(8 pages)	(8	pa	ges)
-----------	----	----	------

Reg	No.	:		

Code No. : 20085 E Sub. Code: SEMA 5 D/ AEMA 54

B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.

Fifth Semester

Mathematics

Major Elective — OPERATIONS RESEARCH — I

(For those who joined in July 2017-2020)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL the questions.

Choose the correct answer:

- Graphical method can be used to solve the LPP if the number of decision variable is
 - (a) Equal to two
 - (b) Atmost two
 - (c) Atleast two
 - (d) Not equal to two

min(-z) $-\min(z)$ (b) $-\min(-z)$ (d) none The cost of slack variable is (a) 1 (c) M (d) If all the constraints of the dual problem in

A maximization problem Maxz can be converted

- equations of \(\) type then the constraints in the primal problem type. (a) ≤ (b) (c) (d)
- The constants $b_1, b_2, ..., b_n$ in the constraints of the primal will appear in the
 - constraints
 - (b) objective function
 - both constraints and objective function

by using

- When demand # supply the transportation is called
 - (a) Unbalanced
- Balanced
 - Degenerate
- None of these

Page 2 Code No.: 20085 E

- If the number of rows and columns are not equal in the assignment problem, then it is called
 - (a) bounded
- balanced
- unbounded (c)
- unbalanced
- 8 The set of feasible solutions to
 - Convex (a)
- Polygon
- Triangle
- (d) Bounded
- Sequence problem involving processing of two job on 'n' machines
 - can be solved graphically
 - can't be solved graphically (b)
 - two jobs must be in the same order
 - none of these
- method explains n jobs on two 10. machines.
 - NLPP (a)
 - LPP(b)
 - Johnson's method (c)
 - Graphical method

Page 3 Code No.: 20085 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Solve graphically: 11. (a)

Maximize $z = -x_1 + 4x_2$

Subject to the constraints:

$$-3x_1 + x_2 \le 6$$

$$x_1 + 2x_2 \le 4$$

$$x_2 \le -3$$

no lower bound constraint for x_1 .

Or

- Define slack variable and surplus variable. (b)
- Obtain the dual of the following LPP: 12. (a)

Maximize $z = 3x_1 + 10x_2 + 2x_3$

Subject to the constraints:

$$2x_1 + 3x_2 + 2x_3 \le 7$$

$$3x_1 - 2x_2 + 4x_3 = 3$$

and
$$x_1, x_2, x_3 \ge 0$$
.

Or

Write down the primal and dual problems in canonical form.

Page 4 Code No.: 20085 E

13. (a) Determine an initial basic feasible solution to the following transportation problem using North West Corner Rule:

	Α	В	C.	D	E	Supply
P	2	11	10	3	7	4
Q	1	4	7	2	1	8
R	3	9	4	8	12	9
Demand	.3	3	4	5	6	
			Or			

- (b) Explain the method of solving a unbalanced transportation problem.
- (a) Give the mathematical formulation of the assignment problem.

Or

(b) Solve the following assignment problem.

	Ι	II	III	IV
A	(10	5	13	15
$\mathbf{B}_{\mathbf{a}}$	3	9	18	3
C	10	7	3	2
D	5	11	13 18 3 9	7

15. (a) Solve the following sequencing problem:

 Job (Time in hrs):
 A
 B
 C
 D
 E
 F

 Machine 1:
 8
 3
 7
 2
 5
 1

 Machine 2:
 3
 4
 5
 2
 1
 6

 Machine 3:
 8
 7
 6
 9
 10
 9

 Or

Page 5 Code No.: 20085 E

17. (a) Use duality to solve the following LPP.

Minimize $z = 2x_1 + 2x_2$

Subject to

$$\begin{aligned} 2x_1 + 4x_2 &\geq 1 \\ -x_1 - 2x_2 &\leq -1 \\ 2x_1 + x_2 &\geq 1 \text{ and } x_1, \ x_2 &\geq 0. \end{aligned}$$
 Or

(b) Use dual simplex method to solve.

Maximize $z = -3x_1 - 2x_2$

Subject to

$$x_1 + x_2 \ge 1$$

$$x_1 + x_2 \le 7$$

$$x_1+2x_2\geq 10$$

 $x_2 \le 3$ and $x_1, x_2 \ge 0$.

18. (a) Solve the following transportation problem.

71	ve u	16 10.	HUWI	116 01	ans	or tai
	4	1	2	6	9	100
	6	4	3	5	7	120
	5	2	6	4	8	120
	40	50	70	90	90	
			14 ()r		

(b) Solve the following transportation problem.

1	2	0	30
2	3	4	35
1	5	6	35
.30	40	30.	

Page 7 Code No.: 20085 E

(b) We have 5 jobs, each of which must through A, B in the order AB processing time (in hours) are given in the following table. Find the sequence that minimizes the total elapsed time.

5

Job: 1 2 3 4

Machine A: 10 2 18 6 20

Machine B: 4 12 14 16 8

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) Use Simplex method to solve the following LPP

Maximize $z = 4x_1 + 10x_2$

Subject to the constraints

$$2x_1 + x_2 \le 50$$

$$2x_1 + 5x_2 \le 100$$

$$2x_1 + 3x_2 \le 90$$
 and $x_1, x_2 \ge 0$.

Or

(b) Use Big-M method and solve:

Maximize $z = 3x_1 + 2x_2$

Subject to

$$2x_1 + x_2 \le 2$$

$$3x_1 + 4x_2 \ge 12$$
 and $x_1, x_2 \ge 0$.

Page 6 Code No.: 20085 E

 (a) Obtain an optimum solution using the following assignment problem.

	9	22	58	11	. 19
	43	78	72	50	63
	41	28	91	37	45
	74	42	27	49	39
١	36	11	57	22	25

Or

(b) Solve the assignment problem.

20. (a) State the Algorithm for processing 'n' jobs on 2 machines.

Or

(b) Use graphical method to minimize the time added to process the following jobs on the machines shown below. Also calculate the total elapsed time to complete the jobs.

Job 1 Sequence: A B C D E
Time (hours): 6 8 4 12 4

Job 2 Sequence: B C A D E

Job 2 Sequence: B C A D E Time (hours): 10 8 6 4 12

Page 8 Code No. : 20085 E