
System Design Handbook

System Design Basics ①

1) Try to break the problem into simpler
modules (Top down approach)

2) Talk about the trade - offs

(No solution is perfect)

calculate the impact on system based on

all the constraints and the end test cases .

←
Focus on interviewer 'sheproblem] intentions

.

T
Ask Abstract]questions
(constraints &

Functionality findingRequirements) bottlenecks

idudas

System Design Basics ccontd) ②

D Architectural pieces / resources available

2) How these resources work together
3) Utilization & Tradeoffs

-

consistent Hashing
-

CAP Theorem ✓

- Load balancing ✓

-

queuesf- caching -

-

Replication
- 59L vs No - SQL
I

-

Indexes ✓

-

Proxies
1- Data Partitioning ✓

Load Balancing ③

(Distributed system)

Types of distribution -f
Random

Round - robin

<
Random (weights for memory &

CPU cycles)

To utilize full scalability & redundancy , add 3 LB

D User ¥ web server

2) Web server ¥ App server 1 Cache Server

(Internal platform)
3) Internal platform DB .

#WClient LB

\er
DB
T

,, LB

Smart clients
Takes a pool of service hosts & balances load .
→ detects hosts that are not responsive
→ recovered hosts
→ addition of new hosts

Load balancing functionality to DB (cache. Service
* Attractive solution for developers
(small scale systems)
As system grows → LBS (standalone servers)

Hardware load Balancers :

Expensive but high performance .

e. g . Citrix Netscaler

Not trivial to configure .

Large companies tend to avoid this config .

or use it as 1st point or contact to their

system to serve user requests &

Intra network uses smart clients / hybrid
solution → (Next page) for

load balancing traffic .

Software Load Balancers
'

No pain of creation of smart client

No cost of purchasing dedicated hardware[
hybrid approach

HA Proxy ⇒ OSS Load balancer

-4
1) Running on client machine

'

2
(locally bound port)
e - g . local host : 9000
I

F-
managed by HA Proxy
(with efficient management
of requests on the port)

2) Running on intermediate server : Proxies running beth

HA Proxy

[Manages
health checks

dirt server side components

removal & addition of machines

balances requests alc pools .

Wortdof
Databases
=

S9Lvs.NoS÷

iaa
1) structured D Unstructured .

2) Predefined schema 2) distributed
3) Data in rows& columns 3) dynamic schema

Row ⇒ One Entity Into

column ⇒ Separate data points

mysar ¥ 's::L:L: stores
Oracle9sa¥fl wait:p:

'

:3;
DB

Postgres
MariaDB

an E o

e

r ÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷O

e

ai

s I E
E cs O S O

th s I 3 is J Os

e to 6 of = G IT u E
s

O
U

'

E s O S
-

I
g O

f÷÷÷¥÷÷÷÷÷÷÷÷÷.Et
-

s o
U

te
O G O

e e O

:
tr

- I
'

J S T
O g

e I E
E O or I
is E E ETo o①⇒ ± . ÷EE
or or o J
-

E e E E s

is 3 Er er .

.
I 8 Ess E -3 o o -

G o
OS u

c S s
d d

- E E OE s w t

o E o o J E
= O E E

G
-

r d Id O is 8 e E
t E

°
i n u EE s E - E - E O

E s - d s gu - so §
n E

d s f O s . - c
O G

e

u f O d O O - 88 U I 0

or 6 by us is •
u

w S S s s o - W s e

j d u E
U
o g

O s a ou ou N & si u

O
or 883

A 88 it's too > u
s
I E

ch t g - o o
O s 't ⑤ I it

Cs cs T g J as a Notre u E
O o

-

v. I d g.E n S E KE u e I o
O

→ of E s
o s 8 s I I 8 of toE Z t

-
-

n y
U ou u @ at so

.
- In

O Es O s 6
w o @ Ed O t T

i N
T S e e E O ng O w . - u

& . o -
E U - o E on s a •

R g
S w O -

z
- O or O

U N

b d
s D J O s cry

to Nos y U G - u
-
-

t O u z > so I
'

