B.Sc. III Semester Degree Examination, November/December 2015 MATHEMATICS
 Paper - 3.1 : Vector Algebra and Solid Geometry

Time: 3 Hours
Max. Marks : 60
Instruction: Answerall Sections.

SECTION - A

Answer any ten of the following :
(10×2=20)

1. Show that

$$
\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})=0 .
$$

2. Find $\vec{a} \times(\vec{b} \times \vec{c})$ where $\vec{a}=i-2 j+k, \vec{b}=3 i+j-k, \vec{c}=4 i-2 j-k$.
3. Find a set of vectors reciprocal to the set of vectors.

$$
\vec{a}=2 i+3 j-k, \vec{b}=3 i-j+k, \vec{c}=2 i+j-3 k .
$$

4. Find the distance between the points $A(-2,3,5), B=(1,2,3)$.
5. Show that the three points $(-2,3,5),(1,2,3)$ and $(7,0,-1)$ are collinear.
6. Find the co-ordinates of the point that divides the line joining the points $(2,-3,1)$ and $(3,4,-5)$ in the ratio $1: 3$ internally.
7. If the direction ratios of a line are $6,2,3$ find the direction cosines of the lines.
8. Show that the lines are at right angles whose direction ratios are $(2,3,4)$ and $(1,-2,1)$.
9. Find the area of the triangle whose vertices are (2, 5, -4), ($-1,4,-3$) and $(4,7,-6)$.
10. Find the equation of the plane passing through the points $(1,1,0),(1,2,1)$, $(-2,2,-1)$.
11. Find the distance between the parallel planes

$$
2 x-2 y+z+6=0
$$

$$
4 x-4 y+2 z+7=0
$$

12. Show that the lines

$$
\begin{gathered}
\frac{x-1}{1}=\frac{y+1}{-1}=\frac{z-3}{1} \text { and } \frac{x-2}{2}=\frac{y-4}{1}=\frac{z-6}{3} \text { are coplanar. } \\
\text { SECTION - B }
\end{gathered}
$$

Answer any two of the following :

1. Define reciprocal system of vectors and prove that

$$
[\vec{a} \vec{b} \vec{c}] \cdot\left[\vec{a}^{\prime} \vec{b}^{\prime} \vec{c}^{\prime}\right]=1
$$

2. Find $\vec{a} \times(\vec{b} \times \vec{c})$ and $(\vec{a} \times \vec{b}) \times \vec{c}$ where
$\vec{a}=i+2 j$
$\vec{b}=j+2 k$
$\vec{c}=i+2 k$
3. Show that
$i \times(\vec{a} \times i)+j \times(\vec{a} \times j)+k \times(\vec{a} \times k)=2 \vec{a}$
4. Show that

$$
\left(\begin{array}{lll}
\vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a}
\end{array}\right)=\left[\begin{array}{ll}
\vec{a} \vec{b} \vec{c}
\end{array}\right]^{2}
$$

SECTION-C

Answer any three of the following :

1. Find the angle between the diagonals of a cube.
2. Find the direction cosines of the two lines which are connected by the relations $l-5 m+3 n=0$ and $7 l^{2}+5 m^{2}-3 n^{2}=0$.
3. Find the value of a and b such that $(a, 1,1),(1, b,-1),(1,3,-3)$ are collinear.
4. Find the angle between the two lines whose direction cosines satisfy the equation.
$l+\mathrm{m}+\mathrm{n}=0$ and $2 l+2 \mathrm{~m}-\mathrm{nm}=0$.
5. Find the equation of the planes which passes through the points $(0,4,-3)$ and $(6,-4,3)$ and makes intercepts on the axes whose sum is zero.

SECTION - D

Answer any three of the following :

1. Find the symmetrical form of the line of intersection of the planes.

$$
2 x+3 y+5 z-1=0,3 x+y-z+2=0
$$

2. Derive the condition for a line to lie on a plane both in vector and Cartesian form.
3. Find the equation of plane passing through the points $(2,0,2),(6,1,1)$ and $(4,2,3)$ meat the coordinate axes at A, B and C. Find the coordinates of the centroid of the triangle $A B C$.
4. Find the length of the perpendicular from the point $A(-3,0,1)$ to the plane $4 x-3 y+2 z=19$. Also find the coordinates of the foot of the perpendicular.
5. Find the shortest distance between the lines

$$
\frac{x-3}{1}=\frac{y-4}{-2}=\frac{z+2}{-1} \text { and } 3 x-y-10=0=2 x-z-4
$$

