CLASS: 10 th	SUBJECT: MATHEMATICS
CHAPTER: POLYNOMIALS	DATE: 26.03.2020

Basic Concepts

- Zeroes of a polynomial. *k* is said to be zero of a polynomial p(x) if p(k) = 0
- · Graph of polynomial.
 - (i) Graph of a linear polynomial ax + b is a straight line.
 - (ii) Graph of a quadratic polynomial $p(x) = ax^2 + bx + c$ is a parabola open upwards like U, if a > 0.
 - (iii) Graph of a quadratic polynomial $p(x) = ax^2 + bx + c$ is a parabola open downwards like \bigcap , if a < 0.
 - (iv) In general a polynomial p(x) of degree n crosses the x axis at atmost n points.

 $\Rightarrow p(x) = x2 - (sum of roots) x + product of roots$ $(iv) If <math>\alpha$, β and γ are zeroes of a cubic polynomial p(x), Then, $p(x) = x^3 - (\alpha + \beta + \gamma) x^2 + (\alpha\beta + \beta\gamma + \alpha\gamma) x - (\alpha\beta\gamma)$ $p(x) = x^3 - (sum of zeroes) x^2 + (sum of product of zeroes / roots taken two at a time)x - (product of zeroes)$

EXAMPLES TO SOLVE NUMERICALS

1. Find the zeroes of the quadratic polynomial and verify the relationship between the zeroes and coefficient of polynomial $p(x) = x^2 + 7x + 12$. **Sol.** $p(x) = x^2 + 7x + 12$ $\Rightarrow p(x) = (x + 3)(x + 4)$ $\therefore p(x) = 0$ if x + 3 = 0 or x + 4 = 0 $\Rightarrow x = -3$ or x = -4 $\therefore -3$ and -4 are zeros of the p(x). **Now,**

Sum of the zeroes = $-3 + (-4) = -7 = \frac{-7}{1} = \frac{-(\text{coefficient of } x)}{\text{coefficient of } x^2}$ Product of the zeroes = $(-3) \times (-4) = 12 = \frac{12}{1} = \frac{\text{constant term}}{\text{coefficient of } x^2}$ **2.** Find the zeroes of $4x^2$ – 7 and verify the relationship between the zeroes and its coefficients. **Sol.** Let $p(x) = 4x^2 - 7$ Here coefficient of $x^2 = 4$, Coefficient of x = 0 and constant term = -7. Now $p(x) = 4x2 - 7 = (2x - \sqrt{7})(2x + \sqrt{7})$: p(x) = 0, if $2x - \sqrt{7} = 0$ or $2x + \sqrt{7} = 0$ $\Rightarrow x = \frac{\sqrt{7}}{2} \text{ or } x = \frac{-\sqrt{7}}{2}$ $\therefore \frac{\sqrt{7}}{2}$ and $\frac{-\sqrt{7}}{2}$ are zeroes of p(x). Now. Sum of zeroes $=\frac{\sqrt{7}}{2} + \left(\frac{-\sqrt{7}}{2}\right) = 0 = \frac{0}{4} = \frac{-(\text{coefficient of } x)}{\text{coefficient of } x^2}$ Product of zeroes = $\frac{\sqrt{7}}{2} \times \frac{-\sqrt{7}}{2} = \frac{-7}{4} = \frac{\text{constant term}}{\text{coefficient of } x^2}$ 3. Find a quadratic polynomial, the sum of whose zeroes is 0 and one zero is 5. **Sol.** Let zeroes are α and β . $\Rightarrow \alpha + \beta = \text{Sum of zeroes}$

 $\Rightarrow \alpha + \beta = \text{Sum of zeroes}$ $\Rightarrow \alpha + \beta = 0 \Rightarrow 5 + \beta = 0 \Rightarrow \beta = -5$ Now product of zeroes = $\alpha\beta = 5 \times (-5) = -25$ Let polynomial $p(x) = ax^2 + bx + c$ $= \frac{-b}{\alpha + \beta} = \frac{c}{\alpha + \beta} = \frac{c}{-25}$

$$\therefore \alpha + \beta = 0 = \frac{-}{a}; \alpha \beta = \frac{-}{a} = -25$$

$$\therefore a = 1, b = 0, c = -25$$

Hence, p(x) = x² - 25

4. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and product of its zeroes are 5, -6 and -20 respectively.

