Reg. No.:

Code No.: 20439 E Sub. Code: CEMA 54

B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2023.

Fifth Semester

Mathematics ·

Major Elective — OPERATIONS RESEARCH — I

(For those who joined in July 2021-2022)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- 1. What is an unbounded solution?
 - (a) Finite number of solutions
 - (b) Infinite number of solutions
 - (c) Feasible solution
 - (d) Infeasible solution

- A necessary and sufficient condition for a basic feasible solution to a maximization LPP to be an optimum is that (for all *j*) ————
 - (a) $z_i c_i \ge 0$
 - (b) $z_i c_i \le 0$
 - $(c) z_j c_j = 0$
 - (d) $z_i c_i > 0$ or $z_j c_j < 0$
- There is a dual constraint for every -3.
 - dual variable (a)
 - primal variable
 - primal constraint (c)
 - (d) feasible solution
- Dual simplex method is applicable to the LPP 4. having
 - an optimum solution (a)
 - an infeasible solution (b)
 - (c) an optimum and feasible solution
 - an optimum and infeasible solution (d)

Page 2 Code No.: 20439 E

- A transportation problem is said to be balance if 5.
 - (a) Total Supply > Total Demand
 - Total Supply < Total Demand (b)
 - (c) Total Supply = Total Demand = 0
 - Total Supply = Total Demand (d)
- 6. current basic feasible solution of the transportation problem is optimal if ————.
 - (a) one $Z_{ij} C_{ij} \le 0$ (b) all $Z_{ij} C_{ij} \le 0$
 - (c) one $Z_{ij} C_{ij} > 0$ (d) all $Z_{ij} C_{ij} > 0$
- 7. In the optimum solution of the assignment problem, a given row or column of the cost matrix have
 - no assignment
- (b) < 0 assignment
- ≥2 assignment
- (d) one assignment
- If $C_{ij} > 0$ such that minimum $\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} = 0$, then

 x_{ii} provides

- optimum solution (a)
- feasible solution (b)
- infeasible solution (c)
- unbounded solution (d)

Code No.: 20439 E Page 3

- The sequence of jobs and the order of completion of jobs are
 - (a) dependent
- (b) independent
- (c) minimum
- (d) maximum
- In graphical method the diagonal live segment shows that
 - (a) no job is under process
 - (b) first job is under process
 - (c) second job is under process
 - (d) both jobs are under process

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

 (a) Discuss the standard form of the linear programming problem.

Or

(b) Solve graphically: $\max z = 3x_1 + 2x_2$ Subject to $2x_1 + x_2 \le 40$ $x_1 + x_2 \le 24$ $2x_1 + 3x_2 \le 60$ $x_1, x_2 \ge 0$.

Page 4 Code No.: 20439 E

12. (a) Write the dual of

Maximize: $z = 2x_1 + x_2$

Subject to

$$x_1 + 2x_2 \le 10$$

$$x_1 + x_2 \le 6$$

$$x_1 - x_2 \le 2$$

$$x_1 - 2x_2 \le 1$$

$$x_1, x_2 \ge 0$$
.

Or

- (b) Prove that the dual of the dual is primal.
- (a) Obtain an initial basis feasible solution to the following transportation problem using the matrix minima method.

Or

(b) Explain Vogel's Approximation Method.

Page 5 Code No.: 20439 E

14. (a) Write Hungarian assignment algorithm.

Or

(b) Solve the following assignment problem.

9	1	. 2	3	4	
A	10 5 12	12	19	11	
В	5.	10	7	8	
С	12	14	13	11	
D	8		11	9	

15. (a) Determine the sequence for 6 jobs 2 machines that will minimize the total elapsed time T.

Processing time (in hours)

(b) Using graphical method determine the minimum elapsed time sequence of 2 jobs 4 machines.

Machines

Page 6 Code No.: 20439 E

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) Use Simplex method to Maximize $z = 5x_1 + 4x_2$ Subject to the constraints $4x_1 + 5x_2 \le 10$ $3x_1 + 2x_2 \le 9$ $8x_1 + 3x_2 \le 12$ $x_1, x_2 \ge 0$.

Or

- (b) Use Simplex method to Maximize $z = 107x_1 + x_2 + 2x_3$ Subject to the constraints $14x_1 + x_2 - 6x_2 + 3x_4 = 7$ $16x_1 + x_2 - 6x_3 \le 5$ $3x_1 - x_2 - x_3 \le 0$ $x_1, x_2, x_3, x_4 \ge 0$.
- 17. (a) Use Dual Simplex method to solve Minimize $z = 3x_1 + x_2$ Subject to $x_1 + x_2 \ge 1$ $2x_1 + 3x_2 \ge 2$ $x_1, x_2 \ge 0$.

Page 7 Code No.: 20439 E

- (b) Find the optimum integer solution to Maximize $z = x_1 + x_2$ Subject to $3x_1 + 2x_2 \le 5$ $x_2 \le 2$ $x_1, x_2 \ge 0$ and are integers.
- 18. (a) Solve the following transportation problem.

•	A	В	C	$^{\prime}$ D	Stock
1	10	0	20	11	15
2 2	12	7	9	20	25
3	0	14	16	18	5
Demand	5	15	15	10	ı

Or

(b) Solve the following transportation problem.

	D_1	D_2	D_3	D_4	D_5
O_1	4	7	3	8	2
O_2	1	4	7	3	8
Оз	7	2	4	7	7
O ₄	. 4 _.	8	2	4	7
Demand	8	3	7	2	2

Page 8 Code No.: 20439 E

Available

19. (a) Solve the following assignment problem.

(b) Find the optimum assignment and the maximum profit for the following:

20. (a) Solve the following sequencing problem.

Or

Page 9 Code No.: 20439 E

(b) Using graphical method, determine the minimum elapsed time sequence of 2 jobs 4 machines.

Job 1 Sequence A B C D E Time Job 2 Sequence B C A D E Time 5 4 3 2 6

Page 10 Code No. : 20439 E