3 x, & \frac{d u}{d x}=3, \frac{d u}{3}=d x \\
\int \sin 3 x d x= & \int \sin u \frac{d u}{3} \\
& =\frac{1}{3} \int \sin u d u \\
& =\frac{1}{3}(-\cos u)+C,
\end{aligned} \\
& \therefore \quad \int \sin 3 x d x=\frac{-\cos 3 x}{3}+C \text { or }-\frac{1}{3} \cos 3 x+C
\end{aligned}
$$

(3) Example 3 Find $\int e^{2 x+1} d x$

Answer

Method 1: Integration by u Substitution
Take u to be the power (exponent)
Let $u=2 x+1$

$$
\begin{aligned}
& \frac{d u}{d x}=2 \\
& d u=2 d x \\
& \frac{d u}{2}=d x
\end{aligned}
$$

Write integral in terms of u.

$$
\int e^{2 x+1} d x=\int e^{u} \frac{d u}{2}
$$

Evaluate the resulting integral.

$\therefore \int e^{2 x+1} d x=\frac{e^{2 x+1}}{2}+C$

Method 2: integrate the outer function (evaluated at inner) divide by the derivative of inner linear function.

$$
\begin{gathered}
f(x)=2 x+1, \quad f^{\prime}(x)=2 \\
\therefore \int e^{f(x)} \quad d x=\frac{e^{f(x)}}{f^{\prime}(x)}+C \\
=\frac{e^{2 x+1}}{2}+C
\end{gathered}
$$

(8) Example 4 Evaluate $\int_{1}^{e+1} \frac{1}{x-1} d x$

Answer

(8) Example 5 Find $\int \cos x . e^{\sin x} . d x$

Answer

Take u to be the power.

$$
\begin{aligned}
u & =\sin x \\
\frac{d u}{d x} & =\cos x \\
\Rightarrow \frac{d u}{\cos x} & =d x
\end{aligned}
$$

Write integral in terms of u.

$$
\begin{aligned}
\int \cos x \cdot e^{\sin x} \cdot d x & =\int \cos x e^{u} \frac{d u}{\cos x} \\
& =\int e^{u} d u
\end{aligned}
$$

$$
\begin{aligned}
& \text { Evaluate the resulting integral. } \\
& \qquad \int e^{u} d u=e^{u}+C \\
& \therefore \int \cos x \cdot e^{\sin x} d x=e^{\sin x}+C
\end{aligned}
$$

(3) Example 6
Evaluate $\int_{0}^{\ln 2} 3 e^{x} d x$

Answer

$$
\begin{aligned}
\int_{0}^{\ln 2} 3 e^{x} d x & =\left[3 e^{x}\right]_{0}^{\ln 2} \\
& =3 e^{\ln 2}-3 e^{0} \\
& =3 \times 2-3 \\
& =3
\end{aligned}
$$

(3) Example 7 Evaluate $\int_{0}^{\frac{\pi}{2}} \cos x \sin ^{2} x d x$

Answer

$$
\begin{aligned}
& \text { Let } u=\sin x \\
& \frac{d u}{d x}=\cos x \\
& \Rightarrow \frac{d u}{\cos x}=d x \\
& \int \cos x \sin ^{2} x \cdot d x=\int \cos x u^{2} \frac{d u}{\cos x} \\
&=\int u^{2} d u \\
&=\frac{u^{3}}{3}+\mathrm{C}
\end{aligned}
$$

Method 1: Find the limits of integration in terms of u

$$
\begin{array}{l|l}
\text { When } x=0 \\
u=\sin x \\
u=\sin 0 \\
=0
\end{array} \left\lvert\, \begin{aligned}
& \begin{aligned}
& \text { When } x=\frac{\pi}{2} \\
& u=\sin x \Rightarrow u=\sin \frac{\pi}{2} \\
&=1
\end{aligned}
\end{aligned}\right.
$$

$$
\begin{aligned}
{\left[\frac{u^{3}}{3}\right]_{0}^{1} } & =\frac{1^{3}}{3}-0 \\
& =\frac{1}{3}
\end{aligned}
$$