E O og u
O si

w Dw or • ←we
t w

OFacsn
-

o o 8 3 u

f o S - T I Z o's
- E u 06 I d.E es
° 6 § 03 O T

w

E sif÷÷÷÷f÷÷÷i÷÷÷:ff÷÷:÷f÷÷i÷÷÷G O z S
T

s 89 f-
od '

I O

U
G o Tu Es E o 8- or # O E D

s @ u w u o J as
6 'I t

O L O t u
'

Es D O 6
g

y
U d 62 g-

U
w u o g

N s or

y es or
u O >

u
d U s

-
- d E nd o b Eire E # E E

=

T I n - ooo EEE - o
'

E
O o

-

I • as u a

1- o's x G
, +

as

I o
' 88 go.IT IT IT IT

-
w

s

⇒ q El if ¥4.- e d J o

I 0 8 u
s u g

Ev or
on us

or

Reasonstouses.cl#BJ
1) You need to ensure ACID compliance :

ACID compliance
⇒ Reduces anomalies

⇒ Protects integrity of the database
.

for many E - commerce & financial app
"

→ ACID compliant DB

is the first choice .

2) Your data is structured & unchanging .

If your business is not experiencing
rapid growth or sudden changes
→ No requirements of more servers
→ data is consistent

then there's no reason to use system design
to support variety of data & high traffic .

Reasonstouse.NO#IB
When all other components of system are fast
→ querying & searching for data ⇒ bottleneck .

NoSQL prevent data from being bottleneck
.

Big data ⇒ large success for NoSQL .

1) To store large volumes of data C little Ino structure)

No limit on type of data.
Document DB ⇒ Stores all data in one place

(No need of type of data)
2) Using cloud & storage to the fullest .

Excellent cost saving solution . (Easy spread of data

across multiple servers to scale up)
OR commodity hlw on site (affordable , smaller)

⇒ No headache or additional Stw

& NoSQL DBS like Cassander ⇒ designed to scale

across multiple data centers out of the box.

3) Useful for rapid 1 agile development .
If you're making quick iterations on schema

⇒ SQL will slow you down .

Achieved by

CAP-heore€
\tenyC All nodes see same data

updating several nodes .

at same time)before allowing g)reads E

"
"

"
"
e.

%%%
,

Not

g
pareieiontdera£

Availability
[cassandra . Couch DB]

Hr Hr

Every request gets System continues to work

response (success (failure) despite message loss (partial
Achieved by replicating Failure

.

data across different servers (can sustain any amount

of network failure without

- resulting in failure of entire

Data is sufficiently replicated network)

across combination of nodes /

networks to keep the system up .

.in:6#eo:::i:::::ia::i:n:::ans'

We cannot build a datastore which is :

D continually available
2) sequentially consistent

3) partition failure tolerant .

Because
,

To be consistent ⇒ all nodes should see the same

set of updates in the same order

But if network suffers partition
,

update in one partition might not make it to

other partitions
↳ client reads data from out-of-date partition
After having read from up-to-date partition .

Solutions stop serving requests from out - of - date

partition .

↳ service is no longer
100% available .

Redundancy&ReplicationJ
⇒ Duplication of critical data & services

↳
increasing reliability of system .

For critical services & data ⇒ ensure that multiple

copies 1 versions are running simultaneously on different

servers 1 databases .

⇒ Secure against single node failures .

⇒ Provides backups if needed in crisis .

Deter Dow
Primary server secondary server

& Data 2
--aIg Replication 2

Active data Mirrored data

Service Redundancy : shared - nothing architecture .

Every node ⇒ independent. No central service managing state .]
More resilient← New servers ← Helps in[
to failures addition without scalability

Nosing special conditions

Caching
Load balancing ⇒ Scales horizontally
caching : Locality of reference principle
I Used in almost every layer of computing .

