The University of Zambia Department of Mathematics and Statistics MAT 3300 Real Analysis

Test 1

Duration: Two (2) Hours **Instructions:**

- Answer all questions
- Show all necessary work to earn full marks
- 1. (a) Determine whether the following sets are closed in \mathbb{R} :
 - i. $A = \{ x \in \mathbb{Q} : 0 \le x \le 1 \},$
 - ii. $B = \left\{ \frac{m}{n} : 0 \le m \le 1, 0 < n \le 1 \right\},\$
 - iii. $C = C_1 \cap C_2$, where C_1 is compact and C_2 is connected.
 - (b) Determine whether the following statements are true or false:
 - i. The Cartesian product of two closed subsets of $\mathbb R$ is closed in $\mathbb R^2,$
 - ii. If A is a closed subset of \mathbb{R} , then $A' = \left\{\frac{1}{a} : a \in A\right\}$ is closed.
 - iii. If $f : \mathbb{R} \to \mathbb{R}$ is a continuous function and A is closed in \mathbb{R} , then f(A) is closed in \mathbb{R} .
- 2. (a) Show directly that the following sets are not compact in \mathbb{R} :
 - i. A = (-2, 2)
 - ii. $B = [0, \infty)$
 - (b) Prove the following:
 - i. If $f : \mathbb{R} \to \mathbb{R}$ is continuous and A is compact in \mathbb{R} , then f(A) is compact in \mathbb{R} .
 - ii. If A and B are compact subsets of \mathbb{R} , then $A \times B$ is a compact subset of \mathbb{R}^2 .
- 3. (a) Show that the following sets are disconnected:
 - i. The Cantor set C
 - ii. The set of all natural numbers $\mathbb N$
 - (b) Show that the following sets are intervals in \mathbb{R} and therefore connected:
 - i. (-2, 2)
 - ii. $(0,\infty)$
 - (c) Prove the following:

- i. Every countable subset of $\mathbb R$ is disconnected,
- ii. A subset B of a connected set A in $\mathbb R$ may be disconnected,
- iii. The intersection of any two connected sets in $\mathbb R$ is connected.