Method 2: Evaluate in terms of x

$$
\begin{aligned}
\frac{u^{3}}{3} & =\frac{\sin ^{3} x}{3} \\
{\left[\frac{\sin ^{3} x}{3}\right]_{0}^{\frac{\pi}{2}} } & =\frac{\sin ^{3}\left(\frac{\pi}{2}\right)}{3}-\frac{\sin ^{3} 0}{3} \\
& =\frac{1}{3}
\end{aligned}
$$

智 Exercise 9.1.1.2

1. Evaluate the following:
a) $\int \sin 5 x d x$
b) $\int e^{-2 x} d x$
c) $\int \cos 3 x d x$
d) $\int \sin (3 x+2) d x$
2. Find the anti-derivatives of the following:
a) $\int x e^{x^{2}} d x$
b) $\int 2 x^{2} e^{x^{3}} d x$
c) $\int \frac{e^{x}+2}{e^{x}+2 x} d x$
d) $\int \frac{e^{x}}{e^{x}+1} d x$
e) $\int \frac{\ln x}{2 x} d x$
f) $\int \frac{\cos x}{e^{\sin x} d x}$
3. Evaluate the following:
a) $\int_{0}^{\pi} \cos (2 x) d x$
b) $\int_{0}^{1} e^{5 x} d x$
c) $\int_{1}^{3} 1+\frac{1}{x} d x$
d) $\int_{1}^{e} \frac{1}{x} d x$
e) $\int_{0}^{\frac{\pi}{2}} \sin x e^{\cos x} d x$
f) $\int_{e}^{e^{2}} \frac{\ln x}{x} d x$

9.1.2 Use of Partial Fractions

If the integrand (the expression after the integral sign) is in the form of an algebraic fraction and the integral cannot be evaluated by simple methods, the fraction needs to be expressed in partial fractions before integration takes place.
(3) Example 1 Find $\int \frac{3 x+3}{x^{2}+x-2} d x$

Answer
Step 1: Write as partial fractions

$$
\begin{gathered}
\frac{3 x+3}{x^{2}+x-2}=\frac{3 x+3}{(x+2)(x-1)} \\
=\frac{A}{(x+2)}+\frac{B}{(x-1)} \\
=\frac{A(x-1)+B(x+2)}{(x+2)(x-1)}
\end{gathered}
$$

$$
3 x+3=A(x-1)+B(x+2)
$$

$$
\begin{array}{c|rl}
\text { Let } x & =1 & \text { Let } x=-2 \\
3+3 & =3 B \rightarrow B=2 & 3(-2)+3=-3 A \rightarrow A=1
\end{array}
$$

Step 2: Integrate

$$
\begin{aligned}
\int \frac{3 x+3}{x^{2}+x-2} d x & =\int \frac{1}{(x+2)} d x+\int \frac{2}{(x-1)} d x \\
& =\ln |x+2|+\ln |x-1|+C
\end{aligned}
$$

(8) Example 2

$$
\begin{gathered}
\text { Find } \int \frac{x+4}{(x+2)^{2}(x+3)} d x \\
\text { given } \frac{x+4}{(x+2)^{2}(x+3)}=\frac{1}{(x+3)}-\frac{1}{(x+2)}+\frac{2}{(x+2)^{2}}
\end{gathered}
$$

Answer

$\int \frac{x+4}{(x+2)^{2}(x+3)} d x=\int \frac{1}{(x+3)} d x-\int \frac{1}{(x+2)} d x+\int \frac{2}{(x+2)^{2}} d x$

Integrate each term separately:

$$
\therefore \int \frac{x+4}{(x+2)^{2}(x+3)} d x=\ln |x+3|-\ln |x+2|-\frac{2}{x+2}+C
$$

$$
\begin{aligned}
& \text { Let } u=x+2 \\
& \frac{d u}{d x}=1 \\
& d u=d x \\
& \int \frac{2}{u^{2}} d u=\int 2 u^{-2} d u=2 \int \frac{u^{-2+1}}{-1} d u \\
& =-2 u^{-1}=\frac{-2}{u}=\frac{-2}{x+2}
\end{aligned}
$$

8. Example 3 Find $\int \frac{x^{3}+2 x-4}{x^{3}-4 x} d x$

$$
\text { given } \frac{x^{3}+2 x-4}{x^{3}-4 x}=1+\frac{1}{x}-\frac{2}{(x+2)}+\frac{1}{(x-2)}
$$