I Application Server cache :

Placing a cache directly on a request layer node .

↳ Local storage of response

Requests

in€.÷. miss
response data

Caches on one Request layer made
Tcatedy
✓

Memory (very fast) Node 's local disk

(faster than going to network storage)

Bottleneck : If LB distributes requests randomly
↳ same request ⇒ different nodes

our:c!m£ More d

by
D Global caches

2) Distributed caches

Distributed

Gimme
-

Divided using consistent hashing function

③⑤gµeautts.-€#
Easy to increase cache space by adding more hordes

Disadvantage : Resolving a missing node

staring multiple copies of I can be handled by
data on different hordes
⇒ likes making it more complicated .

Even if node disappears ⇒

request can pull data from Origin .

flabellate
Single cache space for all the hacks .

↳ Adding a cache source I file store (faster than original store)
Difficult to manage if no af clients I request increases -

effective if
Y fixed dataset that needs to be cached

2) special Hlw ⇒ fast Ho .

Forms of global cache :

GEE { %fbtae.mn?hdEtahhYm
Database

database

contains hot dataat

Global

cache

%gz { Database

App " logic understands the eviction strategy that spoils
better than cache .

CDN : content Distribution network

4- Cache store for sites that saves large amount

of static media .

if not
available

Request CDN- Baek- End

if a
- server

available(L
local (static Media)

storage

Lf the site isn't large enough to have its own CDN

4µAtransition

Some static media using separate subdomain
- (static

. yaursuuice.com
using lightweight Nginse serves

↳ entrance DNS from your sauce
to a CDN later

Cache Invalidation
Cached data ⇒ needs to be coherent with the database

Lf data in DB modified ⇒ invalidate the cached data .

3 schemes :

=

I Write - through cache :

cache Data is written

same time in
Data

DB hath cache & DB
.

+ Complete data consistency C cache = DB)

+ Fault tolerance in case of failure Club data loss)
- high latency in writes ⇒ 2 write operations

2) Write around cache
Cache

Data

DB

+ No cache flooding foe writes
- read request for newly written data ⇒ miss

higher latency
d

B) Write back cache :

cache DB

Data
after some
£ interval as under

client
some sepciifird conditions

data is written to DB

from cache

+ law latency & high throughput bae write - intensive app
"

- Data loss TT (only one copy in caches

Cache Eviction Policies

D FIFO

2) LIFO Ae FILO

3) LRV

4) MRU

5) LF U

Random Replacement

Sharding 11 Data Partitioning
Data Partitioning : splitting up DD I table across multiple
machines ⇒ manageability . performance , availability & LB

**
After a certain scale paint , it is cheaper and more feasible

to scale horizontally by addingmoney instead of
vertical scaling by adding beefiness

Methods of Partitioning :

1) Horizontal Partitioning : Different rows into diff . tables
Range based shading

e. g . staring locations by zip different
Table 1 : Lips with L 100000 ⇒ ranges in
Table 2 : Lips with 7 Loo ooo different tables
and so on

** come if the value of the range not chosen carefully
⇒ leads to unbalanced servers

e. g . Table I can have more data than table 2 .

Vertical Partitioning

Feature wise distribution of data
↳ in different servers .

e. g . Instagram- DB sauce 1 : user info
DB sauce 2 : followers

DB server 3 : photos
* A straightforward to implement
* A lane impact on app .

- - if app → additional growth
need to partition feature specific DB across various sources

(e - g. it would not be possible for a single sewer to handle
all metadata queries for Lo billion photos by 140 mill. users

Directory based partitioning
⇒ A loosely coupled approach to work around issues

mentioned in above two partitioning .

** Create lookup service ⇒ current partitioning scheme

& abstracts it away from the DB access code .

Mapping l tuple key → D8 sauce)

Easy to add DD towers or change partitioning scheme .

