CLASS: $10^{\text {th }}$	SUBJECT: MATHEMATICS
CHAPTER: POLYNOMIALS	DATE: 26.03 .2020

Basic Concepts

- Zeroes of a polynomial. kis said to be zero of a polynomial $p(x)$ if $p(k)=0$
- Graph of polynomial.
(i) Graph of a linear polynomial $a x+b$ is a straight line.
(ii) Graph of a quadratic polynomial $p(x)=a x^{2}+b x+c$ is a parabola open upwards like \mathbf{U}, if $a>0$.
(iii) Graph of a quadratic polynomial $p(x)=a x^{2}+b x+c$ is a parabola open downwards like \bigcap, if a <0.
(iv) In general a polynomial $p(x)$ of degree n crosses the x - axis at atmost n points.

- Relationship between the zeroes and the coefficients of a Polynomial.
(i) If α, β are zeroes / roots of $p(x)=a x^{2}+b x+c$, then

$$
\begin{aligned}
& \text { Sum of roots } \alpha+\beta=\frac{-b}{a} \Rightarrow \alpha+\beta=\frac{-(\text { coefficient of } x)}{\text { coefficient of } x^{2}} \\
& \text { Product of roots }=\alpha \beta=\frac{c}{a} \Rightarrow \alpha \beta=\frac{\text { constant term }}{\text { coefficient of } x^{2}}
\end{aligned}
$$

(ii) If α, β and γ are zeroes / roots of $p(x)=a x^{3}+b x^{2}+c x+d$

Then, sum of roots $=\alpha+\beta+\gamma=\frac{-b}{a}=\frac{-\left(\text { coefficient of } x^{2}\right)}{\text { coefficient of } x^{3}}$
Sum of product of roots taken, two at a time

$$
\begin{aligned}
& \alpha \beta+\beta \gamma+\alpha \gamma=\frac{c}{a}=\frac{\text { coefficient of } x}{\text { coefficient of } x^{3}} \\
& \text { Product of roots }=\frac{-d}{a} \Rightarrow \alpha \beta \gamma=\frac{-(\text { constant term })}{\text { coefficient of } x^{3}}
\end{aligned}
$$

(iii) If α, β are roots of a quadratic polynomial $p(x)$, then $p(x)=x^{2}-(\alpha+\beta) x+\alpha \beta$
$\Rightarrow p(x)=x 2$ - (sum of roots) $x+$ product of roots
(iv) If α, β and γ are zeroes of a cubic polynomial $p(x)$,

Then, $p(x)=x^{3}-(\alpha+\beta+\gamma) x^{2}+(\alpha \beta+\beta \gamma+\alpha \gamma) x-(\alpha \beta \gamma)$
$p(x)=x^{3}-($ sum of zeroes $) x^{2}+$ (sum of product of zeroes / roots taken two at a time) $x-($ product of zeroes $)$

EXAMPLES TO SOLVE NUMERICALS

1. Find the zeroes of the quadratic polynomial and verify the relationship between the zeroes and coefficient of polynomial $p(x)=x^{2}+7 x+12$.
Sol. $\mathrm{p}(\mathrm{x})=x^{2}+7 x+12$
$\Rightarrow p(x)=(x+3)(x+4)$
$\therefore \mathrm{p}(\mathrm{x})=0$ if $\mathrm{x}+3=0$ or $\mathrm{x}+4=0$
$\Rightarrow x=-3$ or $x=-4$
$\therefore-3$ and - 4 are zeros of the $p(x)$.
Now,

Sum of the zeroes $=-3+(-4)=-7=\frac{-7}{1}=\frac{-(\text { coefficient of } x)}{\text { coefficient of } x^{2}}$
Product of the zeroes $=(-3) \times(-4)=12=\frac{12}{1}=\frac{\text { constant term }}{\text { coefficient of } x^{2}}$
2. Find the zeroes of $4 x^{2}-7$ and verify the relationship between the zeroes and its coefficients.

Sol. Let $p(x)=4 x^{2}-7$
Here coefficient of $x^{2}=4$,
Coefficient of $x=0$ and constant term $=-7$.
Now $p(x)=4 \times 2-7=(2 x-\sqrt{7})(2 x+\sqrt{7})$
$\therefore p(x)=0$, if $2 x-\sqrt{7}=0$ or $2 x+\sqrt{7}=0$
$\Rightarrow \mathrm{x}=\frac{\sqrt{7}}{2}$ or $\mathrm{x}=\frac{-\sqrt{7}}{2}$
$\therefore \frac{\sqrt{7}}{2}$ and $\frac{-\sqrt{7}}{2}$ are zeroes of $p(x)$.
Now,
Sum of zeroes $=\frac{\sqrt{7}}{2}+\left(\frac{-\sqrt{7}}{2}\right)=0=\frac{0}{4}=\frac{-(\text { coefficient of } x)}{\text { coefficient of } x^{2}}$
Product of zeroes $=\frac{\sqrt{7}}{2} \times \frac{-\sqrt{7}}{2}=\frac{-7}{4}=\frac{\text { constant term }}{\text { coefficient of } \mathrm{x}^{2}}$
3. Find a quadratic polynomial, the sum of whose zeroes is 0 and one zero is 5 .

