Chemistry - Science Pacing Guide

Schedule	Standards
Week 1	
Week 2	C-PS1-1 : Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.
Week 3	C-PS1-1 : Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.
	C-PS1-8 : Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.
Week 4	C-PS1-8 : Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.
Week 5	C-PS1-2 : Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.
Week 6	C-PS1-3 : Plan and conduct an investigation to gather evidence to compare the structure of substances at a bulk scale to infer the strength of various forces between particles.
Week 7	C-PS2-6 : Communicate scientific and technical information about why the molecular structure determines the functioning of designed materials.
	C-PS3-4 : Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperatures are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).
Week 8	C-PS1-2 : Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.
Week 9	C-PS1-2 : Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.
	C-PS1-7 : Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.
Week 10	C-PS1-7 : Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.
Week 11	C-PS1-4 : Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.
Week 12	C-PS1-4 : Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.
Week 13	C-PS1-8 : Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.
Week 14	C-PS1-8 : Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.

Week 15	C-PS1-5 : Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.
Week 16	C-PS1-5 : Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.
Week 17	C-PS1-6 : Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.
Week 18	C-PS4-4 : Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.
	C-PS4-5 : Communicate technical information about how some technological devices use the principles of the electromagnetic spectrum to cause matter to transmit and capture information and energy.
Week 19	
Week 20	
Week 21	
Week 22	
Week 23	
Week 24	
Week 25	
Week 26	
Week 27	
Week 28	
Week 29	
Week 30	
Week 31	
Week 32	
Week 33	
Week 34	
Week 35	
Week 36	