CENTRAL KERALA SAHODAYA

TERM 1 MODEL EXAMINATION-2021

Subject-Mathematics (Standard) 041

Time Allowed: 90 minutes

Maximum Marks: 40

General Instructions:

- 1. The question paper contains three parts A, B and C.
- 2. Section A consists of 20 questions of 1 mark each. Any 16 questions are to be attempted.
- 3. Section B consists of 20 questions of 1 mark each. Any 16 questions are to be attempted.
- 4. Section C consists of 10 questions based on two Case Studies. Attempt any 8 questions.
- 5. There is no negative marking

SECTION A

Section A consists of 20 questions of 1 mark each. Any 16 questions are to be attempted.

- 1 Given HCF(306,657) = 9, find LCM(306,657). (a) 45647 (b) 65474 (c) 22338 (d) 33822
- 2 For what value of k, the pair of equations 4x 3y = 9, 2x + ky = 11 has no solution? (a) $\frac{-3}{2}$ (b) $\frac{5}{2}$ (c) $\frac{1}{2}$ (d) $\frac{7}{2}$
- 3 If $\triangle ABC \sim \triangle PQR$, perimeter of $\triangle ABC = 32 \text{ cm}$, perimeter of $\triangle PQR = 48 \text{ CM}$ and PR = 6 cm then find the length of *AC*.
 - (a) 5 cm (b) 4 cm (c) 3 cm (d) 2 cm
- 4 Two different dice are tossed together. Find the probability that the product of the two numbers on the top of the dice is 6.

(a)
$$\frac{1}{3}$$
 (b) $\frac{1}{5}$ (c) $\frac{1}{7}$ (d) $\frac{1}{9}$

5 If $tan\alpha = \sqrt{3}$ and $tan\beta = \frac{1}{\sqrt{3}}$, $0 < \alpha, \beta < 90^\circ$, find the value of $sin(\alpha + \beta)$.

(a) 0 (b)
$$\frac{1}{2}$$
 (c) 1 (d) $\frac{1}{\sqrt{2}}$

- 6 Find the ratio in which y-axis divides the line segment joining the points A(5, -6) and B(-1, -4) (a) 2:1 (b) 2;3 (c) 2:5 (d) 5:1
- 7 If one zero of $7x^2 + 6x + k$ is the reciprocal of the other, find the value of k.

(a) 5 (b) 7 (c) 9 (d) 11
a)
$$\frac{1}{2}$$
 (c) 9 (d) 11

- 8 The value of $2 \sin^2 30^\circ 3\cos^2 45^\circ + \tan^2 60^\circ + 3\sin^2 90^\circ$ is (a) 1 (b) 5 (c) 0 (d) none of these
- 9. The largest number which exactly divides 280 and 1245 leaving remainders 4 and 3 respectively is
 - (a) 36 (b) 54 (c) 138 (d) 710.
- 10. The sum and the product of the zeroes of polynomial $6x^2 5$ respectively are

(a)
$$0, \frac{-6}{5}$$
 (b) $0, \frac{6}{5}$ (c) $0, \frac{5}{6}$ (d) $0, \frac{-5}{6}$
11. If α, β are the zeroes of the polynomial $3x^2 - 5x + 1$, find the value of $\alpha^4 \beta^3 + \alpha^3 \beta^4$.

(a)
$$\frac{1}{27}$$
 (b) $\frac{5}{3}$ (c) $\frac{5}{81}$ (d) $\frac{1}{3}$

- 12. If $\cot A + \tan A = 2$, then find the value of $\cot^2 A + \tan^2 A$.
 - (a) 2 (b) $\sqrt{2}$ (c) 3 (d) $\sqrt{3}$
- 13. Find the area of the circle that can be inscribed in a square of side 6 cm.
 - (a) $9\pi cm^2$ (b) $4\pi cm^2$ (c) $36 \pi cm^2$ (d) $16 \pi cm^2$
- 14. Find the coordinates of the mid-point of the line segment joining the points P(6, 0) and Q(0, 12).
 - (a) (6,12) (b) (2,4) (c) (6,6) (d) (3,6)
- 15. Write the number of solutions of the following pair of linear equations:

x + 2y - 8 = 0, 2x + 4y = 16

- (a) Exactly one solution (b) Infinitely many solutions (c) no solution (d) Two solutions
- 16. If $cosec \theta + \cot \theta = x$, find the value of $cosec \theta \cot \theta$ (a) x + 1 (b) x - 1 (c) $\frac{1}{x}$ (d) 2x

17. The decimal expansion of the rational number $\frac{47}{2^5 \times 5^2}$ will terminate after how many places of decimal?