Sol. Let $p(x) = ax^3 + bx^2 + cx + d$

and&alpha, &beta, γ are its zeroes.

 $\therefore \alpha + \beta + \gamma = \text{Sum of zeroes} = 5 = \frac{-b}{a}$

 $\alpha\beta + \alpha\gamma + \beta\gamma$ = Sum of the products of zeroes taken two at a time= $-6 = \frac{c}{a}$

$$\alpha\beta\gamma = -20 = \frac{-a}{a}$$

If a = 1, then b = -5, c = -6 and d = 20 \therefore Polynomial, p(x) = $x^3 - 5x^2 - 6x + 20$.

Division Algorithm for polynomials.

If p(x) and g(x) are any two polynomials with $g(x) \neq 0$, then we can find polynomials q(x) and r(x) such that $p(x) = q(x) \times g(x) + r(x)$, where r(x) = 0 or degree of r(x) < degree of g(x).

Step–1. Divide the highest degree term of the dividend by the highest degree term of the divisor and obtain the remainder.

Step2. If the remainder is 0 or degree of remainder is less than divisor, then we cannot continue the division any further. If degree of remainder is equal to or more than divisor repeat step-1.

 $\therefore \text{ Quotient is } 2x - 2 \text{ and remainder is } 9x - 4.$ 6. Find all zeroes of polynomial $4x^{4} - 20x^{3} + 23x^{2} + 5x - 6 \text{ if two of its zeroes are } 2 \text{ and } 3.$ Sol. Since two zeroes are 2 and 3. $\therefore (x - 2)(x - 3) \text{ is a factor of given polynomial.}$ $\Rightarrow x^{2} - 5x + 6 \text{ is a factor of given polynomial.}$ Now $4x^{2} - 1$ $x^{2} - 5x + 6 \overline{\smash{\big)}4x^{4} - 20x^{3} + 23x^{2} + 5x - 6}$ $4x^{4} - 20x^{3} + 24x^{2}$ - + - $-x^{2} + 5x - 6$ + - +

0
∴
$$4x^4 - 20x^3 + 23x^2 + 5x - 6$$

= $(x^2 - 5x + 6)(4x^2 - 1)$
= $(x - 2)(x - 3)(2x - 1)(2x + 1)$
∴ Zeroes of the given polynomial are 2, 3, $\frac{1}{2}$, $\frac{-1}{2}$.

ASSIGNMENT

- **1.** For what value of k, (-4) is a zero of the polynomial $x^2 x (2k + 2)$?
- **2.** For what value of p, (-4) is a zero of the polynomial $x^2 2x (7p + 3)$?
- **3.** If 1 is a zero of the polynomial $p(x) = x^2 3(a 1)x 1$, then find the value of *a*.
- **4.** Write the zeroes of the polynomial $x^2 + 2x + 1$.
- **5.** Write the zeroes of the polynomial $x^2 x 6$.

6. Write a quadratic polynomial, the sum and product of whose zeroes are 3 and -2 respectively.

7. Find the zeroes of the quadratic polynomial $6x^2 - 3 - 7x$ and verify the relationship between the zeroes and the coefficient of the polynomial.

8. Find the zeroes of the quadratic polynomial $5x^2 - 4 - 8x$ and verify the relationship between the zeroes and the coefficient of the polynomial.

9. Find the quadratic polynomial, the sum of whose zeroes is 8 and their product is 12. Hence, find the zeroes of the polynomial.

10.Find all the zeros of the polynomial $x^4 + x^3 - 34x^2 - 4x + 120$, if two of its zeroes are 2 and – 2.