Partitioning Criteria

D key or Hash based partitioning :

Kay atte - af Hash function → Partition

the data number

Effectively fines the total number of sauces 1partitions

So if we add new source Ipartition To

change in hash function
downtime because of d

redistribution
↳ Solution : consistent Hashing

2) List Partitioning : Each partition is assigned a list of
values

.

Nuo → hookup
record for

→ stare the record

key (partition based on the key)

3) Round Robin Partitioning :

uniform data distribution
with '

n . partitions
⇒ the

'

is tuple is assigned to partition
(i mad n)

4 Composite Partitioning :

combination af above partitioning schemes

flashing t List ⇒ consistent Hashing
Hr

Hash reduces the key space to a
size that can be listed .

Common Problems of Shouting :

Iharded DB : Entree constraints on the diff . operations
Hr

operations -across multiple tables or

multiple rains in the same table 7
no longer running
in single severe.

" Jains A Denoumalizatiom :

Jains on tables on single sauce ⇒ straightforward.
* not feasible to perform joins on shrouded tables

↳ Less efficient C data needs to be compiled from
multiple servers)

Workaround ⇒ Denarmalip the DB

so that the queries that previously read . jains can be performed
from a single table .(
coins Perils of denavmalizatiom

↳ data inconsistency

2) Referential integrity : Foreign keys om shrouded D8

↳ difficult
* Mast of the RDBMS does not support foreign keys on

stranded DB .

If app
"
-demands referential integrity om shrouded DB

↳
enforce it in app

"

code C SOL jobs to
clean up dangling references)

3) Rebalancing :
Reasons to change sharking scheme :

a) horn - uniform distribution C data wise)

b) non - uniform laced balancing C request wise)

Workaround : Y add new DB

2) rebalance

↳
change in partitioning scheme

↳ data monument{
↳ downtime

We can use directory - based partitioning
↳ highly complex

↳ single paint of failure
(lookup service 1 table)

Indexes
⇒ Well known because -of databases .

⇒ Improves speed of retrieval
- Increased storage auerhead
- Shauna writes

↳ write the data

↳ Update the index
⇒ Can be created using one or more columns
* Rapid random lookups
& efficient access of ordered records .

Data structure

column → Painter to whale raw

→ Create different views of the -same data .

↳
very good for filtering /sorting of large data sets .
↳ no need to create additional copies .

Used foe datasets (TB in size) & small payload (KB)
I

spied over several

physical devices → We need some way to find the correct

physical location i. e. Indexes

useful under high load situations

Peonies
- if we have limitcdcaehing

↳ batches several requests into one

client

Backend>
>MY > sauce

>
Peony

client

>

Source

^
a

filters requests-

log requests

transform
-add / remain headers

encryption /decryption
frequently compression

used resources request co - ordination
(request traffic optimization

T
we can also use ← Collapse same data access

spatial locality request into one.

↳ collapsing requests ⇒ collapsed forwarding
for data that is spatially Ipsf

minimize reads from -origin .

Queues

⇒ Effectively manages requests in large - scale distributed system

→ In small systems → writes are fast .

→ In complex systems → high incoming load
4- individual writes take more time

* To achieve high performance & availability
↳

system needs to be asynchronous
↳ Queue

Synchronous behaviour → degrades performance
d

ye
Load balancing

difficult for fair &
balanced distribution

server
C

, T ,

-

T2
r

C
,

-13
T ,

gag { ,
T2

↳
Queue

Cu

Queues : asynchronous communication protocol
↳ client sends task

↳ gets ACK from queue lecccipt)
I
serves as reference
for the results in future[

client continues its work .

Limit on the sispafeeguest
& number of requests in queue

Queue : Provides fault - tolerance

[↳ protection from service outage /failure
highly robust

[↳ retry failed service request

Enforces Quality of Service guarantee
L Does NOT expose clients to outages)

Queues : distributed communication
↳ Open source implementations

↳ Rabbitma
, Zoeoma , ActiveMQ , BeanstalkD .