Answer

Integrate each term separately:

$$
\begin{aligned}
\int \frac{x^{3}+2 x-4}{x^{3}-4 x} d x & =\int 1 d x+\int \frac{1}{x} d x-\int \frac{2}{(x+2)} d x+\int \frac{1}{(x-2)} d x \\
& =x+\ln |x|-2 \ln |x+2|+\ln |x-2|+C
\end{aligned}
$$

Exercise 9.1.2

Evaluate the following:
a) $\int \frac{2 x+1}{x^{2}+x-2} d x$
b) $\int_{2}^{3} \frac{2}{x^{2}-1} d x$
c) $\int_{4}^{8} \frac{4}{x^{2}-2 x-3} d x$
d) $\int \frac{15-4 x-x^{2}}{(x+1)(x-2)^{2}} d x$
e) $\int \frac{3 x+5}{x^{2}+x-12} d x$
f) $\int \frac{10 x+24}{(x-3)\left(x^{2}+9\right)} d x$

9.1.3 Integrating using trigonometric identities

Integrating product of sine and cosine: The following formulae will be used to simplify the integration.

- $2 \sin \mathrm{~A} \cos \mathrm{~B}=\sin (\mathrm{A}+\mathrm{B})+\sin (\mathrm{A}-\mathrm{B})$
- $2 \cos A \cos B=\cos (A+B)+\cos (A-B)$
- $2 \sin \mathrm{~A} \sin \mathrm{~B}=\cos (\mathrm{A}-\mathrm{B})-\cos (\mathrm{A}+\mathrm{B})$

The following identities can be used to integrate $\cos ^{2} x$ and $\sin ^{2} x$

- $\cos 2 \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1$

$$
=1-2 \sin ^{2} \mathrm{~A}
$$

Example 1 Find $\int \sin 5 x \cos 2 x d x$

Answer

Divide each side by 2 in the first formula

- $2 \sin \mathrm{~A} \cos \mathrm{~B}=\sin (\mathrm{A}+\mathrm{B})+\sin (\mathrm{A}-\mathrm{B}) \Rightarrow \sin \mathrm{A} \cos \mathrm{B}=\frac{1}{2}[\sin (\mathrm{~A}+\mathrm{B})+\sin (\mathrm{A}-\mathrm{B})]$
$\int \sin 5 x \cos 2 x d x=\int \frac{1}{2}[\sin (5 x+2 x)+\sin (5 x-2 x)] d x$

$$
\begin{aligned}
& =\frac{1}{2} \int[\sin 7 x+\sin 3 x] d x \\
= & \frac{1}{2}\left[\frac{-\cos 7 x}{7}-\frac{\cos 3 x}{3}\right]+C \\
= & \frac{-\cos 7 x}{14}-\frac{\cos 3 x}{6}+C
\end{aligned}
$$

Short cut: integrate the outer
function (evaluated at inner) and
divide by the derivative of inner
linear function.
(3) Example 2 Find $\int_{0}^{\frac{\pi}{2}} \sin ^{2} x d x$

Answer

We have to use the identity

- $\cos 2 \mathrm{~A}=1-2 \sin ^{2} \mathrm{~A}$

Change the subject

$$
\begin{array}{r}
\Rightarrow 2 \sin ^{2} \mathrm{~A}=1-\cos 2 \mathrm{~A} \\
\sin ^{2} \mathrm{~A}=\frac{1-\cos 2 \mathrm{~A}}{2}
\end{array}
$$

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{2} x d x=\int_{0}^{\frac{\pi}{2}} \frac{1-\cos 2 x}{2} d x
$$

$$
=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1-\cos 2 x d x
$$

$$
=\frac{1}{2}\left[x-\frac{\sin 2 x}{2}\right]_{0}^{\frac{\pi}{2}}
$$

$$
=\frac{1}{2}\left[\frac{\pi}{2}-\frac{\sin \pi}{2}-\left(0-\frac{\sin 0}{2}\right)\right]
$$

$$
=\frac{\pi}{4}
$$

Exercise 9.1.3

1. Find the anti-derivatives of the following:
a) $\int 2 \cos 4 x \cos x d x$
b) $\int \sin 3 x \sin 2 x d x$
c) $\int_{0}^{\pi} \sin 10 x \cos 4 x d x$
d) $\int_{\pi}^{\frac{\pi}{2}} 2 \cos 3 x \cos (-x) d x$
2. Find the anti-derivatives of the following:
a) $\int \cos ^{2} x d x$
b) $\int\left(4 \sin ^{2} x+3\right) d x$
c) $\int 3 \sin ^{2} x d x$