- (a) 2 (b) 5 (c) 7 (d) 3
- 18. Find the value(s) of k for which the pair of linear equations $kx + y = k^2$ and x + ky = 1 have infinitely many solutions.
 - (a) 3 (b) 7 (c) 1 (d) 10
- 19. If the perimeter of a circle is half of the area numerically, then find the radius of the circle.
 - (a) 5 units (b) 4 units (c) 3 units (d) 2 units
- 20. Two friends were born in the year 2000. What is the probability that they have the same birthday?
 - (a) $\frac{1}{365}$ (b) $\frac{364}{365}$ (c) $\frac{1}{366}$ (d) $\frac{365}{366}$

SECTION B

Section B consists of 20 questions of 1 mark each. Any 16 questions are to be attempted.

21. If (9a - 2, -b) divides line segment joining A(3a + 1, -3) and B(8a, 5) in the ratio 3: 1, find the values of *a* and *b*.

(a) a = 1, b = -3 (b) a = -3, b = 1 (c) a = -1, b = -3 (d) a = 1, b = 3

- 22. Two tankers contain 620 litres and 840 litres of diesel respectively. Find the maximum capacity of a container which can measure the diesel of both the tankers in exact number of times.
 - (a) 10 litres (b) 20 litres (c) 30 litres (d) 40 litres
- 23. If α and β are the zeroes of the polynomial $f(x) = x^2 5x + k$ such that $\alpha \beta = 1$, find the value of *k*.
 - (a) 10 (b) 12 (c) 5 (d) 6
- 24. Find the value of m, if the distance between the points X(-2, -12) and Y(m, -4) is 8 units.
 - (a) 2 (b) 3 (c) -2 (d) -3

25. If $\sin \theta = \frac{3}{5}$, then find $\sin \theta - \cot \theta$

(a)
$$\frac{5}{3}$$
 (b) $\frac{-2}{7}$ (c) $\frac{7}{11}$ (d) $\frac{-11}{15}$

26. Find a quadratic polynomial whose zeroes are $5 - 3\sqrt{2}$ and $5 + 3\sqrt{2}$.

(a)
$$x^2 - 8x + 7$$
 (b) $x^2 - 10x + 7$ (c) $x^2 - 8x + 5$ (d) $x^2 - 10x + 5$

- 27. 3 bells ring at an interval of 4, 7 and 14 minutes. All three bell rang at 6 am, when the three bells will ring together next?
- (a) 6.10 am (b) 6.18 am (c) 6.24 am (d) 6.28 am 28. $\frac{1}{\sec A - \tan A} - \frac{1}{\cos A} = \cdots$ (a) $\tan A$ (b) $\sin A$ (c) $\cos A$ (d) $\cot A$
- 29. Find the probability of getting a sum of more than 8 when two dice are rolled.
 - (a) $\frac{3}{18}$ (b) $\frac{5}{18}$ (c) $\frac{7}{36}$ (d) $\frac{11}{36}$
- 30. If one zero of the quadratic polynomial $p(x) = 3x^2 8x 2k 1$ is seven times the other, then find the value of k.

(a)
$$\frac{3}{5}$$
 (b) $\frac{-2}{7}$ (c) $\frac{-5}{3}$ (d) $\frac{-7}{11}$

31. Two numbers are in the ratio 21:17. If their HCF is 5, find the numbers.

- (a) 105, 85 (b) 120, 75 (c) 115, 65 (d) 125, 95
- 32. Find the probability of getting 53 Fridays in a leap year.
 - (a) $\frac{1}{7}$ (b) $\frac{2}{7}$ (c) $\frac{3}{7}$ (d) $\frac{5}{7}$

33. Obtain the condition for the following system of linear equations to have a unique solution:

ax + by = c and lx + my = n.

(a)
$$ab \neq lm$$
 (b) $al = bm$ (c) $am \neq bl$ (d) $ab = lm$

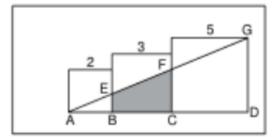
34. In the figure, a circle of radius 7.5 cm is inscribed in a square. Find the area of the shaded region.

