Reg. No.:(7 pages) Code No.: 20071 E Sub. Code: SMMA 65/ AMMA 65	2.	2. In the Gauss-Seidel method the process iteration will converse if in each equation of system, the absolute value of the lar coefficients is ——————————————————————————————————				
B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.		(a)	>	(b)	<	
Sixth Semester		(c)	=	(d)	None of these	
Mathematics — Core	3.	The	value of $\Delta^2(e^x)$			
NUMERICAL METHODS					*	
(For those who joined in July 2017-2020)			$e^{x}(e^{h}-1)$	(b)		
Time: Three hours Maximum: 75 marks.		(c)	$e^x(e^h+1)$	(d)	$e^x(e^h-1)^2$	
PART A — $(10 \times 1 = 10 \text{ marks})$	4.	The	value of $\Delta^r x^{(r)}$		_	
Answer ALL the questions.		(a)	$h^r r!$	(b)	hr!	
Choose the correct answer		(c)	h!r!	(d)	$r!h^2$	
 The rate of convergence of Gauss-Seidel method is roughly times that of Gauss-Jacobi method. (a) 1 (b) 2 (c) 3 (d) 1/2 	5.	(a)	vton's forward i —— intervals. unequal infinite	nterpol (b)	•	
			I	Page 2	Code No. : 20071 E	
6. Divided difference $f(x_0, x_1) =$		PART B — $(5 \times 5 = 25 \text{ marks})$				
(a) $f(x_1) - f(x_0)$ (b) $\frac{f(x_1) + f(x_0)}{2}$		Answer ALL questions, choosing either (a) or (b).				
(a) $f(x_1)-f(x_0)$ (b) $\frac{f(x_1)+f(x_0)}{2}$ (c) $\frac{f(x_1)-f(x_0)}{2}$ (d) $\frac{f(x_0)-f(x_1)}{2}$ 7. Error in Trapezoidal formula is of the order	11.		Find a rea $x^3 - 3x + 1 = 0$	al roo lying b		

(a) h

 h^2 (b)

 h^3 (c)

 h^4 (d)

Simpson's one third rule is also known as 8.

Trapezoidal rule

Newton's rule

Parabolic rule

(d) Lagrange rule

order of the difference equation $y_{n+3} + 6y_{n+2} + 11y_{n+1} - 5y_n = \cos nx$ is

(a) 2

(b)

(d)

The solution of $y_{n+2} - 6y_{n+1} + 8y_n = 0$ is

 $c_1 2^n + c_2 4^n$ (a)

(b) $c_1 2^n + c_2 n^4$

 $c_1 n^2 + c_2 n^4$

(d) None of these

Page 3 Code No.: 20071 E

Or

- Find by Newton's method the root of the equation $e^x = 4x$, which is approximately 2 correct to three places of decimals.
- 12. Find the value of $\Delta^n \sin x$ taking (h = 1).

 $\Delta^{10}[(1-x)(1-2x^2)(1-3x^3)(1-4x^4)]$ (b) Find (h=2).

13. From the following table find the value of y (a) when x=5 using Newton's forward interpolation formula.

4 6 8 10

1 3 8 16

Or

(b) From the following data, find the value of y when x = 84 using Newton backward interpolation formula.

r 40 50 60 70 80 90 v 184 204 226 250 276 304

14. (a) From the following table find the value of $\frac{dy}{dx}$, when x = 1.05.

x 1.00 1.05 1.10 1.15 y 1.0 1.02470 1.04881 1.07238

 x
 1.20
 1.25
 1.30

 y
 1.09544
 1.11803
 1.14017

Or

(b) From the following table find y'(0.5) $x \quad 0 \quad 1 \quad 2 \quad 3 \quad 4$

y(x) 1 1 15 40 85

15. (a) Solve: $y_{n+3} + y_{n+2} + y_n = 0$

Or

(b) Solve: $y_{n+3} - 3y_{n+1} + 2y_n = 0$

Page 5 Code No.: 20071 E

(b) Use Lagrange's interpolation formula to fit f(x) from the data given below. Also find f(2).

19. (a) Explain: Trapezoidal rule for evaluating numerical integration.

Or

- (b) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin x dx$ by simpson's $\frac{1}{3}$ rule dividing the range into six equal parts.
- 20. (a) Solve: $y_{n+2} 6y_{n+1} + 8y_n = 4$.

Or '

(b) Solve: $y_{n+2} + y_{n+1} - 56y_n = 2^n(n^2 - 3)$

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) Solve the following equations by Gauss-elimination method.

2x + y + 4z = 12

8x - 3y + 2z = 20

4x + 11y - z = 33

Or

27x + 6y - z = 85

(b) Solve 6x + 15y + 2z = 72

x + y + 54z = 110

by Gauss Jacobi method.

17. (a) Represent the function $x^4 - 12x^3 + 42x^2 - 30x + 9$ and its successive difference in factorial notation (h = 1).

Or

- (b) Find the second difference of the polynomial $x^4 12x^3 + 42x^3 30x + 9$ with (h = 2).
- 18. (a) From the following table, find f(27) using divided difference formula.

x 14 17 31 35

f(x) 68.7 64 44 39.1

Or

Page 6 Code No.: 20071 E