9.2.1 Area Between Two Graphs

If the upper curve or line on the top is $f(x)$ and the lower curve or line at the bottom is $g(x)$, then the area between two curves or lines from a to b is given by:

$$
\text { Area }=\int_{\text {Lower }}^{\text {Upper }}\left(\text { Limit }_{\text {Limit }}^{\text {Limper }} \text { Curve }- \text { Lower Curve }\right)
$$

Consider the diagram given below:

$$
\text { Area }=\int_{x_{1}}^{x_{2}}(f(x)-g(x)) d x
$$

where x_{1} and x_{2} are x coordinates of the points of intersection
(8) Example The diagram given below shows the sketches of the functions

$$
y=x-3 \text { and } y=x^{2}-3 x
$$

a) Show that the x-coordinate of point P is 1 .
b) Find the area of the shaded region.

Answers

a) Point of intersection:

$$
\begin{aligned}
& \quad y_{1}=y_{2} \\
& x^{2}-3 x=x-3 \\
& x^{2}-4 x+3=0 \\
& (x-3)(x-1)=0 \\
& x=1,3 \\
& \therefore x \text { - coordinate of point } P=1
\end{aligned}
$$

b) Area of the shaded region:

$$
\begin{aligned}
\text { Area } & =\int_{a}^{b}(f(x)-g(x)) d x \\
& =\int_{1}^{3}\left((x-3)-\left(x^{2}-3 x\right)\right) d x \\
& =\int_{1}^{3}\left(x-3-x^{2}+3 x\right) d x \\
& =\int_{1}^{3}\left(-x^{2}+4 x-3\right) d x \\
& =\left[-\frac{x^{3}}{3}+2 x^{2}-3 x\right]_{1}^{3} \\
& =\left[\left(-\frac{3^{3}}{3}+2\left(3^{2}\right)-3(3)\right)-\left(-\frac{1^{3}}{3}+2\left(1^{2)}-3(1)\right)\right]\right. \\
& =\frac{4}{3} \text { square units }
\end{aligned}
$$

Exercise 9.2.1

1. Two functions are shown below.

Calculate the area of the shaded region.
2. The diagram below shows the graph of the quadratic function $y=x^{2}-4$ and the straight line $y=4 x-8$. Find the area of the shaded region.

3. The figure shown below shows the curve $y=x^{2}-3$ and the straight line $y=x-1$

a) Calculate the x-coordinates of the point of intersection of the two graphs.
b) Calculate the area of the shaded region.
4. Find the area bounded by the functions $y=\sqrt{x}, y=x^{2}-2 x$ and $x=2$.
5. Find the area bounded by the curve $y=x^{2}+2 x-3$ and the line $y=2 x+1$.
6. Find the area bounded by $y=\frac{1}{x}, y=-8, x=2$ and $x=5$.
7. Find the area bounded by $y=e^{x}, y=-\frac{1}{x}$ and the lines $x=1$ and $x=2$.

9.2.2 Kinematics using Integration

- Displacement (s) refers to straight line distance in a particular direction.
- Velocity (v) is the rate of change of displacement. It is a speed in a specified direction.
- Acceleration (a) is the rate of change of velocity.
$s=$ displacement measured in m
$v=$ velocity measured in m / s
$a=$ acceleration \quad measured in $\mathrm{m} / \mathrm{s}^{2}$
$t=$ time measured in s

Common terms

The term initially means when the time $t=0$
If the velocity $v=0$ the object is stationary or at rest. It is not moving.
(3. Example A particle moves in a straight line so that its acceleration after t seconds is given by $a=2 t+7$.
a) Find a formula for the velocity of the particle at time t given that initial velocity $=0$.
b) Calculate the velocity at $t=3 \mathrm{~s}$.
c) Find a formula for the displacement of the particle at time t given that initial displacement $=0$.
d) Calculate the displacement after 9 seconds.

