Code No. : 20072 E

Sub. Code : SAMA 11/ AAMA 11

B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.

First/Third Semester

Mathematics - Allied

ALGEBRA AND DIFFERENTIAL EQUATIONS

(For those who joined in July 2017 - 2020)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer.

- 1. If $3 + \sqrt{2}$ is a root of $x^3 11x^2 + 37x 35 = 0$ then

 is also a root of it.
 - (a) $\sqrt{3} + \sqrt{2}$
- (b) $\sqrt{3} \sqrt{2}$
- (c) $3 \sqrt{2}$
- (d) none

- 2. If α , β , γ are the roots of $3x^3 + 6x^2 9x + 2 = 0$ then α β $\gamma = \frac{1}{2}$
 - (a) $\frac{2}{3}$
- (b) $-\frac{2}{3}$
- (c) 2
- (d) -2
- 3. The equation obtained by multiplying the roots of the equation $x^3 + 3x^2 + x 4 = 0$ by 10 is
 - (a) $x^3 30x^2 + 10x 40 = 0$
 - (b) $10x^3 + 30x^2 + 100x 4 = 0$
 - (c) $x^3 + 30x^2 + 100x 400 = 0$
 - (d) $x^3 + 30x^2 + 100x 4000 = 0$
- 4. A positive root of $x^3 3x + 1 = 0$ lies between
 - (a) 1 and 2
- (b) 2 and 3
- (c) 3 and 4
- (d) 4 and 5
- 5. If rank (A) = rank (A, B) = the number of unknowns, then the system of equations AX = B has ———————— solutions.
 - (a) infinite
- (b) no
- (c) unique
- . (d) none

Page 2 Code No.: 20072 E

6. The sum of the eigen values of the matrix

$$\begin{pmatrix} 3 & 1 & 5 \\ 0 & 4 & 2 \\ 0 & 0 & -1 \end{pmatrix}$$
 is ______.

- (a) 3
- (b) 2
- (c) 4
- (d) (
- 7. The general solution of the equation $y = px + p^2$ is
 - (a) $y = cx + p^2$
- $(b) y = cx + c^2$
- (c) $y = cx c^2$
- (d) none
- 8. An equation solvable for x is of the form
 - (a) x = px + f(p)
- (b) y = f(x, p)
- (c) x = f(y, p)
- (d) none
- 9. $L[x] = \overline{}$
 - (a) $\frac{1}{6}$
- (b)
- (c) s²
- (d) $\frac{1}{x^2}$
- $10. \quad L^{-1} \left[\frac{1}{s-a} \right] = ----$
 - (a) e^{ax}
- (b) e^{-a}
- (c) a
- (d) x^2

Page 3 Code No.: 20072 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Solve the equation $x^3 - 11x^2 + 37x - 35 = 0$ if one of its roots is $3 + \sqrt{2}$.

Or

- (b) Solve the equation $x^3 12x^2 + 39x 28 = 0$ given that the roots are in A.P.
- 12. (a) Diminish the roots of the equation $x^4 + 3x^3 2x^2 4x 3 = 0$ by 3.

Or

- (b) Show that the equation $x^3 + 3x 1 = 0$ has only one real root and calculate it correct to two places of decimals.
- 13. (a) Test the consistency of the following system of linear equations. If consistent solve it.

$$x + y + z = 3$$
; $2x + y - z = 2$; $4x - y + 2z = 5$

Or

(b) Find the eigen values of the matrix $\begin{pmatrix} 2 & -2 & 2 \\ 1 & 1 & 1 \end{pmatrix}$

$$A = \begin{pmatrix} 2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{pmatrix}$$

Page 4 Code No.: 20072 E

[P.T.O.]

14. (a) Solve
$$p^2 - 5p + 6 = 0$$
.

Or

(b) Solve $\sin px \cos y = \cos px \sin y + p$.

15. (a) Find
$$L[x^2e^{-\alpha x}]$$
.

(b) Find
$$L^{-1}\left[\frac{s+1}{s^2+2s+2}\right]$$

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) Show that the roots of the equation
$$px^3 + qx^2 + rx + s = 0 \quad \text{are} \quad \text{in} \quad A.P \quad \text{iff}$$
$$2q^3 + 27p^2s = 9pqr.$$

Or

(b) Solve
$$6x^5 + 11x^4 - 33x^3 - 33x^2 + 11x + 6 = 0$$
.

17. (a) Find the root of the equation
$$x^4 - 3x + 1 = 0$$
 that lies between 1 and 2 correct to two decimal places using Newton's method.

Or

(b) Find the positive root of $x^3 + 2x^2 - 5x - 7 = 0$ correct to 2 decimal places by Horner's method.

Page 5 Code No.: 20072 E

8. (a) Test the consistency of the equations x-y+z=2; 3x-y+2z=-6; 3x+y+z=-18 and solve if consistent.

Or

- Find the eigen values and the eigen vectors of the matrix $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$.
- 19. (a) Solve: $xp^2 2yp + x = 0$.

Or

(b) Solve:
$$y - 2px = x^2p^4$$
.

20. (a) Find
$$L\left(\frac{1-\cos x}{x}\right)$$

Or

(i)
$$L^{-1}\left[\frac{s}{(s+2)^2}\right]$$

(ii)
$$L^{-1} \left[\frac{1}{(s+3)^2 + 25} \right]$$

Page 6 Code No.: 20072 E