Code No.: 20070 E Sub. Code: SMMA 64/ AMMA 64

B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.

Sixth Semester

Mathematics - Core

DYNAMICS

(For those who joined in July 2017-2020)

Time: Three hours

Maximum: 75 marks

PART A - (10 × 1 = 10 marks)

Answer ALL questions.

Choose the correct answer.

- Time of flight of the projectile is —————
 - (a) $\frac{2n\sin\alpha}{g}$
- (b) $\frac{2n}{g}$
- (c) $\frac{2n^2 \sin \alpha}{g}$
- (d) $\frac{u\sin\alpha}{g}$

- 2. Maximum horizontal range of a projectile is
 - (a) $\frac{u^2}{g}$
- (b) $\frac{u^2}{g}$
- (c) $\frac{u}{g}$
- (d) $\frac{u^2 \sin \alpha}{g}$
- 3. For inelastic body e = -
 - (a) 2
- (b) 1
- (c) (
- (d) 4
- 4. An elastic ball of mass m falls from a height 'h' on a fixed horizontal plane and rebounds. Then the loss in K.E. is ————
 - (a) $mgh(1+e^2)$
- (b) $mg(1-e^2)$
- (c) $mg(1+e^2)$
- (d) $mgh(1-e^2)$
- 5. The periodic time of a simple pendulum is
 - (a) $2\pi\sqrt{\frac{l}{g}}$
- (b) $2\pi\sqrt{\frac{g}{l}}$
- (c) $\sqrt{\frac{2\pi g}{l}}$
- (d) $\sqrt{\frac{2\pi l}{g}}$

Page 2 Code No.: 20070 E

- 6. In a S.H.M. at time t, displacement x = -
 - (a) $\cos \sqrt{\mu} t$
- (b) $\sin \sqrt{\mu} t$
- (c) $a \sin \sqrt{\mu} t$
- (d) $a\cos\sqrt{\mu}t$
- 7. The magnitude of the radial component of velocity is ———
 - (a)
- (b) $r\dot{\theta}$
- (c) $\ddot{r} r\dot{\theta}^2$
- (d) $\dot{r}\theta$
- 8. The magnitude of the radial component of acceleration along the radius vector is
 - (a) $\dot{r}\theta$
- (b) r
- (c) $\dot{r}\theta^2$
- (d) $\ddot{r} r\dot{\theta}$
- 9. p-r equation of the parabola-pole of focus is
 - (a) $p^2 = r^2$
- (b) p = ar
- (c) $p^2 = ar$
- (d) $p^2 = a^2$
- 10. p-r equation of the equiangular spiral is
 - (a) p = kr
- (b) $p = kr^2$
- (c) $p^2 = r^2$
- (d) $p^2 = \sqrt{kr}$

Page 3 Code No. : 20070 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

 (a) A stone is thrown with a velocity of 39.2 m/sec at 30° to the horizontal. Find at what time will be at height of 14.7 m (g = 9.8 m/s²).

Or

- (b) Prove that the latus rectum of the path of a projectile is $\frac{2}{g} \times (\text{horizontal velocity})^2$.
- 12. (a) Explain the oblique impact of two smooth spheres.

Or

- (b) A sphere of mass m moving on a horizontal plane with velocity impinges obliquely on a sphere of mass M at rest on the same plane if m = eM, prove that the direction of motion are at right angle after impact.
- 13. (a) Show that the displacement of a particle moving in a straight line is expressed by the equation $x = a \cos nt + b \sin nt$ then it describes a S.H.M. whose amplitude is $\sqrt{a^2 + b^2}$ and period $\frac{2\pi}{n}$.

Or

(b) Find the composition of two S.H.M. of the same period in two perpendicular directions.

Page 4 Code No. : 20070 E

(P.T.O.)

- 14. (a) The velocities of a particle along and perpendicular in the radius from a fixed origin are λr and μθ respectively. Find the path and the acceleration along and perpendicular to the radius vector.
 Or
 - (b) A particle describes the equiangular spiral $r = ae^{\int \cot a}$ whose pole is 0. It its radial velocity at distance from 0 is $\frac{K}{r}$. Prove that the acceleration of the particle is $K \sec^2 a/r^2$ towards 0.
- (a) Explain; Velocities in central orbit.
 - (b) Find the law of force towards the pole under which the curve $\frac{a}{r} = e^{\pi \theta}$ can be described.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

- (a) Obtain the range of a projectile on an inclined plane and find its maximum.

 Or
 - (b) Show that for a given velocity of projection the maximum range down an inclined plane of inclination α bears to the maximum range up the inclined plane the ratio $\frac{1+\sin\alpha}{1-\sin\alpha}$.

Page 5 Code No.: 20070 E

19. (a) Show that the path of a point P which posses two constant velocities u and v the first of which is in a fixed direction and the second of which its perpendicular to the radius vector OP drawn from a fixed point 0 is a conic whose focus is 0 and whose eccentricity is \(\frac{u}{v}\).

Or

- (b) A particle is describing the ellipse $\frac{l}{r} = 1 + e \cos \theta$ with uniform angular velocity u about the pole. Show that when the particle is at one end of the lautus rectum through the pole the component of the acceleration towards the pole is $(1 2e^2)w^2l$.
- 20. (a) A particle describe $r^n = a^n \cos n\theta$ under a central force. Find the law of force.

Or

(b) A particle moves in an ellipse under a force which is always directed towards its focus. Find the law of force, the velocity at any point and its periodic time.

Page 7 Code No.: 20070 E

17. (a) A particle is projected from a point on an inclined plane and at the r^{th} impact is strikes the plane perpendicularly and at the n^{th} impact is at the point of projection. Show that $e^n - 2e^r + 1 = 0$.

Or

(b) A particle of elasticity 'e' is dropped from a vertical height 'a' ∞ upon the highest point of a plane which is of length b and is inclined at an angle α to the horizon and descends to the bottom in three jumps. Show that

$$b = 4ae(1+e)(1+e^2)(1+e+e^2)\sin\alpha$$

18. (a) A particle describing SHM has distance x_1, x_2, x_3 in successive intervals of time from its centre of oscillation. Show that its period

is
$$\frac{2\pi}{\cos^{-1}\left(\frac{x_1+x_3}{2x_2}\right)}$$
.

Or

(b) Find the differential equation of SHM and solve it.

Page 6 Code No.: 20070 E