Sol. Let zeroes are α and β.
$\Rightarrow \alpha+\beta=$ Sum of zeroes
$\Rightarrow \alpha+\beta=0 \Rightarrow 5+\beta=0 \Rightarrow \beta=-5$
Now product of zeroes $=\alpha \beta=5 \times(-5)=-25$
Let polynomial $p(x)=a x^{2}+b x+c$

$$
\begin{aligned}
& \therefore \alpha+\beta=0=\frac{-b}{a} ; \alpha \beta=\frac{c}{a}=-25 \\
& \therefore a=1, b=0, c=-25
\end{aligned}
$$

$$
\text { Hence, } p(x)=x^{2}-25
$$

4. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and product of its zeroes are 5, -6 and -20 respectively.
Sol. Let $p(x)=a x^{3}+b x^{2}+c x+d$
and\&alpha, \&beta, γ are its zeroes.
$\therefore \alpha+\beta+y=$ Sum of zeroes $=5=\frac{-b}{a}$
$\alpha \beta+\alpha \gamma+\beta \gamma=$ Sum of the products of zeroes taken two at a time $=-6=\frac{c}{a}$

$$
\alpha \beta \gamma=-20=\frac{-d}{a}
$$

If $a=1$, then $b=-5, c=-6$ and $d=20$
\therefore Polynomial, $p(x)=x^{3}-5 x^{2}-6 x+20$.

Division Algorithm for polynomials.

If $p(x)$ and $g(x)$ are any two polynomials with $g(x) \neq 0$, then we can find polynomials $q(x)$ and $r(x)$ such that $p(x)=q(x) \times g(x)+r(x)$, where $r(x)=0$ or degree of $r(x)<$ degree of $g(x)$.
Step-1. Divide the highest degree term of the dividend by the highest degree term of the divisor and obtain the remainder.
Step2. If the remainder is 0 or degree of remainder is less than divisor, then we cannot continue the division any further. If degree of remainder is equal to or more than divisor repeat step-1.
5. Divide $4 x^{3}+2 x^{2}+5 x-6$ by $2 x^{2}+3 x+1$.

$$
\begin{array}{r}
2 x^{2}+3 x+1 \begin{array}{l}
4 x-2 \\
4 x^{3}+2 x^{2}+5 x-6 \\
4 x^{3}+6 x^{2}+2 x \\
-\quad-\quad- \\
-4 x^{2}+3 x-6 \\
-4 x^{2}-6 x-2 \\
+\quad+\quad+ \\
\hline 9 x-4
\end{array}
\end{array}
$$

\therefore Quotient is $2 x-2$ and remainder is $9 x-4$.
6. Find all zeroes of polynomial
$4 x^{4}-20 x^{3}+23 x^{2}+5 x-6$ if two of its zeroes are 2 and 3.
Sol. Since two zeroes are 2 and 3 .
$\therefore(x-2)(x-3)$ is a factor of given polynomial.
$\Rightarrow x^{2}-5 x+6$ is a factor of given polynomial.
Now

$$
\begin{aligned}
& x ^ { 2 } - 5 x + 6 \longdiv { 4 x ^ { 4 } - 2 0 x ^ { 3 } + 2 3 x ^ { 2 } + 5 x - 6 } \\
& 4 x^{4}-20 x^{3}+24 x^{2} \\
& \frac{-\quad-\quad-x^{2}+5 x-6}{} \\
& \frac{-x^{2}+5 x-6}{} \\
& \quad-\quad+\quad+ \\
&=\left(x^{4}-20 x^{3}+23 x^{2}+5 x-6\right. \\
&=(x-2)(x-3)\left(4 x^{2}-1\right) \\
& \therefore \text { Zeroes of the given polynomial are } 2,3,1 / 2,-1 / 2
\end{aligned}
$$

ASSIGNMENT

1. For what value of $k,(-4)$ is a zero of the polynomial $x^{2}-x-(2 k+2)$?
2. For what value of $p,(-4)$ is a zero of the polynomial $x^{2}-2 x-(7 p+3)$?
3. If 1 is a zero of the polynomial $p(x)=x^{2}-3(a-1) x-1$, then find the value of a.
4. Write the zeroes of the polynomial $x^{2}+2 x+1$.
5. Write the zeroes of the polynomial $x^{2}-x-6$.
6. Write a quadratic polynomial, the sum and product of whose zeroes are 3 and -2 respectively.
7. Find the zeroes of the quadratic polynomial $6 x^{2}-3-7 x$ and verify the relationship between the zeroes and the coefficient of the polynomial.
8. Find the zeroes of the quadratic polynomial $5 x^{2}-4-8 x$ and verify the relationship between the zeroes and the coefficient of the polynomial.
9. Find the quadratic polynomial, the sum of whose zeroes is 8 and their product is 12 . Hence, find the zeroes of the polynomial.
10. Find all the zeros of the polynomial $x^{4}+x^{3}-34 x^{2}-4 x+120$, if two of its zeroes are 2 and -2 .