Consistent Hashing

Distributed Hash Table

index = hash
- function C key)

Suppose we're designing distributed caching system
with n cache servers

↳ hash
. function ⇒ (key % n)

Drawbacks :

1) NOT horizontally scalable
↳ addition of new server results in

↳ need to change all existing mapping.
(downtime of system)

2) NOT load balanced

l because -af non- uniform distribution of data)
1-

Some caches : hat & saturated

Other caches : idk & empty

How to tackle about problems ?

Consistent flashing

What is consistent Hashing ?
→ Very useful strategy for distributed caching & outs .

→ minimizes reorganization in scaling up / dawn .

→ only kin keys needs to be remapped.

k ⇒ total number of keys
n ⇒ number of servers

How it works ?

Typical hash function suppose outputs in [0
.
2567

In consistent hashing ,
imagine all of these integers are placed on a ring .

255 0

254
,

• • of

253
,

•
2

±

"

& we have 3 servers : A
,
B & C

.

1) Given a list of servers , hash them to integers in the range .

255 0

C A

B

2) Map key to a serum :

a) Hash it to single integer
b) Mane CLK wise until you find Laura

c) map key to that server .

255 0

hL key - 1)

of A

"

h (key - 2) '

B

Adding a new server
'

.
will result in morning the

-

key -2' to 'D
255 0

hL key - 1)

C A

"

a
D

h (key - 2) '

B

Removing server IA ' , will result in morning the
-

key-1
' to II

255 O

h (key - 1)

①a Dh (key - 2) '

B •

Consider real world scenario

data → randomly distributed
↳ unbalanced cactus

.

How to handle this issue ?

Virtual Replicas
⇒ Instead -of mapping each node to a single paint
we map it to multiply paints .

↳ (more number of replicas
↳ more equal distribution

↳ good load balancing)
255 0

D C

•

h (key - 1)

A
a-

C

B

B

C

AD

D
h [Key - 2)

^

A

B

Long -Palling vs tikbsoekrts us Serves - Sent Events
'

↳ Client - Senior Communication Protocols

HTTP Protocol :

request NJ prepare Remorseclient

>

Serum

<

.

Response

AJAX Patting :

Clients repeatedly palls servers for data
similar to HTTP protocol
↳
requests sent to screen at regular intervals (0.5sec)

Drawbacks :
\

Client keeps asking the source now data
↳ Lot of

uspomsgy.au
'

empty
'

↳ HTTP Overhead .
.
Request

.)

4
Response

Request. >

Client a
response

sooner
\

.

Request >

<
Response

HTTP Long Patting :

•

Hanging GET
'

Sauce does NOT send empty response .

Pushes response to clients only when new data is available
☐ Client makes HTTP Request 4- waits for the response .

2) Server delays response until update is available

or until time-out occurs.

3) When update → server sends full response .
4) Client sends now long - poll request

a) immediately after receiving response
d) after a pause to allow acceptable latency period

5) Each request has timeout .

Client needs to reconnect periodically due to timeouts

LP Request
. 7

<

My
full Response

LP Request. >

Client <
.

full Response
Showa

LP Request >

a

full Response

Wet Sockets
→duplex communication channel over single TCP connection .

→ Provides 'persistent communication
'

(client a serum can send data at anytime]
→ bidirectional communication in always open channel .

pep
socket

Handshake
Request

Handshake Success Response

<

-

: is i.
Client <

'

. Source

.

Communication }
channel

→ Lower overheads

→ Real time data transfer

Server - sent Events (SSE)

client establishes persistent & long - term connection with sauna

server uses this connection to send data to client

* * If client wants to send data to server

↳ Requires another technology / protocol .

data request

using regular HTTP

v

'

ing=i.
Client <

. Source
• Always - open unidirectional<

communication
< .

channel

-
responses whenever now data available

→ best when we need real - time data from soever to client

OR server is generating data in a loop &

will be sending multiple events to the client
.