(Use $\pi = 3.14$) (a) $45.54 \ cm^2$ (b) $46.345 \ cm^2$ (c) $47.23 \ cm^2$ (d) $48.375 \ cm^2$

- 35. Given $\sqrt{3} \tan 5\theta = 1$, find the value of θ .
 - (a) 6° (b) 9° (c) 20° (d) 12°
- 36. The length of an arc of a circle of radius 12 cm is $4\pi \ cm$. Find the central angle of this arc. (a)30° (b) 45° (c) 60° (d) 90°
- 37. If x = p, y = q is a solution of the equations x + 2y + 1 = 0 and 2x 3y 12 = 0, then find the values of *p* and *q*.

(a)
$$p = 3, q = -2$$
 (b) $p = 5, q = -2$ (c) $p = 2, q = -5$ (d) $p = 7, q = -3$

- 38. Find the prime factorization of the denominator of rational number expressed as $6.\overline{12}$ in simplest form (a) 3×5 (b) $3 \times 5 \times 7$ (c) 3×11 (d) 5×7
- 39. If $\tan \theta + \cot \theta = 5$, find the value of $\tan^2 \theta + \cot^2 \theta$
 - (a) 15 (b) 23 (c) 33 (d) 40
- 40. Two numbers are in the ratio 5:6. If 8 is subtracted from each of the numbers, the ratio becomes 4:5. Form linear equations to represent the above situation.
 - (a) 5x 6y = 0, 8x 3y = 5(b) 3x - 4y = 9, 5x - 2y = 7(c) 7x - 3y = 0, 5x - 4y = 5(d) 6x - 5y = 0, 5x - 4y = 8


SECTION C

Case study based questions:

Section C consists of 10 questions of 1 mark each. Any 8 questions are to be attempted.

Q41-Q45 are based on Case Study-1

Case Study-1

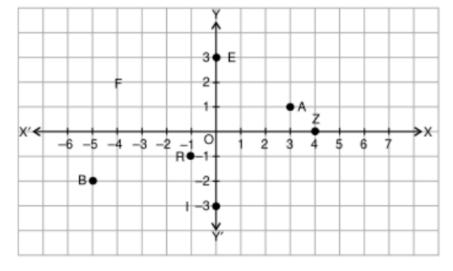
Three squares have dimensions as indicated in the diagram above. Answer the following questions.

41. A pair of similar triangles from the figure is:

(a) $\triangle ABE \sim \triangle AFC$ (b) $\triangle AEB \sim \triangle ACF$ (c) $\triangle ABE \sim \triangle ACF$ (c) $\triangle ABE \sim \triangle AGD$

42. What is the length of CF?

(a)
$$\frac{5}{2}$$
 units (b) 5 units (c) 4 units (d) $\frac{5}{4}$ units


43. Area of $\triangle ACF$ is:

(a) $\frac{25}{4}$ sq. units	(b) 25 <i>sq</i>	ı.units	(c) 5 sq. units	(d) 4 sq.units		
44. Area of the shaded region is :						
(a) 20 sq. units	(b) 21 <i>sq</i>	units	(c) $\frac{21}{4}$ sq. units	(d) 10 <i>sq.units</i>		
45. Ratio of the areas of $\triangle ABE$ and $\triangle ADG$ is:						
(a) 2:25 ((b) 25:1	(c) 3:25	(d) 1:25			

Q46-Q50 are based on Case Study-2

Case Study-2

For a sports event, certain points were marked on a rectangular ground denoting positions of different drills.

46. The distance between the points A and E is:

(a)	$\sqrt{10}$ units	(b) $\sqrt{13}$ units	(c) $\sqrt{15}$ units	(d) $\sqrt{17}$ units			
47. What type of triangle is formed by joining the points A, Z and R?							
(a)	Scalene	(b) Isosceles	(c) Equilateral	(d) Right angled			
48. The equation of the line EI is:							
(a)	x = -5	(b) $x = 6$	(c) $x = 0$	(d) $y = 0$			
49. The ratio in which the x –axis divides the join of A and R is:							
(a)) 1:3 (<i>b</i>) 2	:3 (c) 1:1	(<i>d</i>) 2:1				
50. The distance of the point B from F is:							
(a)	5 units	(b) $\sqrt{5}units$	(c) $2\sqrt{5}units$	(d) $5\sqrt{2}units$			