Answers

a) Acceleration is given we want the formula for velocity, v. So we need to integrate.

$$
\begin{aligned}
v & =\int 2 t+7 d t \\
& =\frac{2 t^{2}}{2}+7 t+c \\
& =t^{2}+7 t+c
\end{aligned}
$$

Find c by noting that when $t=0, v=0 \Rightarrow \mathrm{c}=0$
Thus, the formula for the velocity of the particle at time t is $v=t^{2}+7 t$
b) Substitute $t=3$

$$
\begin{aligned}
v & =t^{2}+7 t \\
& =3^{2}+7(3) \\
& =30 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

c) Integrate velocity

$$
\begin{aligned}
& s=\int t^{2}+7 t d t \\
& =\frac{t^{3}}{3}+\frac{7 t^{2}}{2}+c
\end{aligned}
$$

Find c by noting that when $t=0, v=0 \quad \Rightarrow \mathrm{c}=0$

$$
\therefore s=\frac{t^{3}}{3}+\frac{7 t^{2}}{2}
$$

d) Substitute $t=9$

$$
\begin{aligned}
s & =\frac{9^{3}}{3}+\frac{7 \times 9^{2}}{2} \\
& =526 \frac{1}{2} m
\end{aligned}
$$

Exercise 9.2.2

1. A body moves with a velocity of $5 t-2 \mathrm{~m} / \mathrm{s}$, where t is the time in seconds. Find the distance the body moves in the first 5 seconds.
2. The acceleration of a body from a fixed point P is given by $a=4 t-11$. The body is initially 2 m from P and has the velocity of $11 \mathrm{~m} / \mathrm{s}$ after 6 s .
a) Find the formula for velocity.
b) Find the velocity of the body after 5 seconds.
c) When is the body at rest?
d) Find the formula for distance travelled from point P.
e) How far from P is the body after 10 s?
3. A rock is thrown vertically upwards with an initial velocity of $40 \mathrm{~m} / \mathrm{s}$ from a point 5 m above the ground level. The velocity of the rock after t seconds is given by $v=40-10 t$.
a) Find a formula for the height of the rock above the ground at time t.
b) Find the maximum height reached by the rock.
c) Calculate the distance travelled in the third second. winds. Integration was used to design the building for strength. ~ Chayan Sengar

Review Exercise 9

1. Using the substitution $u=x^{2}$, find $\int 2 x e^{x^{2}} d x$
2. Evaluate the following:
a) $\int 4 x^{2} \operatorname{Sin}\left(x^{3}-1\right) d x$
b) $\int \sin ^{3} x \cos x d x$
3. Find $\int x^{2} \sqrt{2 x-1} d x$
4. Find $\int \frac{10 x+30}{(x-2)\left(x^{2}-9\right)} d x$
5. Evaluate $\int_{0}^{\pi} 2 \sin 3 x \sin (-x) d x$
6. The functions $y=\sqrt{x}$ and $y=x+6$ and the straight line $x=3$ are shown below. Find the shaded area.

7. The acceleration of a body (in square metres per second) is defined by $a=6 t+15$. Find the velocity after 2 seconds if it has an initial velocity of $2 \mathrm{~m} / \mathrm{s}$.

The Sydney Opera House is a very unusual design based on slices

Bibliography

Sigma Mathematics by David Barton.
Delta Mathematics by David Barton, Wynnis Johnson and Stuart Laird.
Advanced Mathematics by J.R.Sealy and A.W.Agnew.
Theta Mathematics by David Barton.
www.khanacademy.org
Mathematics Higher Level by Fabio Cirrito.

Bibliography

Sigma Mathematics by David Barton.
Delta Mathematics by David Barton, Wynnis Johnson and Stuart Laird.
Advanced Mathematics by J.R.Sealy and A.W.Agnew.
Theta Mathematics by David Barton.
www.khanacademy.org
Mathematics Higher Level by Fabio Cirrito.

Cover Page Sources:
www.au.ixl.com
www.vecteezy.com

CURRICULUM DEVELOPMENT UNIT MINISTRY OF EDUCATION FIJI 2018

