DELETED PORTION

S. NO.	CHAPTER NAME	DELETED PORTION
1	REAL NUMBERS	EUCLID'S DIVISION LEMMA
2	POLYNOMIALS	PROBLEMS ON DIVISION ALGORITHM FOR POLYNOMIALS WITH REAL COEFFICIENTS.
3	PAIR OF LINEAR EQUATIONS IN TWO VARIABLES	CROSS MULTIPLICATION METHOD
4	SIMILAR TRIANGLES	PROOF OF THE FOLLOWING THEOREMS ARE DELETED 1) THE RATIO OF THE AREAS OF TWO SIMILAR TRIANGLES IS EQUAL TO THE RATIO OF THE SQUARES OF THEIR CORRESPONDING SIDES. 2) IN A TRIANGLE, IF THE SQUARE ON ONE SIDE IS EQUAL TO SUM OF THE SQUARES ON THE OTHER TWO SIDES, THE ANGLE OPPOSITE TO THE FIRST SIDE IS A RIGHT ANGLE. (CONVERSE OF PYTHAGORAS THEOREM)
5	INTRODUCTION TO TRIGONOMETRY	PROOFS OF TRIGONOMETRIC RATIOS OR 0° AND 90° TRIGONOMETRIC RATIOS OF COMPLEMENTARY ANGLES

S. NO.	CHAPTER NAME	REVISED MATHEMATICS SYLLABUS
1	REAL NUMBERS	FUNDAMENTAL THEOREM OF ARITHMETIC - STATEMENTS AFTER REVIEWING WORK DONEEARLIER AND AFTER ILLUSTRATING AND MOTIVATING THROUGH EXAMPLES,PROOFS OF IRRATIONALITY OF $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$ DECIMAL REPRESENTATION OF RATIONAL NUMBERS IN TERMS OF TERMINATING/NON- TERMINATING RECURRING DECIMALS.
2	POLYNOMIALS	ZEROS OF A POLYNOMIAL. RELATIONSHIP BETWEEN ZEROS AND COEFFICIENTS OF QUADRATIC POLYNOMIALS.
3	PAIR OF LINEAR EQUATIONS IN TWO VARIABLES	PAIR OF LINEAR EQUATIONS IN TWO VARIABLES AND GRAPHICAL METHOD OF THEIR SOLUTION, CONSISTENCY/INCONSISTENCY. ALGEBRAIC CONDITIONS FOR NUMBER OF SOLUTIONS. SOLUTION OF A PAIR OF LINEAR EQUATIONS IN TWO VARIABLES ALGEBRAICALLY - BY SUBSTITUTION, BY ELIMINATION. SIMPLE SITUATIONAL PROBLEMS. SIMPLE PROBLEMS ON EQUATIONS REDUCIBLE TO LINEAR EQUATIONS.
4	SIMILAR TRIANGLES	DEFINITIONS, EXAMPLES, COUNTER EXAMPLES OF SIMILAR TRIANGLES. 1. (PROVE) IF A LINE IS DRAWN PARALLEL TO ONE SIDE OF A TRIANGLE TO INTERSECT THE OTHER TWO SIDES IN DISTINCT POINTS, THE OTHER TWO SIDES ARE DIVIDED IN THE SAME RATIO. (BPT) 2. (MOTIVATE) IF A LINE DIVIDES TWO SIDES OF A TRIANGLE IN THE SAME RATIO, THE LINE IS PARALLEL TO THE THIRD SIDE. 3. (MOTIVATE) IF IN TWO TRIANGLES, THE CORRESPONDING ANGLES ARE EQUAL, THEIR CORRESPONDING SIDES ARE PROPORTIONAL AND THE TRIANGLES ARE SIMILAR. 4. (MOTIVATE) IF THE CORRESPONDING SIDES OF TWO TRIANGLES ARE PROPORTIONAL, THEIR CORRESPONDING ANGLES ARE EQUAL AND THE TWO TRIANGLES ARE SIMILAR. 5. (MOTIVATE) IF ONE ANGLE OF A TRIANGLE IS EQUAL TO ONE ANGLE OF ANOTHER TRIANGLE AND THE SIDES INCLUDING THESE ANGLES ARE PROPORTIONAL, THE TWO TRIANGLES ARE SIMILAR. 6. (MOTIVATE) IF A PERPENDICULAR IS DRAWN FROM THE VERTEX OF THE RIGHT ANGLE

		OF A RIGHT TRIANGLE TO THE HYPOTENUSE, THE TRIANGLES ON EACH SIDE OF THE
		PERPENDICULAR ARE SIMILAR TO THE WHOLE TRIANGLE AND TO EACH OTHER.
		7. (PROVE) IN A RIGHT TRIANGLE, THE SQUARE ON THE HYPOTENUSE IS EQUAL TO THE
		SUM OF THE SQUARES ON THE OTHER TWO SIDES. (PYTHAGORAS THEOREM)
5		TRIGONOMETRIC RATIOS OF AN ACUTE ANGLE OF A RIGHT-ANGLED TRIANGLE. PROOF OF
		THEIR EXISTENCE (WELL DEFINED). VALUES OF THE TRIGONOMETRIC RATIOS OF 30°, 45°
	INTRODUCTION TO	AND 60°.
	TRIGONOMETRY	RELATIONSHIPS BETWEEN THE RATIOS.
		PROOF AND APPLICATIONS OF THE IDENTITY SIN²A + $COS^2A = 1$.
		ONLY SIMPLE IDENTITIES TO BE GIVEN.