(7 pages)

Reg. No. :

Code No. : 20073 E Sub. Code : SAMA 21/ AAMA 21

B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023

Second/Fourth Semester

Mathematics - Allied

VECTOR CALCULUS AND FOURIER SERIES

(For those who joined in July 2017-2020)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answers.

- 1. The value of $\vec{i} \cdot \vec{i} =$ ______.
 - (a) $\vec{0}$
- (b) 0
- (c) 1
- (d) j
- 2. A vector \vec{f} is harmonic vector if
 - (a) $\nabla \vec{f} = 0$
- (b) $\nabla^2 \vec{f} = 0$
- (c) $\nabla \times \vec{f} = 0$
- (d) $\nabla^2 \times \vec{f} = 0$

- 3. The value of $\int_{0}^{2} \int_{3}^{5} xy \, dx \, dy$
 - (a) $\frac{21}{2}$
- (b) $\frac{63}{4}$
- (c) $\frac{64}{3}$
- (d) $\frac{22}{2}$
- 4. The value of $\int_{0}^{2} \int_{0}^{3} xy^{2}z \, dz \, dy \, dx$
 - (a) 26
- (b) 24
- (c) 42
- (d) 62
- 5. If $\vec{f} = x^2 i xy\vec{j}$ and C is the straight line joining the points (0, 0) and (1, 1) then $\int_C \vec{f} \cdot d\vec{r}$ is ———.
 - (a) 0
- (b) 1
- (c) x²
- (d) xy
- 6. If $\vec{A} = curl \vec{F}$, then $\iint_{S} \vec{A} \cdot \vec{n} \, dS = ----$ for any closed S.
 - (a) 0
- (b) S
- (c) V
- (d) 3V

Page 2 Code No.: 20073 E

- 7. The value of $\iiint_V \nabla \varphi \, dV$ is
 - (a) $\int_{0}^{\overline{f}} \cdot dS$
- (b) $\iint \varphi \vec{n} \, dS$
- (c) $\iiint \varphi \, dV$
- (d) 0
- 8. If $\operatorname{curl} \vec{F} = 0$, then $\int_C \vec{F} \, d\vec{r} =$
 - (a) \vec{n}
- (b)
- (c) 1
- (d) \vec{r}
- 9. Which one of the following is an even function?
 - (a) :
- (b) $\sin x$
- (c) e^x
- (d) x^2
- 10. If f(x) is odd, then $\int_{-a}^{a} f(x) dx$
 - (a) $2\int_{a}^{a}f(x)dx$
- (b) $\int_{-\pi}^{a} f(x) dx$
- (c) (
- (d)

Page 3 Code No.: 20073 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Prove that $\nabla f(r) = \left(\frac{f'(r)}{r}\right)\vec{r}$.

 \mathbf{Or}

- (b) Show that $div\left(\frac{\vec{r}}{r}\right) = \frac{2}{r}$.
- 12. (a) Evaluate $\int_{0}^{+1} \int_{0}^{1-\cos\theta} r dr d\theta$ Or
 - (b) Evaluate $\iint_{0}^{2} \iint_{1}^{3} xy^{2}z \ dz \ dy \ dx$.
- 13. (a) Evaluate $\int_C \vec{f} \cdot d\vec{r}$ where $\vec{f} = (x^2 + y^2)\vec{i} + (x^2 + y^2)\vec{j} \text{ and } C \text{ is the curve}$ $y = x^2 \text{ joining (0, 0) and (1, 1)}.$

Or

(b) Find the common area between $y^2 = 4x$ and $x^2 = 4y$ using Green's theorem.

Page 4 Code No.: 20073 E

[P.T.O.]

14. (a) Show that
$$\iint_S \vec{f} \cdot \vec{n} d\vec{S} = \iiint_V a^2 dV \quad \text{where}$$
 $\vec{r} = \varphi a \text{ and } a = \nabla \varphi \text{ and } \nabla^2 \varphi = 0$.

Or

- (b) Evaluate using Stoke's theorem $\int_C (yzdx + zxdy + xydz) \text{ where } C \text{ is the curve}$ $x^2 + y^2 = 1, z = y^2.$
- 15. (a) In $-\pi < x < \pi$, express $\sinh ax$ as in Fourier series of period 2π .

Or

(b) Explain the Half range sine series.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) If
$$\nabla \varphi = 2xyz^3\vec{i} + x^2z^3\vec{i} + 3x^2yz^2\vec{k}$$
, find $\varphi(x, y, z)$ if $\varphi(1, -2, 2) = 4$.

Or

(b) If \bar{f} is solenoidal prove that $\operatorname{curl}\operatorname{curl}\operatorname{curl}\bar{f}=\nabla^2\bar{f}$.

Page 5 Code No.: 20073 E

20. (a) Expand in Fourier series of $f(x) = x \sin x$ for $0 < x < 2\pi$.

Or

(b) Find the half range Fourier cosine series for f(x)=x in $0 < x < \pi$.

17. (a) Find the value of $\iint xy \, dx \, dy$ taken over the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Or

- (b) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy.$
- 18. (a) Evaluate $\int_C \vec{f} \cdot d\vec{r}$ where $\vec{f} = (x^2 + y^2)\vec{i} 2xy\vec{j}$ and the curve C is the rectangle in the x y plane bounded by y = 0, y = b, x = 0, x = a.

(b) Evaluate $\iint_{S} \vec{f} \cdot \vec{n} \, dS \qquad \text{where}$ $\vec{f} = (x+y)\vec{i} - 2x\vec{j} + 2yz\vec{k} \quad \text{and} \quad S \quad \text{is the surface of the plane} \quad 2x+y+2z=6 \quad \text{in the first octant.}$

19. (a) Verify using Gauss divergence theorem for $\vec{f} = (x^2 - yz)\vec{i} + (y^2 - zx)\vec{j} + (z^2 - xy)\vec{k}$ over the rectangular parallopiped $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$.

Or

(b) Evaluate $\int_C (e^x dx + 2y dy - dz)$ by using stokes theorem where C is the curve $x^2 + y^2 = 4$, z = 2.

Page 6 Code No.: 20073 E